Курс математики для технических высших учебных заведений. Часть 2. Функции нескольких переменных. Интегральное исчисление. Теория поля: Учебное пособие [А. И. Мартыненко] (pdf) читать онлайн

Книга в формате pdf! Изображения и текст могут не отображаться!


 [Настройки текста]  [Cбросить фильтры]

Лауреат второго Всероссийского конкурса НМС по математике
Министерства образования и науки РФ «Лучшее учебное издание по математике
в номинации «Математика в технических вузах»

В. А. ЛЯХОВСКИЙ, А. И. МАРТЫНЕНКО, В. Б. МИНОСЦЕВ

КУРС МАТЕМАТИКИ
ДЛЯ ТЕХНИЧЕСКИХ
ВЫСШИХ УЧЕБНЫХ
ЗАВЕДЕНИЙ
Часть 2
Функции нескольких переменных.
Интегральное исчисление.
Теория поля
Под редакцией
В. Б. Миносцева, Е. А. Пушкаря
Издание второе, исправленное

ДОПУЩЕНО
НМС по математике Министерства образования и науки РФ
в качестве учебного пособия для студентов вузов, обучающихся
по инженерно&техническим специальностям

•САНКТ-ПЕТЕРБУРГ•МОСКВА•КРАСНОДАР•
•2013•

ББК 22.1я73
К 93
Ляховский В. А., Мартыненко А. И., Миносцев В. Б.
К 93
Курс математики для технических высших учебных
заведений. Часть 2. Функции нескольких переменных.
Интегральное исчисление. Теория поля: Учебное пособие /
Под ред. В. Б. Миносцева, Е. А. Пушкаря. — 2-е изд.,
испр. — СПб.: Издательство «Лань», 2013. — 432 с.:
ил. — (Учебники для вузов. Специальная литература).
ISBN 9785811415595
Учебное пособие соответствует Государственному образовательному
стандарту. Пособие включает в себя лекции и практические занятия.
Вторая часть пособия содержит 25 лекций и 25 практических занятий
по следующим разделам: «Дифференциальное исчисление функций
нескольких переменных», «Интегральное исчисление функций одной
переменной», «Кратные интегралы», «Криволинейные интегралы и
теория поля».
Пособие предназначено для студентов технических, физикоматематических и экономических направлений.

ББК 22.1я73
Рецензенты:
À. Â. ÑÅÒÓÕÀ — äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîð,
÷ëåí ÍÌÑ ïî ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è íàóêè ÐÔ;
À. À. ÏÓÍÒÓÑ — ïðîôåññîð ôàêóëüòåòà ïðèêëàäíîé ìàòåìàòèêè è
ôèçèêè ÌÀÈ, ÷ëåí ÍÌÑ ïî ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è
íàóêè ÐÔ; À. Â. ÍÀÓÌΠ— äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê,
äîöåíò êàôåäðû òåîðèè âåðîÿòíîñòåé ÌÀÈ; À. Á. ÁÓÄÀÊ — äîöåíò,
çàì. ïðåäñåäàòåëÿ îòäåëåíèÿ ó÷åáíèêîâ è ó÷åáíûõ ïîñîáèé ÍÌÑ ïî
ìàòåìàòèêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è íàóêè ÐÔ; Ó. Ã. ÏÈÐÓÌΠ—
ïðîôåññîð, çàâ. êàôåäðîé âû÷èñëèòåëüíîé ìàòåìàòèêè è ïðîãðàììèðîâàíèÿ ÌÀÈ (Òåõíè÷åñêèé óíèâåðñèòåò), ÷ëåí-êîððåñïîíäåíò ÐÀÍ,
çàñëóæåííûé äåÿòåëü íàóêè ÐÔ.

Обложка
Е. А. ВЛАСОВА
Охраняется законом РФ об авторском праве.
Воспроизведение всей книги или любой ее части запрещается без письменного
разрешения издателя.
Любые попытки нарушения закона
будут преследоваться в судебном порядке.

© Издательство «Лань», 2013
© Коллектив авторов, 2013
© Издательство «Лань»,
художественное оформление, 2013

 

  



 
     
    
 

    


          
       ! "  #    $
               $
         %#   # 
      & 
 

   

'  # (    )! *  # M    
*    (    + 
   #   ,
-              Ox . (
  /! Oy . (  /! Oz . (  /      #
M   
0&   .  1/
z
z
M
y
y
x
x

  

  



 231 
       
            
 23)         
            

 

    



 
         
               
  
       
 x = x0 y = y0  z = z0  
    ! 
"  #             Oyz
Oxz  Oxy
  
$     
     
         %& 
  %       
' (&  !    %        
%       
)      %   "
%     ' #       ! % M
          r  ϕ *
 " M      Oxy    z % M  +   % 
 r ϕ  z     "%     % M  ,
  *      x y z &  
-
x = r cos ϕ, y = r sin ϕ, z = z.

 "%           
        
 Oz (z = z0)
    .%  Oz (ϕ = ϕ0)  "% 
          Oz (r = r0) /  0
(1         $    (
   % #     
$     "%      
!   0%     ' #    
  ! % M       ρ  
  #
%     *  .
ϕ  -
θ
  2
.
ϕ % M       .  ϕ *  " M 
    Oxy3 -
θ (0  θ  π)     .   
  % M   !     Oz
40%         & 
 -
x = ρ cos ϕ sin θ, y = ρ sin ϕ sin θ, z = ρ cos θ.
2
 0%           
  0 "   %   (ρ = ρ0 )    

 

 

    

    



 P0    L      

0110101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
10
10
10 10
10
10
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010000
111
1010 L
0
1
0
1
0
1
0
1
000000
111111
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
10101010101010101010 10101010Q
0
1
0
1
0
1
10101010101010111111
0
1
0
1
000000
1010101010101010101010101010101010101010101010101010101010101010
10000000
10101010101010101010111111
000000
111111
1010 101010 101010 1010 1010 10
101010p
000000
1010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010111111
000000
111111
101010 101010 101010101010101010101010101010101010101010101010
10101010101010101010101010101010101010101010101010101010111111
000000
10101010101010101010101010101010
000000
10
10
10
101010101010101010101010101010101010101010101010101010111111
000000
111111
10101010101010101010101010101010101010101010101010
0
1
0
1
0
1
000000
111111
0
1
0
1
0
1
0
1
0
1
0
1
0
1
p
0
1
0
1
0
1
0
1
0
1
0
1
0
1
101010101010 10101010 101010101010101010100101010 10101010 1010
  

          
           
  
            
             
                   
 
!

                
  !    
 " !   G "      # 

             
  $           
     G

#   !  #   # x2 +y2 = 2
 x + y2 = 4       !    #   
x2 + y 2 = 3    $        
 
    %#    &
  ' %    $   
2

 

  &  '   

  



  

   

( )*   #     *  
  ' + ,    $ # # #    )
* - #-





  

        
          (x; y) ∈ D  
       z ∈ E 

 x y
       


    
 z          
  D
     !  D(f )   E
          
"   
E(f )
# "     !$ 
$ !
 "  
  % !  !   !   & z = f (x; y) z = z(x; y)
' "    !   

"  
  x0  y0 
!  "  z0 = f (x0 ; y0 ) z0 = z(x0 ; y0 )  & z0 = z  x=x0  (   
y=y0

 " P (x; y)
 !   "  (x; y)  ! 
 Oxy  !  $ !
 $
    
!$ 
$             " P (x; y)
   & z = f (P )  z = z(P ) #   !    
% "  !    D "  Oxy 

  )         x  y
      z = 2x + 2y      
  !"    D #    
       (x; y)      
 Oxy $   E #   
     
#    
!
  
!$ 
$ *

  "    " 

  "     ! + ! *
  %    
!
 !    ! "
  "   !
   
   !
,    
 !-   
"    z
        ! .      "     / 
 "    !
    !& z = f (x; y)

 



    

  z = x −1 y  







 


    
  
  
 Oxy     y = x 
! 
(−∞; +∞)
"    #$ # !  z
 !    %      !     
 & F (x; y; z) = 0.
' ( 
           (x; y) !
  
      ! z 






 x2 + y 2 + z 2 = R 2 

) z 
!    *   
& z = R2 − x2 − y 2  z = − R2 − x2 − y 2  + !  !
   ,  ( 
    R   
     '    ##  
  - ##

   ! (  & R2 −x2 −y 2  0 ⇔
2
2
⇔ x + y  R2   %     Oxy   R    
   
.  % !  
 z = f (x; y)
   /     0 &
1\ 2 3 4 
5 
3 43 6 7 8 9 
3
6 7 8 9  5
35 7 8 9  5
:  ! 
;       #  ! %  x 
 
 - ! %  y  
    
 #
 #$ !  z   y = 
y = 0, 3>      
 #$%
 
 & z| x=2 = 7
y=0,3
?         

      #$ #  . 

 (   $   
 
=    > @
   
   (   
!        
= %> ! 





  

    
      

            
         
    ! 
    "  
                


 

     

#           
   $% % & V       
      '   x%   y   z : V = xyz 

 ()* 
    
          (x; y; z) ∈ D
          u ∈ E 
+  x, y, z      
 % 
 u ' "  "    "%
 , D         D(f )%  
, E '       ,    "   
E(f )
          ,%     
   - u = f (x; y; z)% u = u(x; y; z)% ω = ω(x; y; z) .  
   ,         P (x; y; z)
   Oxyz - u = f (P )      "  
     ,    !  
/           ,
  "   " / %   %  
  "       
 
0    ,           %
%  ' n           n 
 
  , D 
" 

(x1 ; x2 ; . . . ; xn ) .   n   u = f (x1 ; x2 ; . . . ; xn ) ,
        P (x1 ; x2 ; . . . ; xn ) n  
    - u = f (P )
1%           
     , 

   



  

2       %    (   
        F (x; y; z) = 0  z = f (x; y)





  
y

z

|c|=0
|c|=1

c

- 15

15
- 12 - 7

y

7
0 |c|=4

-4

-c

4

x

|c|=3
|c|=2 15

x

   

 
   

12



       

  
    
f (x; y; z) = C,

  

u = f (x; y; z)

!

 C      
"      #    #    
     Oxyz
       
         
        L  !  !
l      !   " 
L  
  !  #     l $ %  !
   !  
$ %#&     % %     
      '(  ) *(   # + 
     #)  +'(  )     , #

 !
-* + %)     *(  # z   
F (x; y) = 0      Oxyz         
#     +'(   %  Oz  
'(# L)      Oxy +   *   
F (x; y) = 0

 

    



z

l
0
L

y

x

  

 


Oxyz 

F (x; y) = 0
.
      z = 0






L 





      F (x; z) = 0   
 y    F (y; z) = 0    x  
  Oxyz           !
 
"
   Oy Ox
# 
 "        $

  

   

%

    

x2 y 2
+ 2 = 1,
a2
b

& '(

            
 !"
) !  "  Oz   $ 
*     
a b  $     Oxy  +   
 a = b  $        
  "  "     )   x2 + y 2 = a2 

  

   

%

 #    $  
x2 z 2
− 2 = 1,
a2
b

   % &      '"


& ,(





  

z

y
x

   

 


        Oy  
           Oxz         
    a       b
 !" #$ 
    
 
y 2 = 2pz,
%!" &'
  
      
(             Oyz
     Ox
  !" !           
                !"#
 $    % $       
    "!         #
!"  $   &     C   !"
    ! z = 3 ' x2 + y2 + z2 = 25  
      


z = 3,
x2 + y 2 + z 2 = 25.

%!" )'

 

    



z

0

x

y

    



z

0

x

y
    



  
          
     z = 3     
x2 + y 2 = 16           


      !"#

z = 3,
x2 + y 2 = 16,



 


    






       

x2 y 2 z 2
+
− 2 = 0.
a2 a2
c

z

0
y
x
  

  

  
   
 Oyz    


X = 0,
F (Y, Z) = 0.

L

   
  

      !   "#

     Oz   $
%   &  ! 
 '# (
    M(x; y; z) )     &   * 
 
  * * M      
!  Oz   *  * *
"#    ! Oz
 # L   * K N   $ + KM KN
 !    # #      KM = KN 
' 
  KN     ! # 
 *   & Y *
 N  KN = |Y |  KM
=
OP
=
x2 + y 2  ,   

|Y | = x2 + y 2
Y = ± x2 + y 2  - .   Z *
N *       z * M 





  

z

L
k

N(0;y;z)
M(x;y;z)
y

0
x

p

y

  

  

x

   N    
L      
   Y Z  N     
  !
 " ! Y Z !!    

   ± x2 + y2 z #    

F (± x2 + y 2 , z) = 0,

$
    %  M(x; y; z) #
! &  '  # (       
&    # !    $    
%     $ !    # ! &
  ! (  ! Oz 
L #    
)   $ #! "    ! ! 
      Y Z   x y z # *


Y =±
Z=z



x2 + y 2

.



 $      L    
    Oz    L   
              
             
!"#$"% !"#$&%  !"#$#%      

Oyz

            



          
 
           
         z = 2x − xy

3y + 10

     
        
       ! 
D(f ) = {(x; y)|2x − 3y + 10 = 0}
"      #  $    Oxy  %$ 
 $  #    2x − 3y + 10 = 0 &  '

y
10/3
-5

x

0

   
( D(f ) = {(x; y)|2x − 3y + 10 = 0}

 )             
  u = √2x − y + 3z − 1
     
  *      *
  *   !*       +
!  D(f ) = {(x; y; z)|2x − y + 3z − 1  0}
"      #  $      ,
  % 2x − y + 3z − 1 = 0 %$    
( D(f ) = {(x; y; z)|2x − y + 3z − 1  0}





   2        

      z = x4

+ y2 

x2
+ y 2 = c ,
      -         
4
c .       ($   $    % 
         c  0  c = 0 / √$

   .  $ O(0; 0)  c > 0 . / 
   2 c
c

 

    

    



y
3
2
1
0
c=1 2
c=4
c=9

4

6

x

   

     
 y2 − 2y + x2 + 4x + 4 = 0

     

     
       y  x  
      (x + 2)2 + (y − 1)2 = 1  

    !" !  Oz   #$ % 
P (−2; 1; 0)   &

z
2

y

1

x
   



  

  ' (  
%)%    )!
  # *
  





 z =

x2

y−x

+ y2 − 4

            



 z =



1
 z = 
º
x2 + 2x + y 2 − 2y − 2



"


 #







5
º
3 − x2 − y 2






 z = lg (x2 + 6x + y 2 + 8)º

 z = 4 − x2 − 4y 2 º
      
      !
$

 u = x2 + 9y 2 + 18y + 9 − z º


 u = lg (4x2 + 8x + y 2 − 2y + 5 − 4z)
1
1
 u = √
−√
y + 2x + 1
2x − z − 1

º

º


  % &  
 (   " 





 ( 











' '      

 z = x2 + 6x + y2 + 9
& z = x2 + 9y 2 + 18


º

º

   

   (  (  % '(


 4x2 + y 2 − 4 = 0
 x − y 2 − 2y − 2 = 0
 x2 − y + 1 = 0
 x2 + 4z 2 − y 2 = 0

 x2 − 2x + y 2 − 2y − 2 = 0º
º

º

º

º







 

   

      

  

        
        
     
 

      

   !  "!     #
  ! $ !        

a11 x2 + a22 y 2 + a33 z 2 + 2a12 xy + 2a13 xz+

%&'()

+2a23 yz + 2a14 x + 2a24 y + 2a34 z + a44 = 0.

*  + !      , 
 ! $ !  %&'()
- !          + ! "!
    
&'(( 
 &'(           
x2 y 2 z 2
+ 2 + 2 = 1,
a2
b
c

%&')

        a b  c   
        ! "# "      


.  !  %&') !$   
          
  / !  0 !   ! 
        
1       , z = h (|h| < c) 
 !   L     , " ! 


z = h,
x2 y 2 z 2
+ 2 + 2 = 1.
a2
b
c

 

      

  z    



         
x2 y 2
h2
    L     Oxy  2 + 2 = 1 − 2  
a
b
c

 



x2

h2
a 1− 2
c

   

2 +  

y2

h2
b 1− 2
c



2 = 1.

       L       


h2
h2
a = a 1− 2, b = b 1− 2.
 !" #
c
c

 $
%  !" #        |h|     a
 b  & " '  |h| = c   a = b = 0    % ( )
 " *   
(            
     x = h (|h| < a)  y = h (|h| < b)  (   
%" +      , (%  " -." / 
   %  
    a = b     
#"



x2 y 2 z 2
+
+
= 1.
a2 a2 c2

          
     

!"0

   c = b = a 
 

x2 + y 2 + z 2 = a2 .

 

+ 7z = 12#
2

!"-

 !

1  &     ' 


 !".#

   "  3x2 + 5y2 +
,

 

  -0   



x2
y2
z2
+
+
= 1,
4
12/5 12/7
 


b=

     
12
12
.
c=
5
7

        a = 2



 

      

z
c

0

b

y

a
x

  








     
x2 y 2 z 2
+ 2 − 2 = 1,
a2
b
c

 

             
!   
              
           x y  z     
    !     "  
  # $ % 
    & y = 0
!      Oxz $ %  ABCD
 
 2
z2
x
− 2 = 1,
2
a
c
y = 0.
'  $!   ! 
   $ $ %      &
x = 0 !  $ %  EF GH
 2
y
z2
− 2 = 1,
2
b
c
x = 0,
(        Oyz 
" ! 
   $ $ %      & z = h
!  )  BF CG     $ & *
 2
x
y2
h2
+ 2 = 1+ 2,
2
a
b
c
z = h,

 


      




x2
y2


+

2 = 1,





2

h2
h2
a 1+ 2
b 1+ 2

c
c



z = h.

z
C
F

G
B

h

0

y
D
E

H

x

A

  


  


h2

h2

     a = a 1 + 2 b = b 1 + 2    
c
c
          h  h = 0    
  
 Oxy
      a b
    
 a = b    
x2 + y 2 z 2
− 2 = 1.
a2
c





!""#

   z = h   



z +y =a



z = h.

2

2

2

h2
1+ 2
c



,





      

  
           
                    
    ! "  #    
    
     $%       ! & 
  $%
  $% $  
⎧ x
⎨ +
a
⎩ x−
a


z
y
=k 1+
,
c
b
z
1
y
=
1−
,
c
k
b

'(

   a b c ) $  " "  #   * k )  
 #    (k = 0)
+     , $   $
x2 z 2
y2
− 2 = 1− 2,
2
a
c
b



x2 y 2 z 2
+ 2 − 2 = 1,
a2
b
c

 $    " "  #  
-  #   $    " "  #   
  
  $  ! '( +, $     %#!
 M(x; y; z) $ %.    '( $ %  
 $  % '  " "  #   /  
      ! '(     "  # $ ' 0
   k  $   !      .   
   ' 1 "         $
"  # $           ! 

⎧x z
y
⎨ + =l 1−
,
a c
 by 
x
z
1
⎩ − =
1+
,
a c
l
b

'2

" l )   ! 
 
0          $% $  "
"  #      !   !  "  $   
!  -  #    ! "  #  

         $%       !   3'
           " "  #
        ! $     !   - 
       $   !   4$  
0  #  $     .% #  
     ! # $%.  " "  #  

 

      

  









        

   

x2 y 2 z 2
+ 2 − 2 = −1,
a2
b
c

 

           


          

       
        
!
    Oxz
Oyz "  #   
   
  $%
 2
 2
z
z
x2
y2

=
1,

= 1,
c2
a2
c2
b2
y = 0,
x = 0.
&    '    
   #     z = h
|h| > c"   #
 #   
 2
x
y2
h2
+
=
− 1,
a2
b2
c2
z=h


2
h
h2
    a = a

1
b
=
b
− 1"  ( )    ( !
2
c
c2
  |h| 
|h| < c            z = h" #!

"    *   '    
   ( 






      

z

h
0

x

y

  

 


              
a = b      

x2 y 2 z 2
z 2 x2 + y 2
+

=
−1


=1
a2
b2
c2
c2
b2
             ! " #
    $ % z = h (|h| > c)     $& 


h2
⎨ 2
x + y 2 = b2

1
,
c2

z=h

h2
  R = b
− 1
c2





' 
4x2 − 2y 2 + 3z 2 = 5



    



(  )    *   
    +    
 
x2
z2
y2
+

= 1,
5/4 5/3 5/2

 

      



 
      
      Oy

   

9x2 − y 2 − z 2 = 5

 

    

    



   ! "     #  $   

y2 z2
x2
+

= −1,
5
5
5/9

 
          %#
       Ox
&

 



    $        
       

z=



x2 y 2
+ 2,
a2
b

 !"#$% & '      

'&()

 

"          *  
  # Oxz  Oyz    # 
    *





x2
,
a2
y = 0,

z=

y2
,
b2
x = 0,

z=



       z = h (h > 0) + 







x2
y2
+
= 1,
a2 h b2 h
z = h,

   # a h  b h ' &,) -   a2 = b2     
  %# a2 z = x2 + y 2 
"   x  y . #   '&()   *.  #.
 /           ! Oxz 
Oyz 



     (       
       
z=

) !"##% '      

2



x
y2
− 2,
2
a
b

 

'&&)





      

z

h
0

x

y
   



 

       Oxz    
a2 z = x2 ,

y = 0.
              x = h
    



h2 y 2
z = 2 − 2,
a
b
x = h,

h2
b z− 2
2a

x = h.




2



= −y 2 ,

 !" ! h    #  $
 
%&     "     Oyz  & '
 "$   b2
(  $     %      '
   "   %  $ !       
     % &$  "     $   '
  Oyz     "        Oxz  )'
 %        $  '
      z = h     h = 0   


x2 y 2
− 2,
a2
b
z = h,
h=





x2
y2

= 1,
a2 h b2 h
z = h.

*  + !   %  $   "    '
 , h > 0  $ $  h < 0 %$ $  h = 0 

 

      



z
y
0

x

       
     

 Oxy 
   


  

  
  Oxy

x2
y2

= 0          
a2 ⎧
b2
x
⎨ + y = 0,
a b
  
⎩ x − y = 0.
a b

 

        
 Oxy
 
 x y
+ = 0,
a b
z = 0,



   



 x y
− = 0,
a b
z = 0,

  
  Oxy        
 
!  "       
 
       
 #    
   
  
   
   
    
      

   
    
     
⎧ x
⎨ +
a
⎩ x−
a

y
= kz,
b
y
1
= ,
b
k




⎨ x+
a
⎩ x−
a

y
1
= ,
by
l
= lz,
b

 k  l $     
%         
     
 
         & '()









  

         

   

  

  
      
                 
  
         
              
      !   "   
y = −3x2 − 5z 2 #




         

x2
z2
+
,
y=−
1/3 1/5
                  

!  "#$  Oy   % #    & 
'    ' (  Oy
  
 % # ()   ') y
1
1
 '  (  '

3
5
 *     !   "   
x = 4z 2 − 16y 2 #




     

   

2

y2
z

,
1/4 1/16
                +"
 $,  # Ox    "   $ # Oz    "  $
x=

     
  

 





$

    

   

2x2 + 3y 2 + 4z 2 − 5 = 0.

     

     

       



      
       
          
2x2 3y 2 4z 2
x2
y2
z2
+
+
=1⇔
+
+
= 1.
5
5
5
5/2 5/3 5/4

  


b=

5
c=
3



        a =

5

2

5

4

   
     





     

3x2 − 4y 2 + 5z 2 − 6 = 0.

             !  "   
    #      
3x2 2y 2 5z 2
x2
y2
z2

+
=1⇔

+
= 1.
6
3
6
6/3 3/2 6/5

      
 #
 #   $
6
% # "   Oy    3  65     
y = 0
    #  " Oy
           



4y 2 + 4z 2 − 5x2 − 7 = 0.

             !  "   
    #    &  
4y 2 4z 2 5x2
y2
z2
x2
+

=1⇔
+

= 1.
7
7
7
7/4 7/4 7/5

       # #  ' $
  % # "   Ox   74  % 
   Ox
    #  '  " Ox















         

    

     

4y 2 + 5z 2 = 6x2 − 2.

 
   6x2       
     

 

z2
x2
5z 2
y2
− 3x2 = −1 ⇔
+

= −1.
2
1/2 2/5 1/3

2y 2 +

             
 Ox
! " #$       Ox





%

    

     

3x2 + 3z 2 = 4y 2 − 4.

 
   4y 2       
     

 

3x2 3z 2
z2
x2
+
− y 2 = −1 ⇔
+
− y 2 = −1.
4
4
4/3 4/3
           & 
   Oy 
! " #$       Oy 







    

 '

     

3z 2 + 2y 2 − 5x = 0.

 
   5x        
     %  

x=

 

y2
z2
2y 2 3z 2
+
⇔x=
+
.
5
5
5/2 5/3

    (   )       
 Ox
!    ) $      Ox





*

    

4y 2 − 3z 2 − 3x = 0.

     





       



Z

z

O1
Y

O

y
X

x

  



 

    

  O1 XY  
            
  
          O1     
  x0  y0  z0  O1 (x0 ; y0 ; z0 )
              !
  " #  $   %           
    
    & '  (%  
 

x = X + x0 ;

y = Y + y0 ;

z = Z + z0 ,

)*"$

Y = y − y0 ;

Z = z − z0 .

)*!$

     

X = x − x0 ;

  

 



  

      %    +     
   & (&    O   Oxyz  $   
OXY Z  $  
   
  , 
 '   &    x y  z %  
  M    % -    X  Y  Z 
.             (  
&
  &  
        OX
%    &  
 (%     &
(%

cos ∠XOx = α11 ,

cos ∠XOy = α21 ,

cos ∠XOz = α31 .

 

       



     
   
               
     
    
       L    

   +1        
  !   "         # $  
  !   "         #   
   L   −1
             
 
 !   %&# '     (
  Ox       Oy ()   
    (   
y

y

O

x

      

x

O

    

 
           
           

  !  !         


            
    



    
" #$ % & '   
  !  xy  xz yz "  a12 = a13 = a14 = 0$   
 
           (    ) 
*     %

  *    "  +
3x2 + 2y 2 + z 2 − 6x + 4y − 4z + 5 = 0-

  ,

+  ,   - .&         
  (    
-

3x2 + 2y 2 + z 2 − 6x + 4y − 4z + 5 = 0 ⇔
⇔ 3(x2 − 2x + 1) + 2(y 2 + 2y + 1) + (z 2 − 4z + 4) = 4 ⇔





⇔ 3(x−1)2 +2(y +1)2 +(z −2)2 = 4 ⇔

    
X = x − 1,

 

 

     

(x − 1)2 (y + 1)2 (z − 2)2
+
+
= 1.
4/3
4/2
4

Y = y + 1,

Z = z − 2.

  
2

X
Y 2 Z2
+
+
= 1.
4/3
2
4

       

2
a = √ , b = 2, c = 2.
3

     X  Y  Z      
  x y z     X = x − x0 Y = y − y0  Z = z − z0 
     ! "#$!%!#&    '
       (      '
     P0 (x0; y0; z0)!     
      )      
     (       
      )    P0 (1; −1; 2) 
        !
 #*!+        
4x2 + y 2 − 3z 2 + 16x + 2y + 6z + 6 = 0?

,  -    
            '
 (    
4x2 + y 2 − 3z 2 + 16x + 2y + 6z + 6 = 0 ⇔
⇔ 4(x2 + 4x + 4) + (y 2 + 2y + 1) − 3(z 2 − 2z + 1) = 8 ⇔


(x + 2)2 (y + 1)2 (z − 1)2
+

= 1.
2
8
8/3

    
X = x + 2,

Y = y + 1,

Z = z − 1.

 

       

  



      
X2 Y 2
Z2
+

= 1.
2
8
8/3

               
    OZ        OZ 
   !  "           
#  $          P0(−2; −1; 1) 
           Oz  % 
# !  
&  %   '()*+  ,    
!-- .   a12  a13 a23             
           $  
        .   $ - '()*+
  !  #  . (,   *  /  
0   %     $ $         
$               # 1
     $

⎨ (a11 − λi )α1i + a12 α2i + a13 α3i = 0,
a12 α1i + (a22 − λi )α2i + a23 α3i = 0,

a13 α1i + a23 α2i + (a33 − λi )α3i = 0,

'(23+

     '(2(+

2
2
2
α1i
+ α2i
+ α3i
= 1,

   $     #   λ1 λ2 λ3     #
         '(24+

 a11 − λ
a12
a13

 a12
a

λ
a23
22

 a13
a23
a33 − λ




 = 0.



'(24+

 (25 
       
                



a11 a12 a13
⎝ a12 a22 a23 ⎠ ,
a13 a23 a33

'(2*6+

           λi  !"#$#%&' (  
    %)'*&    #    %)'+&   

 

       




        
  (X, Y, Z) 
   
      
      

               
!              " #    $
  %        
 a14 α11 +a24 α21 +a34 α31 =
        
  $
= 0  
&  !  

  ' (  &     ! A $
   )   (  (det A = 0)  


      *          
    
   +
λ1 X 2 + λ2 Y 2 + λ3 Z 2 +

* + λ1  λ2  λ3 ,  

 & 


det D
= 0,
det A

  !    ) 


a11 a12 a13
A = ⎝ a12 a22 a23 ⎠ ,
a13 a23 a33

det A , -      



a11
⎜ a12
D=⎜
⎝ a13
a14

a12
a22
a23
a24

a13
a23
a33
a34


a14
a24 ⎟
⎟,
a34 ⎠
a44

 ! 
      det D , -       & $
        
     





 .           &- 

6x2 − 2y 2 + 6z 2 + 4zx + 8x − 4y − 8z + 1 = 0

 
        
   
      
  




   

6 0
⎝ 0 −2
2 0

  

      

2
0 ⎠
6

 

       

     



 




=0⇔




⇔ −(6 − λ)(2 + λ)(6 − λ) + 4(2 + λ) = 0 ⇔ (2 + λ) 4 − (6 − λ)2 = 0 ⇔

 6−λ
0
2

 0
−2

λ
0

 2
0
6−λ

⇔ (2 + λ)(4 − 36 + 12λ − λ2 ) = 0 ⇔ (λ + 2)(λ − 8)(λ − 4) = 0 ⇔
⇔ λ1 = −2.
λ2 = 8,
λ3 = 4.



     
    

" 
  

     !    



1

+

=
0,
(6

4)α
α = −√ ,


11
31



⎨ 11
2
(−2 − 4)α21 = 0,
α21 = 0,

2α11 + (6 − 4)α31 = 0,




1
⎩ α2 + α2 + α2 = 1

⎩ α31 = √
11
21
31
2


1

(6 − 8)α12 + 2α32 = 0,
α =√ ,




⎨ 12

2
(−2 − 8)α22 = 0,
α22 = 0,

2α12 + (6 − 8)α32 = 0,




1

⎩ α2 + α2 + α2 = 1
⎩ α32 = √
12
22
32
2


(6
+
2)α
+

=
0,

13
33


⎨ α13 = 0,
0 = 0,
α23 = 1,

2α13 + (6 + 2)α33 = 0,



α33 = 0.
⎩ α2 + α2 + α2 = 1
13
23
33
  # L   $  %    



1
1
√ 0
−√


2
2


0 1 ⎟.
L=⎜ 0
⎝ 1

1

√ 0
2
2
' (  %   X = LX  ! 

1
1

x = − √ X  + √ Y ,



2
2
y = Z


1
1

⎩ z = √ X  + √ Y ,
2
2

 



&







    
4(X  −

   



         

2)2 + 8Y

  

2

− 2(Z  + 1)2 − 5 = 0.

       



⎨ X = X  − 2,
Y = Y ,

Z = Z  + 1,

      

     

4X 2 + 8Y 2 − 2Z 2 − 5 = 0 ⇔

2

2

  
2

Y
Z
X
+

= 1.
5/4 5/8 5/2

         
    

  !    
 2x2 + 3y2 − 4x + 6y − 6z − 7 = 0

      

"#
 $ 
     

    % 

 

 



2x2 − 4x + 3y 2 + 6y − 6z − 7 = 0 ⇔
⇔ 2(x2 − 2x + 1) + 3(y 2 + 2y + 1) − 6z − 12 = 0 ⇔
⇔z+2=

$    

(x − 1)2 (y + 1)2
+
.
3
2

&

X = x − 1,

Y = y + 1,

'  &   &   

 
2

Z=

(      
2



2

Y
X
+
.
3
2

 )

    

  *    
2

Z = z + 2.

      

2

2x + 5y + 2z − 2xy − 4zx + 2yz + 2x − 10y − 2z − 1 = 0,

       
        

       

              

      







      


2 −1 −2
1 ⎠
A = ⎝ −1 5
−2 1
2

         


 2 − λ −1
−2

 −1 5 − λ
1

 −2
1
2−λ




=0



 ! "!   # $ % !%  &%  ! '
!% #      !#  !       !'
((



 −λ −1
−2

 0 5−λ
1

 −λ
1
2−λ


 −2λ

0
λ


=0⇔ 0
5

λ
1


 −λ

1
2−λ



⇔



−λ(λ2 − 9λ + 18) = 0 ⇔ λ(λ − 3)(λ − 6) = 0
λ1 = 6,





   )

λ2 = 3,

λ3 = 0.


1



α11 = − √ ,

(2

3)α




=
0,


11
21
31
6




2
−1α11 + (5 − 3)α21 + 1α31 = 0,
α21 = √ ,

−2α11 + 1α21 + (2 − 3)α31 = 0,


6



⎩ α2 + α2 + α2 = 1
1


11
21
31
⎩ α31 = √ .
6

1



α12 = − √ ,

(2

6)α




=
0,


12
22
32
3




1
−1α12 + (5 − 6)α22 + 1α32 = 0,
α22 = − √ ,



12 + 1α22 + (2 − 6)α32 = 0,
3
⎪ −2α



2
2
2
1

+ α22
+ α32
=1
α12

⎩ α32 = √
3


1

2α13 − 1α23 − 2α33 = 0,
α =√ ,




⎨ 13

2
−1α13 + 5α23 + 1α33 = 0,
α23 = 0,

−2α13 + 1α23 + 2α33 = 0,




⎪ α = √1 .
⎩ α2 + α2 + α2 = 1

33
13
23
33
2







         

   
      
   !   " # $% L
 &


1
1
−√ −√

6
3
⎜ 2
1
⎜ √


L=⎜

6
3
⎝ 1
1


6
3

1

2
0




⎟.

1 ⎠

2

' $% !    # X = LX  

1
1
1


x = − √ X  − √ Y  + √ Z ,


6
3
2


2
1
y = √ X  − √ Y ,

6
3


1 
1
1 


⎩ z = √ X + √ Y + √ Z ,
6
3
2

 % ( ) # 
  ! "&

  ! ! 

2X 2 + Y 2 − 2 = 0 ⇔ X 2 +



Y2
= 1.
2

           
x2 − 2y 2 + z 2 + 4xy − 8zx − 4yz − 14x − 4y + 14z + 16 = 0,

      
       

      

     & *" +, !# -
# &


1
2 −4
A = ⎝ 2 −2 −2 ⎠ .
−4 −2 1

 !  ! 


 1−λ
2
−4

 2
−2

λ
−2

 −4
−2
1−λ




 = 0,



   

              
  



  
λ1 = −3,

λ3 = −3.

λ2 = 6,

             ! "
 #  $    %  &  #    
L


1
2
4

−√ −

3
3 5 ⎟
⎜ 25
1
2 ⎟
⎜ √
√ ⎟

L=⎜
⎟.
3 3√ 5 ⎟

5

5 ⎠
2
0
3
3
'  #     L

X
2
4


x = − √ − Y  + √ Z ,


3
5
3 5


2
2
2
y = √ X  + Y  + √ Z ,

3
5
3
5





⎩ z = 2 Y  + 5 Z ,
3
3
#   $   X  ! Y  ! Z  
 #   !  ("
     
 #    X  Y  ! X  Z  ! Y  Z   )  

 * #

& $  ! #   $   $ 

 $ 

2

Y
+ Z 2 = 0.
1/2
+ !    * det A = 54, det D = 0
X 2 − 2Y 2 + Z 2 = 0 ⇔ X 2 −



)   #  #  
$   $ 
 

  

 #     &

 , x2 + 2x + 2z2 − 4z + 4y2 + 2 = 0.
 - x2 − 2x + y2 + 2y + z2 − 1 = 0.
 . x2 + 4z2 − 2y2 − 4 = 0.
  3y2 − 6y − x2 + 3z2 = 0.
  3y2 − 6z2 − 2x2 − 6 = 0.
 / z2 + 2z − 3x2 + 6x − 3y2 − 5 = 0.
 01 3x2 + 2z2 − 6y = 0.














       


 x2 + 9y 2 + 18y + 9z + 9 = 0.
  3x2 − 2z 2 − 6y = 0.
 x2 +y 2 +5z 2 −6xy +2zx−2yz −4x+8y −12z +14 = 0
 4x2 + 5y 2 + 6z 2 − 4xy + 4yz + 4x + 6y + 4z − 27 = 0.
 x2 + 2y 2 + 3z 2 + 2x − 4y − 12z + 9 = 0.
 y 2 + 2y + z 2 − 2z − 4x + 2 = 0.

         
  

         
   
    ! "! # $"
%$"       &  %$"    $
'  & 

 

   



 $$"  
   !   ! ($") *
 $+ #    &" δ  $"$" " x0 , "  $
 "   " x0   (x0 − δ; x0 + δ) -     &"
&     

   

 




. δ







 

P0 (x0 ; y0 )

  

   
    



δ(P0 ) = P (x; y)| (x − x0 )2 + (y − y0 )2 < δ

δ



/0#& " P 1"! δ  $"$"  "$& " " P0  $
$"&  )'  δ 

   




 

P0 (x0 ; y0 )




!

ε



 

  !
#



.



b

    

  
    

P (x; y)    
P0 !   
|f (x; y) − b| < ε



!  

"  

   



lim f (x; y) = b

x→x0
y→y0



z = f (x; y)  P → P0
δ   



lim f (P ) = b.

P →P0

 

          



    Plim
→P

0

∃(ε > 0) ∀(δ(P0 ))∃(P ∈ δ(P0 ),



f (P ) = b

  P = P0 ) ⇒ |f (P ) − b| < ε.

           
     !  "! #   
!          !  
  $    %  & !' !( 
     !    %  & !' !
        !$(    % %
      ) *+,  *, !
 lim f (x; y) = b ⇔ δ→0
lim f (x; y) = b  δ = (x − x0 )2 + (y − y0 )2    %!   P  P0 ./!    
 "! # !& &  !      
 *,
   b         
x→x0
y→y0

             z = f (x; y)  P → P0 
              P0  
        P0  δ→0
lim f (x; y) = b 

δ=



(x − x0 )2 + (y − y0 )2

  + !  lim 
x→0
y→0

x2 + y 2
x2 + y 2 + 4 − 2

0 
1     2    x0 = 0

⇒δ=

x2 + y 2 

 


lim
x→0
y→0

= lim

δ→0

δ2

δ2
=
= lim √
x2 + y 2 + 4 − 2 δ→0 δ 2 + 4 − 2
x2 + y 2

√


√

δ2 + 4 + 2
2 + 4 + 2 = 4.
=
lim
δ
δ→0
δ2 + 4 − 4
x2 + y 2

x2 + y 2 + 4 − 2
 P → P0 

    

P0 (0; 0)

y0 = 0 P0 (0; 0) ⇒

 

    

    





 

  x→x
lim f (x; y) 
0
y→y0

     

lim

x→x0

       

 


 

        




lim f (x; y)

y→y0



lim

y→y0

lim f (x; y) ,

x→x0

     
       
       


 !           
                
"     # 
 $%&    x→x
lim f (x; y)   ∀y ∈ δ

0

  y0,

y→y0

y = y0  ∃ lim f (x; y) 

 ∀x ∈ δ   x0,
x→x
∃ lim f (x; y)  ∃ lim lim f (x; y) ∃ lim lim f (x; y) 
y→y
y→y x→x
x→x y→y
lim lim f (x; y) = lim lim f (x; y) = lim f (x; y)
y→y x→x
x→x y→y

x = x0 

  $%'       

 

0

0

0

0

0

0

0

0

0

x→x0
y→y0

0



(  "   )
lim lim 

x2 + y 2

= lim 

=
x2 + y 2 + 4 − 2 y→0 y 2 + 4 − 2




y2
y2 + 4 + 2
2 + 4 + 2 = 4.
=
lim
y
= lim
y→0
y→0
y2 + 4 − 4
x2 + y 2
      x→0
lim lim 
= 4
2
y→0
x + y2 + 4 − 2
y→0 x→0

*

y2

+ 

 "  ,-./   
 
   
     x→x
lim  lim 
x→x0 +0
0 −0
    !   lim f (x)  #    
x→x0
 0   2x   lim
f (x; y) !  

x→0
y = f (x)

y→0

          P (x; y)    P0 (x0; y0 )
2

2

y
  $%$ ! lim xx2 −

+ y2
x→0
y→0

 

          



       y = λx      
x2 − y 2
x2 − λ2 x2
    y = λx  lim 2 2 = x→0
lim 2
=
2 2
x→0
y→0

2

=

x +y

x +λ x

1−λ
1 + λ2

   λ       
        !" #
 !" $  f (x; y)       

  P → P0          
%&    

' (  & 
  ) 

lim f (P ) = b ⇔ lim (f (P ) − b) = 0 ⇔ f (P ) − b

P →P0

P →P0

  P → P0
*     )     
 +, !  ) 
 

      



 !" -  n      u = f (P )   
     P0          
         Plim
f (P ) = f (P0 )
→P
 !" .  P0    u = f (P )   
             
0

/       ) &  
  &    &  ) +
 &
0   +, +   
 '  )         
   '    +,  
    1  
  !" 2 !  n      f1(P )  f2(P )   

 
 P0
f1 (P ) + f2 (P )  
  f1(P )/f2(P )

   "        
# f1(P ) − f2(P )    f1(P ) · f2(P ) 
 f2(P0) = 0

3   4       
     ')    
 ,  +,          
    '





       

   P0  
   
 f (P )             
     
     
 



      z = x − 1y + 1 

  

   
    
          x − y + 1 = 0
    ! y = x + 1 ! " ! # $
  %   &'  (! ! )  *
+  * #*    y = x + 1

  






     

,  -   #   ! % 
 ! $
 !  !  * . "   ! #$
 % 
) /  /    "  !
* ! # 

   z = f (P )  
   
  !    D       
     "  !       f (P ) 
 P0   #     P   !  P → P0
 !   D
    $   z = f (P )      
 !    D      %
012  % ∃ N > 0 : |f (P )|  N  ∀P ∈ D&
032  
  ! '(  m  '(  M  
% ∃ P1 ∈ D : f (P1) = m  ∃ P2 ∈ D : f (P2) = M &
0 2 #   !  m  M !
)  
  %  ∀ c ∈ [m; M] ∃ P0 : f (P0) = c

  4  z = 1 − x2 − y2  2  2     
  !    D = {(x; y)|x + y  1} * 
  !  O(0; 0)    +

+  "   | 1 − x2 − y 2 |  1  x2 + y 2  1
5  ) *   m = 0  "  /  '  x2 +
+ y 2 = 1 6  "  #   #) *   M = 1  "$
     6   !  # 





       

fy (x0 ; y0 ) = lim

Δy→0

Δy z
.
Δy

    
 
 

 
            
              
       

            P (x; y)  
             
  z = f (x; y)   ! "     P (x; y) 
#       x  y
$          
    % %  &
fx (x; y), fy (x; y)



zx , zy



∂z ∂z
,
.
∂x ∂y

$             n  
  n > 2 %    %  !  '
   (   u = f (x; y; z)      
x    P0 (x0 ; y0 ; z0 )    x      Δx 
"  !      &
Δx u = f (x0 + Δx; y0 ; z0 ) − f (x0 ; y0 ; z0 ).

$       u = f (x; y; z)  !  x   
 P0 (x0; y0; z0)  
ux (x0 ; y0 ; z0 ) = lim

Δx→0

Δx u
.
Δx

          " 
             
  ) !      
             
 %         "  
 * +"  "       
 #         !  
"  !   %  

 
   
 ,-.  

 z =

x2 − y 2

  

P0 (5; 3).

 

          



     
∂z
2x
x
= 
=
;
∂x
2 x2 − y 2
x2 + y 2

∂z
5
5
|P = √
= ;
∂x 0
4
52 − 32

−2y
y
∂z
= 
= −
;
2
2
2
∂y
2 x −y
x − y2

 

∂z
5
|P =
∂x 0
4

∂z
3
|P = − .
∂y 0
4

∂z
3
|P = − .
∂y 0
4
∂z

      

∂x
     z = f (x; y) !  "  
 z = f (x; y)     #  
P0 (x0 ; y0 )  Oxy    $%$  M0 (x0 ; y0 ; z0 ) 
  & '()  $  $ AM0B " 
     #$ y = y0 * 
$ +  #     
z = f (x; y0)  y = y0 , "  
df (x; y0 )
= tg α"
       "
dx
 α -   #$ O1X " "   +"  #$ Ox #"
     AM0 B  M0 .   "


∂z
df (x; y0 ) 
f (x0 + Δx; y0 ) − f (x0 ; y0 )
=
.
=
lim
dx x=x0 Δx→0
Δx
∂x P0

∂z
$ " 
= tg α /"  
∂x P0
∂z
  
   P0 (x0 ; y0 )       
∂x
 Ox  

   M0 (x0 ; y0 ; z0 )   

   z = f (x; y)     y = y0 
0 $
∂z
1
      
∂x
∂z
       
∂y

 



   

2      #    $
   +   * "  $ #" 
#     "    $    



 

         

z
Z
y
01
0

y0

M0

αA

B
P0

X
x

    

∂z
∂x

          
 
     z = f (x; y)       
             
    !   "



∂z
∂z

∂ 2z
∂ 2z
∂x
∂x


=
=
= fxy
=
f
(x; y);
2 (x; y);
x
∂x
∂x2
∂y
∂x∂y


∂z
∂z


∂ 2z
∂ 2z
∂y
∂x

=
= fyx
= 2 = fy2 (x; y).
(x; y);
∂x
∂y∂x
∂y
∂y
# u = f (x; y; z) $      %  


   "


∂u
∂x
∂x





=

∂u
∂x
∂y



∂ 2u
∂ 2u

=
= fxy
= fx2 (x; y; z);
(x; y; z);
2
∂x
∂x∂y

∂u

∂ 2u
∂x

=
= fxz
(x; y; z)  
∂z
∂x∂z

&             
%         %   "
  n    %   
        
 (n − 1)   ' 

 

          


3

∂ z
         ∂x∂y
 
2
z = f (x; y)           y   
∂ 2z
      ∂x∂y

∂ 3z
=
∂x∂y 2




∂ 2z
∂x∂y
.
∂y

             
           
  
    
∂ 2z
∂ 2z
∂ 3z
,
,
∂x∂y ∂y∂x ∂x∂y 2

 !         " 
 " z = f (x; y)
 #$ %         
   z = x2y3 
&      "       
∂z
∂z
= 2xy 3 ,
= 3x2 y 2 .
∂x
∂y

'  "          

∂z


∂ 2z
∂x
=
= 2xy 3 y = 6xy 2 ,
∂x∂y
∂y

∂z



∂ 2z
∂y
=
= 3x2 y 2 x = 6xy 2 .
∂y∂x
∂x


( 
          
∂ 2z
 ∂y∂x    !) *      
        !     
          *  
∂ 2z
∂x∂y







       

           s  
t
∂x
t
= 2cos s ln 2 − sin
∂t
s

   
t
∂x
= 2cos s
∂s



∂x

∂t

t
1
t 1
= −2cos s ln 2 sin · .
s
s s
∂x
    t   
∂s


t
t
t
t t
− 2 = 2cos s ln 2 sin · 2 .
ln 2 − sin
s
s
s s



·

  

         
 !"   "        
 #$%& z = 2x2 − 3y2 − 2xy + 3x − 5y + 1.
2y − 3x
.
 #$%' z = 2x
− 5y

 #$%$ z = √yx− x .
 #$%( z = √x − y.
 #$%)* z = y −3 x .
3

x
z = 2y .

 #$%))
 #$%)+ z = sin


x

2 y
√ 
y

.
3
3 x

 #$%)# z = tg
 #$%), z = arcsin(3y − 2x).
 #$%)- z = arctg 3x − 2√y .
 #$%)& u = (y)xz .
 #$%)' u = xyz .

 

    







 y = ln(cos u − sin v).
 u = (yz)x .

 

          
           !     
 

 z = x2 + y 2 .





 z = log3 (x − y 2 ).

 

    

"   #  $!%  "  $$  %  " & 
'        # (   $$  %   ) $
$  %   '
  $!% 

 

 



"  '             
  #   $!%     
    *    
!       '     $   
+
 , -  
   
   #    
!  $!%      
. ! 
"!   $!%  !  
 z = f (x; y) " ' 
 . !  x y ! (      #   Δx
Δy  - $!%  z = f (x; y) !     #  Δz  
      !(#  $ !/

Δz = f (x + Δx; y + Δy) − f (x; y).
+ ,
0        #  $!%
Δz     # 
 (     $  $!% z = f (x; y)      
P (x; y)  ! P1 (x + Δx; y + Δy) +  1,



2

*



      



   z = xy2

/ 3 ! $ !! + , !

Δz = (x + Δx)(y + Δy)2 − xy 2 = xy 2 + y 2 Δx + 2xyΔy+
+2yΔxΔy + x(Δy)2 + Δx(Δy)2 − xy 2 = (y 2 Δx + 2xyΔy)+
+(2yΔxΔy + x(Δy)2 + Δx(Δy)2).





  

z
M(x;y;z)
Δz
N
0

M0(x0;y0;z 0 )
Δx

x

P0 (x0;y0)

y

P(x;y)

Δx

Δy

    

    

  
   Δz      
              y Δx+
       Δx  Δy
+ 2xyΔy    
       2yΔxΔy + x(Δy) + Δx(Δy)     

   Δx  Δy   !       " "   #
 Δx → 0 Δy → 0          !    " 
 #     
2

2

 

 

2



$       %   "      
 
"     dy     
   "          " 
  &  '    dx  " " ( 
 # dx = Δx     dy "'   '  
   dy = f (x)dx )    '      " 
     x      z = f (x; y)
     '   y    d z = f (x; y)dx   
   y * " x   + d z = f (x; y)dy
 ,-.  
       

y = f (x)



x


x

y

  z = f (x; y)        


y

  

 

    



 x   y
dz = fx (x; y)dx + fy (x; y)dy.




           

Δz = f (x+Δx; y +Δy)−f (x; y)!        
 "  Δx = dx  Δy = dy  #"  "!  
  Δz       ""
   dz  
$   "  ω(Δx; Δy) $     ! "  

ρ = Δx2 + Δy 2 "%  " P (x; y)  P1 (x + Δx; y + Δy)&


Δz = dz + ω(Δx; Δy),



 

lim

ρ→0

ω(Δx; Δy)
= 0.
ρ



        P (x; y)  
            
'    (    



P (x; y)

(



)!    

 "!    "  *

fx (x; y)



fy (x; y)

z = f (x; y)
 




+%  (!  $  %  ! $ ! 
!  (   
  

 (
$ 

(  

 

,

    

!     %!  

    !    

 "  .

"!

, (

    -

)

!   

"  "! " "   
"

  "

     

∂z ∂z

∂x ∂y



 z =

  
       P (x; y) 
     P (x; y)         
  !"

= f (x; y)

/ (



  

   "

, 2!

 0, "

,

"!

u = f (x; y; z) 



   0,  $ 1
 "

  

Δu 

 
%

 " 

Δu =

∂u
∂u
∂u
Δx +
Δy +
Δz + ω(Δx; Δy; Δz)
∂x
∂y
∂z

3

 

  




ω
  lim = 0 ρ = Δx2 + Δy 2 + Δz 2
ρ→0 ρ

  

      

du =

∂u
∂u
∂u
dx +
dy +
dz.
∂x
∂y
∂z

     
   
 
 

 

    z


= xy 2



∂z
∂z
dx+ dy !  
∂x
∂y
∂z ∂z
   "  # $ #
  % #
∂x ∂y
∂z
∂z
= (xy 2 )x = y 2 ,
= (xy 2 )y = 2xy.
∂x
∂y

      dz =

&  "   "   $  ''('
 
  )'    ) Oxy  *    
*  ) ( !   "  dz = y 2 dx + 2xydy  +  
*  ,      " -(  ! '  )   ./

  

       
    
-  )' z = f (x; y)    ") P0 (x0 ; y0 )   
  dz = fx (x0; y0 )Δx + fy (x0 ; y0)Δy  dz = fx (x0; y0 )(x − x0 ) +
+fy (x0 ; y0 )(y − y0 )
0  (!   ) 1  ) $  "    )   - 
 2   
) M0 M1 KM2
z − z0 = fx (x0 ; y0 )(x − x0 ) + fy (x0 ; y0 )(y − y0 ),

3 z 4
)  ") K )   -  ) )-)  
"  *#      ( 1   -  #   " 
5 ) 1 $      ) #   #  

 ! (
)  )   -  ) KN
 2 0 *
$ )(" ' 3  " )      
6   "               
 ! 
)  )   -  ) KN - 3  ' "  ! '  ) MN   2

 

    



z
M(x;y;z)
K
dz
N

M2

0

M0(x0;y0;z 0 )

M1

Δx

x

P0 (x0;y0)

P(x;y)

 

y

Δx

Δy

    
  
   

Δz

 

   



 
          
             
       z = f (x; y)        
 
Δz = fx (x; y)Δx + fy (x; y)Δy + ω(Δx; Δy).

!  ω(Δx; Δy)    "  #   ρ = (Δx)2 + (Δy)2
$     ρ#       Δx  Δy#  %  ω(Δx; Δy)

        &

'()*+
         
Δz ≈ fx (x; y)Δx + fy (x; y)Δy,

    

  
,    z = f (x; y)# 

Δz = f (x + Δx; y + Δy) − f (x; y).

  $     Δz    '()*+# 
f (x + Δx; y + Δy) − f (x; y) ≈ fx (x; y)Δx + fy (x; y)Δy,





  



f (x + Δx; y + Δy) ≈ f (x; y) + fx (x; y)Δx + fy (x; y)Δy.



  
       
! ! "#  !!!   ! P (x+Δx; y +Δy)$
    ! P (x; y)$ ! ! ! "#  ! 
        ! P (x; y)
% &! "    !  "# n !!!
  n > 2 '!$ n = 3  

f (x + Δx; y + Δy; Δz + Δz) ≈

 (

≈ f (x; y; z) + fx (x; y; z)Δx + fy (x; y; z)Δy + fz (x; y; z)Δz.

          

 



1
.
2.952 + 4.012

1
) ! * !   !+ )  "#, z = 
-!
x2 + y 2
"  
 .  "#  +
1
1

≈
+ zx Δx + zy Δy.
2
2
2
(x + Δx) + (y + Δy)
x + y2
'! !   !+
x
y
; zy = − 2
.
zx = − 2
2
3/2
(x + y )
(x + y 2 )3/2
-   !! x = 3$ Δx = −0,05$ y = 4$ Δy = 0,01 - +
1
4
3
1

≈ + √ 0, 05 − √ 0,01 ≈ 0,21.
2
2
5 5 5
5 5
2, 95 + 4, 01
/!$  !  . !!   *!   ,
1
   0,  $   
≈ 0,201 1 
2,952 + 4,012
! ,! !!!! ""!!#  &  
0! "#

  



   

2 z = f (x; y) 3 "# ! !!! x  y $ !!
!!! !   !   &  $    
""!!#    & ""!!#$ ! ""!!
#    &  + d(dz) = d2 z

 

    



 dx  dy
    
   

 x  y   


∂ ∂z
∂z
dx +
dy dx+
∂x ∂x
∂y

∂z
∂ ∂z
dx +
dy dy =
+
∂y ∂x
∂y
∂ 2z
∂ 2z 2
∂ 2z
∂ 2z 2
dxdy
+
dxdy
+
dx
+
dy .
=
∂x2
∂x∂y
∂y∂x
∂y 2

d2 z = d(dz) = d

∂z
∂z
dx +
dy
∂x
∂y



=

      !    "  #  # 
∂ 2z 2
∂ 2z 2
∂ 2z
dxdy
+
d2 z =
dx
+
2
dy .

∂x2
∂x∂y
∂y 2
$ %#  &     '    %   (
'  
        )    
d3 z =

∂ 3z 3
∂ 3z
∂ 3z
∂ 3z 3
2
2
dx
dx
+
3
dy
+
3
dxdy
+
dy .
∂x3
∂x2∂y
∂x∂y 2
∂y 3

* % %   # "+      '  n(%
  '  
        &
"  ,- 
n

∂ nz
Cni i n−i dxi dy n−i .
dn z =
./
∂x ∂y
i=0

  



       

   '       z = f (x; y) #0 %(
  )  '  -  '  
   (
  t : x = x(t), y = y(t) 1% z  &   '  
     t    #    - )
∂z
∂z
&   ' dz


#






  (
dt
∂x
∂y
  dx
 dy
   2  )  # "    %  #
dt
dt
 ' x = x(t)  y = y(t)  -    # t  '
      z = f (x; y)   -+  # (x; y)  (
 '  

      t #   +  Δt3 %
    x  y # -     +  Δx  Δy
 ' z 4  +  Δz 1     ' z   & -





  


      Δz
      

    

∂z
∂z
Δx +
Δy + ω(Δx; Δy),

∂x
∂y

ω
! lim = 0 "  ρ = Δx2 + Δy 2  # $   !     
ρ→0 ρ
  Δt  % & '    Δt → 0  !
Δz =

lim

Δt→0

Δz
Δx ∂z
Δy
ω
∂z
=
lim
+
lim
+ lim
.
Δt→0
Δt→0
Δt→0
Δt
∂x
Δt
∂y
Δt
Δt

(

) '  * $     &%    * !   + "  
   
      &*   * !   + "
dz

Δx

dx

Δy

dy

=
=
     $  &  , lim
 lim

Δt→0 Δt
dt
dt Δt→0 Δt
dt
      
, * 
ω
ω ρ
= lim
·
lim
Δt→0 Δt
Δt→0
ρ Δt

# 



= lim

Δt→0

ω
ρ
· lim
.
ρ Δt→0 Δt

  ! 


Δx2 + Δy 2
ρ
= lim
=
Δt→0 Δt
Δt→0
Δt


2
2
2
Δx
dx
Δy
= lim
+
=
+
Δt→0
Δt
Δt
dt
lim

-

   

dy
dt

2
.
dx

dt
 Δt → 0

' ' '    $ 

dy
ω
 .  !
' $  ! lim = 0
  !
Δt→0 ρ
dt
ω
ω
'  ρ → 0 ,
" lim = lim = 0    
ρ→0 ρ
Δt→0 ρ

2
2
ω
dx
dy
=0·
lim
+
= 0.
Δt→0 Δt
dt
dt

/!  & +

   (

 $       

dz
∂z dx ∂z dy
=
+
.
dt
∂x dt
∂y dt



 


3

y= t



    






    


dz

dt



z = y x  x = cos t

      

dz
dy
dx
= (y x ) ·
+ (y x )y
= −y x ln y sin t + 3t2 xy x−1 =
dt
dt
dt
= −t3 cos t ln t3 sin t + 3t2 cos t · t3(cos t−1) = t3 cos t−1 (3 cos t − 3 ln t sin t) =
= t(sin t)t

2 −1

(t cos t + 2 sin t · ln sin t).

     
z = f (x; y)   !   y = y(x)
"#   z     #$ $ x : z = f (x; y(x))
% $ !#    #&#'  (  $ t )*
 x +     

dz
∂z dx ∂z dy
=
+
.
dx
∂x dx ∂y dx
,

dx
= 1
dx

-

dz
∂z ∂z dy
=
+
.
dx
∂x ∂y dx
. !$

 

!$  / -$ &     !#& z
∂z
 x 0#   /
1    !#  #!/ *
∂x
&/ z = f (x; y)  /#       2& y  ! 
dz
 x .     (  !#
 ' ! !$   *
dx
&      !# 3$  #$ $
z = f (x; y(x)) %  !# & 2# &! $  *
!#$
+# 3     z = f (x; y)  ( x = x(u; v)
y = y(u; v) 4)# z   3   #!/ !
&/ *
∂z
∂z
&/ u v  ,$#  &  !#&
-$ 3$
∂u
∂v
 

 

    

 F (x; y)  



   

   
  x  
  
 M (x ∈ M)      
   y         x      
          
 M
 
! y = ϕ(x)
      
y = ϕ(x) 
     ! "! !#"! 

F (x; ϕ(x)) = 0,
"   
" x  "! 
M $!  


% ! &  !   

y = f (x)   '
  ( !" !) y   !"

%"  ""!   *   + #
( !) !" !) y ,

y = log3 (x3 + 1).

-.

/! 
   0!"  $! ! # " 
 !'
         +  1 !#"! 
 !  !   2 +  % "  "!
"!'
(  + "! y   #    -.  & 

3log3 (x

3 +1)

− x3 − 1 = x3 + 1 − x3 − 1 = 0.

% ! "&
# & 2 x ∈ M "! !"! !
") &  y   !  23
" "! "  x  '
 2     $!     !    ")
          x2 + y 2 − 1 = 0 '
 !     
 ! #  "!)


(
   x2 + y 2 − 1 = 0 !" !) y ,

y=



1 − x2 ,


y = − 1 − x2 .

4 "!  !) &! " 2 
"! !)

 $! 
 

2  2 #
 4   '

3y − 3y + x3 − 1 = 0
!  2  2 y  !  "3"! 2!  &  x
y   !  23     2   x = 0 y = 05





x=1 y=1


  

   






  

 



  

   


F (x; y) = 0    
x2 + y 2 + 1 = 0     
 x  y  
  


 ! 





  



y

x

 

 



   "#
!  #

 "  "  
$  




y%



  

F (x; y) = 0

&  



F (x; y)

     

!   

!    

 

'   

#

 #

 ' 



 "  

 ()*    F (x; y)   
Fx (x; y)  Fy (x; y)             
  P0 (x0; y0)    F (x0; y0) = 0  Fy (x0; y0) = 0  
  F (x; y)            P0 (x0; y0)
      y = y(x)       
             x0  
y(x0 ) = y0 
+

 

 

, " !  
 ,  
 

    
! 

  

  /

   

 -().)



  "  #

   

  

 !   

 

y = y(x)   "    P0 (x0 ; y0 )   #
  F (x; y(x)) ≡ 0  x
/    !     


 

 

 !  !   

dF
=0
dx



"  


 



-().0 

dF
∂F
∂F dy
=
+
dx
∂x
∂y dx
 ! 

∂F
∂F dy
+
=0
∂x
∂y dx

 

∂F
dy
= − ∂x .
∂F
dx
∂y
,

-()*.

"     1 !     "   "

! "

 

    



              
 y     x3 − 3x + y2 − xy − 1 = 0  
    P (1; 1)
 
    F (x; y) = x2 −2x+3y 2 −xy−1 = 0
∂F
∂F
= 3x2 −3−y 
= 2y−x        !"
 
∂x
∂y
∂F
dy
3x2 − 3 − y
3x2 − 3 − y
= − ∂x = −
=
.
∂F
dx
2y − x
x − 2y
∂y
# $   % &'   x  

y  =
(

(6x − y  )(x − 2y) − (1 − 2y  )(3x2 − 3 − y)
.
(x − 2y)2

# (
)   &'  * y 
 

y  =

(++ ,

(3x2 − 12xy + 3 + y)(x − 2y) − (x − 6x2 + 6)(3x2 − 3 − y)
.
(x − 2y)3

(( 

+ P (1; 1)
dy 
= −6.
 x=1 = 1, y  | x=1
y=1
dx y=1
- &'* y * 
  x & (   
)
+ +(* +  +  ( (. Ox  45o tg ϕ = 1"

 

 



       

/+  ( * $  +$  ) ) y =
= f (x)  (   (  & 0    &,
'  * $  dy = f  (x)dx ((* &  ( 
  * *(*  x  ( ) )  +$ ) +,
) ) x = ϕ(t)
1* +$
(++ 2 &2 u = f (x; y; z; . . . ; t) (,
      '   &)
$  +$
n &2 u = f (x; y; z; . . . ; t) (2* ( . 
∂u
∂u
∂u
∂u
dx +
dy +
dz + · · · +
dt
du =
∂x
∂y
∂z
∂t
 (    * *.(*  x y  z  . . .  t  ( & ,
&  +$ *  2 &2





  

         
      z = f (x; y)      x  y
            
 !  "
dz =

∂z
∂z
dx +
dy.
∂x
∂y

dz =

∂z
∂z
du +
dv.
∂u
∂v

#            x  y
      " x = x(u; v) y = y(u; v) $%
  z     u  v &  
   
'    ()*+,-  ()*+.∂z
∂z ∂x ∂z ∂y
=
+
,
∂u
∂x ∂u ∂y ∂u

/ 

∂z
∂z ∂x ∂z ∂y
=
+
.
∂v
∂x ∂v ∂y ∂v



∂z
∂z ∂x ∂z ∂y
∂z ∂x ∂z ∂y
+
du +
=
+
dv =
dz =
∂x ∂u ∂y ∂u
∂v
∂x ∂v ∂y ∂v
∂z ∂x
∂z ∂y
∂z ∂y
∂z ∂x
du +
dv +
du +
dv =
=
∂x ∂u
∂x ∂v
∂y ∂u
∂y ∂v


∂z ∂x
∂x
∂z ∂y
∂y
∂z
∂z
=
du +
dv +
du +
dv =
dx +
dy,
∂x ∂u
∂v
∂y ∂u
∂v
∂x
∂y

 

∂y
∂y
du +
dv = dy.
0 ∂u
∂v
/    dz      %
 
∂x
∂x
du +
dv = dx,
∂u
∂v

dz =

∂z
∂z
dx +
dy
∂x
∂y

     x  y       
1      2      %
  3 

     

     

     
   


 



  

z = xy 2  
     
    dz    M(2,00; 1,00)   Δx = 0,20


Δz  
Δy = 0,10     

        Δz = f (x + Δx; y + Δy) − f (x; y) = (x +
 
+Δx) · (y + Δy)2 − xy 2  x = 2 y = 1 
M  Δz = 2,20 · 1,102 − 2,00 · 1,002 ≈ 0,66
∂z
∂z
  dz = dx + dy = y2Δx + 2xyΔy.
∂x
∂y
  dx = Δx dy = Δy   x  y     
  M  
dz = 1,002 · 0,20 + 2 · 2,00 · 1,00 · 0,10 = 0,60.

     !  Δz  dz  0,06   
  ρ = Δx2 + Δy2 ≈ 0,22.
" Δz ≈ 0,66; dz = 0,60
 #$ %       dz   z = x3y2
     
∂z
∂z
dx +
dy = 3x2 y 2 dx + 2x3 ydy.
∂x
∂y
dz = 3x2 y 2 dx + 2x3 ydy.
dz =

"

 #$ # 

    

1,012 · 0,983 .

      &'    (      )#$ *+
   ,,  dz  ,  z = x2y3  x = 1
y = 1 Δx = 1,01 − 1 = 0,01 Δy = 0,98 − 1 = −0,02 - . 
   1,012 · 0,983  f (x + Δx; y + Δy)
dz =

∂z
∂z
dx +
dy = 2xy 3 Δx + 3x2 y 2 Δy =
∂x
∂y

= 2 · 1 · 13 · 0,01 + 3 · 12 · 12 (−0,02) = −0,04.
- (!/   Δz ≈ dz  
f (x + Δx; y + Δy) − f (x; y) ≈ dz ⇒ f (x + Δx; y + Δy) ≈ f (x; y) + dz

0  f (x; y) = 12 · 13 = 1   
1,012 · 0,983 ≈ 1 − 0,04 = 0,96.



     



     

 



∂z dz
 
∂x dx

 

x
z = 2y 



 y = sin x

∂z
            
 
∂x
dz
 
          ! " 
dx
x
∂z
1
= 2 y ln 2 ·
∂x
y
x
x

dz
1
x
= 2 y ln 2 + 2 y ln 2 − 2 cos x =
dx
y
y
x
x
ln 2
x


sin
2 x
1
x
= 2 sin x ln 2
cos x =
+ 2 sin x ln 2 − 2
(1 − x ctg x) .
sin x
sin x
sin x





dy
   dx
  

#
y = xy



 $      y = xy      F (x, y) =
dy
yxy−1
= xy − y = 0 %    & '() 
=− y

dx
x ln x − 1
*  "    +  !  ,        y
- "   x  !   y  



.  
/  
 "  dz   
Δx Δy 




.  
" 




 z = x2 y 2 ;
/ z = x2 y;

(01 ( 



(0 z =

  

         Δz  
"    M(x; y)    

M(1; 2);
M(1; 1);

Δx = 0,05;
Δx = 0,01;

Δy = 0,10.
Δy = 0,02.

     "

x2 + y 2
.
x2 − y 2

 dz  











       


x
 z = ln tg .
y
  u = xyz.
 z = xy x .

 

         
     





 


  z = xey + yex .
 z = ey sin x.

 z = exy .

 

!  " #   $ %&   ' " 
$ ' #('    (  )     #    
 # " #   $ (  ' " *  +    #  
'   (







 sin 31◦ cos 61◦ .

! 0,993 · 1,022 .

,
3,98 + 2,95.

 # -*





.









z = cos t


dz
  dx
   z = s − t  t = tg x s = √x
3


  du
   u = xyz   x = t + 2 y = et 
dt



∂z
dz
  ∂x
 dx
   z = yx  y = arctg x





 

v = tg x



 *  "   '( 

  dz
   z = xy   y = arcsin t x = ln t
dt









dz

dx

 

z = sin(u · v)

dy

  dx
 y = x + log3 y.



u =



x

  





      

   
   u    P (x; y; z)
     l
    u     
∂u
< 0   u      
       
∂l

∂u
  
 
  
!  
∂l
   u      
"       
  #   
$   %    & Δx Δy  Δz    
P    #   P1 P = Δl    &   
 
&  ' (   )*+,
Δx = Δl cos α; Δy = Δl cos β; Δz = Δl cos γ.
(-.)+
/   u         

   0* (0*-+ !  & Δu    P (x; y; z)  
   
Δu = Fx (x; y; z)Δx + Fy (x; y; z)Δy + Fz (x; y; z)Δz + ω,
(-.0+
! ω           ρ =
ω
lim = 0

ρ→0



Δx2 + Δy 2 + Δz 2 



ρ

z
γ
p

α
Δy

β
p1
Δz
Δx

l

0
y
x
   

Δl

Δx Δy Δz

1      &        
     Δu = Δl u ρ = Δl  Δx Δy  Δz   

 

        

 
Δl u =



      

Fx (x; y; z)Δl cos α

+ Fy (x; y; z)Δl cos β + Fz (x; y; z)Δl cos γ + ω.

   !   Δl  "# $ 
 Δl → 0%  
∂u
Δl u
= lim
= lim (Fx (x; y; z) cos α+
Δl→0 Δl
Δl→0
∂l

ω

.
+Fy (x; y; z) cos β + Fz (x; y; z) cos γ + lim
Δl→0 Δl
& Fx (x; y; z)% Fy (x; y; z)% Fz (x; y; z)  # $'
ω
ω
= lim = 0% 
#  Δl%  $ $$ Δl→0
lim
Δl ρ→0 ρ
∂u
= Fx (x; y; z) cos α + Fy (x; y; z) cos β + Fz (x; y; z) cos γ.

∂l



( ' 
%   $   
  %   %  # u   l  
   ! $) $% %
=
  %  cos α = 1% cos β = 0% cos γ = 0 % *% ∂u
∂l

= Fx (x; y; z)

 +  
      
         z = f (x; y)
 
            !"    
     z = f (x; y)       l
∂z
= fx (x; y) cos α + fy (x; y) cos β.
∂l


P0 (5; 3)

+ #      z =

      l = 3i + 4j 

  -    

3
3
3
=√
= ;
|l|
5
32 + 42
'   $ P0 '
cos α =

cos β =

 ,


x2 − y 2

4
4
= ,
|l|
5



'
'   . / 0
    ,  

∂z 
3 3
3
53 34

= − = .
=
∂l P0 4 5 4 5
4 5
20



 

       

              P0 


|P > 0 
 z = x2 − y2        ∂z
∂l
0

|P
   ∂z
∂l

0

=

3
.
20

 

  

          
 !"#    P (x; y; z)     

       u = F (x; y; z)   
         
Fx (x; y; z)i + Fy (x; y; z)j + Fz (x; y; z)k.

$   u = F (x; y; z)      
 grad F (x; y; z) grad F (P ) grad u %     
&
grad F (x; y; z) = Fx (x; y; z) + Fy (x; y; z) + Fz (x; y; z),
'!"()
   
∂u
∂u
∂u
grad u =
 +  + .
'!"*)
∂x
∂y
∂z
+    ,  P (x; y; z)    
    u = F (x; y; z)       
       -   grad F (P )
  !".     u = x2 + y2 − z2  

P0 (1; 1; 1)

/  0     1    2   2   P0 
∂u
= 2x;
∂x


∂u 
= 2;
∂x P0

∂u
= −2z;
∂z


∂u 
∂u
= 2y;
= 2;
∂y
∂y P0

∂u 
= −2.
∂z P0

3        '!"*) 

grad u = 2i + 2j − 2k.

   grad u = 2i + 2j − 2k.

 

        

  
l = i cos α + j cos β + k cos γ 
  l



  grad u      
     u   

.
l grad u = ∂u
∂l

 


     u = F (x; y; z)  
    
  
!  "#
  
  $  
  
 # % !  $& ' ( 
  )

grad u = Fx (x; y; z)i + Fy (x; y; z)j + Fz (x; y; z)k.
 '

%
!l grad u = grad u · l =

= Fx (x; y; z) cos α + Fy (x; y; z) cos β + Fz (x; y; z) cos γ =
     $



∂u
,
∂l

∂u
 +   
∂l
    %#  #  ! # u = F (x; y; z)  ' %  ! 
 l        %
% + 

!  "# grad u  
# ! # u = F (x; y; z)   !  
 l
,  %    ϕ   %+$ $ % 
 % l  grad u
- $ !l grad u = | grad u| cos ϕ  ' %     . %  
*   #

!   $ # !  ! &

∂u
= | grad u| cos ϕ.
 /
∂l
0  !  
  l  grad u  ! $ & (ϕ = 0)
! 
∂u
%  $    1  
  $ # !  ! &
∂l
   | grad u|
- %  % % !( $% $&2%  $ grad u 

  
              
                

, &$ $ 
grad u . "  #  ! # u = F (x; y; z)
!$# #  %% ! %   
 %
$   
   %   # . "# ! #
3#%  %   !  + grad u = grad F (x; y; z)  $  

 P (x0 ; y0 ; z0 )  ! (    # ! ( $#2  ' 
    '  ! (   % $

F (x; y; z) = C0

 F (x; y; z) − C0 = 0.

 





z

      

grad F(P 0 )
r (t 0 )
90

p0

o

L
F(x;y;z)-C 0=0

0

y

x
      

 
L 
     
   P0   !  "   
 

⎨ x = x(t),
y = y(t),
⎩ z = z(t),

# x(t)

y(t)  z(t) $ %%& ' %  & t ( x0 = x(t0 )
y0 = y(t0 ) z0 = z(t0 ) ) *+ r = (x; y; z)   
 ,  +  , %- r = r(t) .  +
    ',   ' (x(t0); y(t0); z (t0)) = r (t0)
   +,  , L   r(t0)

/, +    ,r̄ (t0 ) = lim

Δt→0

r̄(t0 + Δt) − r̄(t0 )
.
Δt

0  r̄(t0 + Δt) − r̄(t0)     ,  , L 
,   P0 (r̄(t0))   #  ",  , r̄(t0 + Δt)1
r̄(t + Δt) − r̄(t0 )
  0
  2# Δt → 0  
  Δt+ 
2    , L  ' x(t) y(t)  z(t) 
' '   +       
 +
  L +   ",   3 

 

        

  



 





F (x(t); y(t); z(t)) − C0 = 0.

         t 
 (C0)t = 0  
 

∂F 
∂F 
∂F 
x (t) +
y (t) +
z (t) = 0.
∂x
∂y
∂z
 t = t0  

Fx (x0 ; y0 ; z0 )x (t0 ) + Fy (x0 ; y0 ; z0 )y  (t0 ) + Fz (x0 ; y0 ; z0 )z  (t0 ) = 0.

      
grad u(P0 ) = Fx (x0 ; y0 ; z0 ) + Fy (x0 ; y0 ; z0 ) + Fz (x0 ; y0 ; z0 )

 

 

r (t0 ) = x (t0 )i + y  (t0 )j + z  (t0 )k,
   L! " 

 

#$%!&&'
   grad u(P0) = 0! "   #$%!&&' (
  grad u(P0)     r(t0 ) 
    L    P0!
"          ) 
 *+  !  
      


grad u(P0 ) · r (t0 ) = 0.

   u = F (x; y; z) 
     
  P0       
grad F (P0 )    
P0

           
           
         
      

          
    )  ) z = f (x; y)   (

grad f (x; y) = fx (x; y) + fy (x; y).
#$%!&,'
∂z
-     * ∂l  
= | grad z| cos ϕ,
l grad z = ∂z
 ∂z
∂l
∂l
 ϕ .       l  grad z!
/           (
 z = f (x; y)   grad f (x0; y0)    (
         P0 (x0; y0)!

 

 

 

       

    

    



   

F (x; y; z) = 0,



 F (x; y; z)           ! P0 (x0; y0; z0)
    !   "       # $ $% 
  $ "   & $  ! P0   " #'   (
    ' ! ! P0 "  # $   )  "
    ) grad F (P0 )
*    $    )    F (x; y; z) = 0
 ! P0   
grad F(P 0)
z

P0 (x0;y0 ;z0 )
y
x
  

+   #   
 "   ' ) !

    

 ,)        
 - ! P0   .



A(x − x0 ) + B(y − y0 ) + C(z − z0 ) = 0.

/ !         N (A; B; C)  &    (
 "     $)   )   0   (
  )      .
Fx (x0 ; y0 ; z0 )(x − x0 ) + Fy (x0 ; y0 ; z0 )(y − y0 ) + Fz (x0 ; y0 ; z0 )(z − z0 ) = 0.



 

        



            P0
           
  
 
            
    
         P0    !"#$
x − x0
y − y0
z − z0
=
=
.
m
n
p
%    &    s(m; n; p)      & '
  (  $
y − y0
z − z0
x − x0
= 
= 
.
 ")#
Fx (x0 ; y0 ; z0 )
Fy (x0 ; y0 ; z0 )
Fz (x0 ; y0 ; z0 )

  !        
    z = x2 + 2y2    P0 (1; 1; 3)
* +   $ ,+          
+ 2y 2 − z = 0 ,  F (x; y; z) = x2 + 2y 2 − z 
-  grad F (P0 )$

Fx (x; y; z) = 2x;

Fy (x; y; z) = 4y;

 "!#$ x2 +

Fz (x; y; z) = −1.

Fx (P0 ) = 2; Fy (P0 ) = 4; Fz (P0 ) = −1.
%
 $

    " #          

2(x − 1) + 4(y − 1) − 1(z − 3) = 0,

$ 2x + 4y − z − 3 = 0.

%      ")#        $

x−1
y−1
z−1
=
=
.
2
4
−1
y−1
z−1
x−1
=
=
.
. $ 2x + 4y − z − 3 = 0
2
4
−1
*            '
&            z = f (x; y)      !#
/       (    0     (  
  
,+          
−f (x; y) + z = 0.
,  F (x; y; z) = −f (x; y) + z 

 "1#







           

 gradF (P0)
Fx (x0 ; y0 ; z0 ) = −fx (x0 ; y0 );









Fy (x0 ; y0 ; z0 ) = −fy (x0 ; y0 );

Fz (x0 ; y0 ; z0 ) = 1.

         

−fx (x0 ; y0 )(x − x0 ) − fy (x0 ; y0 )(y − y0 ) + (z − z0 ) = 0,



z − z0 = fx (x0 ; y0 )(x − x0 ) + fy (x0 ; y0 )(y − y0 ).

      

x − x0
y − y0
z − z0
=
=
.
−fx (x0 ; y0 )
−fy (x0 ; y0 )
1







     !  
" P0 #    $!
% &   '  ( !    #    )
  %  #
   F (x; y; z) = 0  " 
 
Fy (P0 )
Fz (P0 )
Fx (P0 )
; cos β =
; cos γ =
,
| grad F (P0 )|
| grad F (P0 )|
| grad F (P0 )|
*


2

2

2
| grad F (P0 )| =
(Fx (P0 )) + (Fy (P0 )) + (Fz (P0 ))  ,   #)
 %    z = f (x; y)- . !- "  $ )

cos α =

+

  

−fy (x0 ; y0 )
1
−fx (x0 ; y0 )
; cos β =
; cos γ =
,
| grad F (P0 )|
| grad F (P0 )|
| grad F (P0 )|
/

| grad F (P0 )| = (fx (x0 ; y0 ))2 + (fy (x0 ; y0 ))2 + 1

cos α =

+

          
     

2
         z = x2 +2y
 
o

M(1; 1)

         Ox   60 

0  1          ! cos α = cos 60o = 21 cos β = cos(90o − 60o ) = cos 30o =


3

2

                



  cos β 
       cos2 α + cos2 β = 1
               M 
∂z
|M = 2x|x=1 = 2;
∂x

      

∂z
|M = 4y|y=1 = 4.
∂y

 



∂z
3
∂z
∂z
1
|M =
|M cos α +
|M cos β = 2 + 4
= 1 + 2 3 ≈ 4,46.
∂l
∂x
∂y
2
2

                 
    
           
XOY         M(1; 1)  
   !
" z = x2 + 2y2       #  $ %   

   XOY  
 77o

 &'(        z = 2x2 +y2  

M(1; 1)
O(0; 0)

              

)  *      +     

 
     MO  +  
,        - . 
    
   
      
  
" MO = (0 − 1; 0 − 1) = (−1; −1)
+       
    
        
MO
.
|MO|


 |MO| = (−1)2 + (−1)2 = 2

1
1
1
l MN = − √ ; − √
⇒ cos α = − √ ;
2
2
2
l MN =



1
cos β = − √ .
2

/      0    +   
      
∂z
∂z
|M = 4x|x=1 = 4;
|M = 2y|y=1 = 2 ⇒
∂x
∂y


1
1
6
∂z


|M = 4 −

+2 −
= − √ ≈ −4,3.
∂l
2
2
2







           

 
          M 
              
  ! "   !     XOY 

 #$%    

 z = x2 + 2y2   
         

    
  

M(1; 1)

&  '   ( )   !    #$*   
 +    + ! grad z (
grad z|M =

∂z
∂z
|M ; |M
∂x
∂y



= (2; 4).

,     -     #$    

  !      '       "
     "   . 

∂z
∂x

2

+

2
∂z
 /    
∂y
 M    "

  
   
√   √
    22 + 42 = 20 ≈ 4,47   "  '  
 #$*



 #$#           
 

x2 y 2 z 2
+

=0
16
9
8

   P0 (4; 3; 4)

&  '   (
  +       
x2 y 2 z 2
+
− 
F (x; y; z) = 0 "( F (x; y; z) =
16

Fx (x; y; z) =

x
;
8

1
Fx (P0 ) = ;
2

9

8

2y
z
; Fz (x; y; z) = − .
9
4
2
Fy (P0 ) = ; Fz (P0 ) = −1.
3

Fy (x; y; z) =

,    %0*1     !    
(
1
2
(x − 4) + (y − 3) − (z − 4) = 0
2
3

 3x + 4y − 6z = 0.

                

  




    

x−4
y−3
z−4
=
=
.
1/2
2/3
−1
y−3
z−4
x−4
=
=
3x + 4y − 6z = 0
1/2
2/3
−1



  

      !  "#$  %
 &#  ' (!)  *! Ox + α
  , z = 2x2 + xy + 3y2 M(2; −2) α = −45o
  - z = x2 − y2 M(−1; 1) α = 120o

   z = xy
   z =

M(2; 1) cos α =

1
0 < β < π/2
3


x2 − y 2 M(5; 3) cos α = cos β < 0

     !  "#$ 
&# M  ' )  . &# # &# N

   z = xy1 M(1; 1) N (−1; 1)
   z = √x − y M(1; 0) N (0; 1)
   u = xy + yz + zx M(2; 1; 3) N (5; 5; 15).




  / ,  +  "#$  %
 &#   ! . "#$   &#  
+   0*1! #*  ( "#$  
&#
  / z = 2x3 + 3y3 − 2xy M(2; 1).

   z = 2 y2 − x2 M(3; 5).
   u = 2xyz M(3; 2; 1).
  , u = 4x2 + y2 + z2 M(1; 1; 1).
  -            




    

z=

x2 y 2

2 3



P0 (2; 3; −1)



 



    

      
 

              
            
          !  
  " # $ %    &   ' 
( ' )       

 

        

* # +  (  !       $
        , -./0
f (x) = f (x0) +
+

(

f  (x0 )
f  (x0 )
(x − x0 ) +
(x − x0 )2 + · · · +
1!
2!

,1--/

f n−1 (x0 )
(x − x0 )n−1 + O((x − x0 )n ),
(n − 1)!

 !   #  $ $  n  ρ → 02    #

3 (#  2 4       
 (#   4  5 ( 2 '   " $  
  , ! / (  *  ($$    5 # 0
O(ρn )
ρ = x − x0


1  
fx (x0 ; y0 )Δx + fy (x0 ; y0 )Δy +
1!

1  


fxx (x0 ; y0 )Δx2 + 2fxy
+
(x0 ; y0 )ΔxΔy + fyy
(x0 ; y0 )Δy 2 + O(ρ3 ),
2!

ρ = Δx2 + Δy 2 Δx = x − x0 Δy = y − y0

,1-/

f (x; y) = f (x0 ; y0 ) +

(
2
2

6 " 2 #   !    # $ 
   $ 2  '  " # 0
f (x; y) = f (x0 ; y0 ) +
+

df (x0 ; y0 ) d2 f (x0 ; y0 )
+
+ ···+
1!
2!

dn−1 f (x0 ; y0 )
+ O(ρn ).
(n − 1)!

 
,1-7/

8 2 #  ,7.7/      n = 2

  

     



O(ρn )  


        
 m            
   
      

f (x1 ; x2 ; . . . ; xm ) = f (x01 ; x02 ; . . . ; x0m ) + fx 1 (x01 ; x02 ; . . . ; x0m)Δx1 + !"#"$

+fx 2 (x01 ; x02 ; . . . ; x0m )Δx2 + · · · + fx m (x01 ; x02 ; . . . ; x0m )Δxm + O(ρ2 ),
m

 Δxi = xi − x0i  i = 1, 2, . . . , m ρ =
Δx2i 
i=1

  
    
   
%     m         m   
 fi (x1; . . . ; xm ) &     

f (x ; x ; . . . ; xm ) = 0,


⎨ 1 1 2
f2 (x1 ; x2 ; . . . ; xm ) = 0,
.........


⎩ f (x ; x ; . . . ; x ) = 0.
m 1
2
m

 "##  

!"#'$

   
 

m  P0 (a1 ; a2 ; . . . ; am ) 

  ! 

(
    X !     m
    $   F      


x1





X = ⎝  ⎠ ,
xm

F (X) = ⎝

f1 (x1 ; . . . ; xm )








⎠,

0 = ⎝  ⎠
0

fm (x1 ; . . . ; xm)

    !"#'$

*     

0



!"#)$



!"#+$
  *,  -    !"#'$    ./ 
                 
-   
%   *,  -  Xn   !"#+$  
   ε    - 
F (X) = 0.



xn1



Xn = ⎝  ⎠ ,
xnm



ε=⎝

Δx1




Δxm



⎠,

!"#0$





     

 Δxi = xi − xni  xi = xni + Δxi 

  
        

ε = X − Xn  X = Xn + ε.
!

   "# 



  


⎨ f1 (xn1 + Δx1 , . . . , xnm + Δxm ) = 0,
...

fm (xn1 + Δx1 , . . . , xnm + Δxm ) = 0.

$   % &  ' %()  
  *  
'  +)
   ,   )   # % 
     '  -

  ) 
  

fi (xn1 + Δx1 , . . . , xnm + Δxm ) = fi (xn1 , . . . , xnm )+
+

m



fi,x
(xn1 , . . . , xnm )Δxj + α2 ρ2 ,
j

j=1

 fi,x
(xn1 , . . . , xnm ) =
j

∂fi (xn1 , . . . , xnm )

∂xj

!     
   #     .  )
    )       / %0 Δxnj ,
(j = 1, 2, . . . , m) % /n  & 0 xn1 , . . . , xnm # %     

,  Δxj




(xn1 , ..., xnm)Δxn1 + ... + f1,x
(xn1 , ..., xnm)Δxnm = 0,
⎨ f1 (xn1 , ..., xnm) + f1,x
m
1
...



(xn1 , ..., xnm)Δxn1 + ... + fm,x
(xn1 , ..., xnm)Δxnm = 0.
fm (xn1 , ..., xnm) + fm,x
m
1
.
1   * )   
   % Δxnj (j = 1, . . . , m)#
 /(n + 1)  & 0  '   2

xn+1
= xn1 + Δxn1 , . . . , xn+1
= xnm = +Δxnm .
1
m
xnj

2

3  #   )  
 
(j = 1, . . . , m)   
 "#         & # %    
   % Δxnj       
     ' 
+)   
   
 ) xn+1
  % 
j
  .#
) # (n + 2)#  &  ! (
   &      # %  % % 4   % 
     )     ,4
   
)   

  

     



 δ
   
    
 |Δxnj | < δ   j = 1, . . . , m
             
     
          
       !     "  
     #    $%&'(  )  
   *  *      * +,
,           $%&-(  
$%&'(  !          

F (Xn ) + W (Xn ) · εn = 0,

$%&&&(

" W (Xn ) .     ) /        
    0 ) fi (x1 , . . . , xm )
  (xn1 , . . . , xnm)


∂f1
∂f1
...
⎜ ∂x1
∂xm ⎟


W (X) = ⎜ . . . . . . . . . ⎟ .
$%&&1(
⎝ ∂fm
∂fm ⎠
...
∂x1
∂xm
#       $%&&&(    ) )
 

εn = −W −1 (Xn )F (Xn ),
$%&&2(
−1
" W (Xn ) .  )    ) /   
Xn 
3  (n + 1)      0 

Xn+1 = Xn + εn .

$%&&%(

 %&&         
  x1, x2, x3         x, y, z
%&& !"   
 
x2 + 4y 2 − 1 = 0
  " δ = 0,01
y − x3 = 0
#
    ,            
   x1 = x x2 = y f1 (x1 ; x2 ) = x2 + 4y 2 − 1 f2 (x1 ; x2 ) =
= y − x3
∂f1
∂f1
∂f1
∂f1

= 2x,
= 8y,
=
=
x2 + 4y 2 − 1
∂x
∂x
∂x
∂y
1
2
;
F (X) =
∂f2
∂f2
∂f2
∂f2
y − x3
= −3x2 ,
= 1.
=
=
∂x1
∂x
∂x2
∂y





     

        
W (X) =



2x 8y
−3x2 1

.

          
  !" #         
    F (X)     W (X)  
$ x0 y0     δ%
& #$  $    
         '(%(% )
2
y2
 x2 + 4y2 − 1 = 0  * x1 + (0,5)
= 1  
2
a = 1  b = 0,5% ) y − x3 = 0   
 y = x3%     # #  
$  + ,% -./
y
0,5

1

-1

x

-0.5

   

0 #$ 1    $ 
       $ x0 = 0,502
y0 = 0,25%
&         $  
 1  '(%(% ! #    
  1    %% -    %
              $ 
  (   3 ,4  .5/6

1
4y

2
2
⎜ 2x + 24x y
x + 12x y ⎟
W −1 (X) = ⎝
⎠.
3x2
x
2x + 24x2 y x + 12x2 y


  

     

 




  


ε = −W −1 (X)F (X)


x2 + 4y 2 − 1 4y(y − x3 )

,
2x + 24x2 y
x + 12x2 y


2 2
2
3x (x + 4y − 1)
x(y − x3 )


+
.
⎩ Δy = −
2x + 24x2 y
x + 12x2 y
    x0 = 0,50 y0 = 0,25
! "  Δx0 = 0,30# Δy0 = 0,10


⎨ Δx = −




$%    !

x1 = x0 + Δx0 = 0,8 y1 = y0 + Δy0 = 0,35

! !  &
 %  %
  !   " x1 y1 ! Δx1 =
= −0,084# Δy1 = 0,0014# x2 = x1 + Δx1 = 0,716# y2 = y1 + Δy1 = 0,3514
 ! !  &
|Δx1 | < 0,01
 % % 
|Δy1 | < 0,01
'"!% %( %  &!


|Δx0 | < 0,01
|Δy0 | < 0,01

i

xi

yi

Δxi

Δyi

) )) )* ) ) ) )
)+) )  ))+ )))
* ), - )  )))++ ))).
),), ) )
/  & %  i = 2 |Δx2| < 0,01#

|Δy2 | < 0,01
0 x3 = 0,71# y3 = 0,35

 



   0,01

   



 *     z = f (x; y) 
      M (x ; y ) ∈ D(f )    x = x 
y = y  
f (x ; y ) > f (x; y)
    (x; y)         (x ; y )  δ 
  !         "
0

0

0

0

0

0

0

0

0








z = f (x; y) 
M0 (x0 ; y0 ) ∈ D(f ) 





    

       
       
f (x0 ; y0 ) < f (x; y)

    (x; y)         (x0; y0) 
  




        

         
           

        
!        " 

  
  #   "      

$   % "         & 
"  ' #
( & x = x0 + Δx y = y0 + Δy ) 

f (x; y) − f (x0 ; y0 ) = f (x0 + Δx; y0 + Δy) − f (x0 ; y0 ) = Δf (x0; y0 ).
* +  Δf (x0 ; y0 ) < 0 " ,    , "' ,
 , "
,    f (x; y)  
   M(x0 ; y0 )
-* +  Δf (x0 ; y0 ) > 0 " ,    , "' ,
 , "
,    f (x; y)  
   M(x0 ; y0 )
.   "  #       #
  "
,

    
!" # 
 z = f (x; y)   ! $ x = x0 y = y0   %
 $  $  $   z
&   
$ !      
 &

$ 
  "  y " /     
 y = y0  0   f (x; y0 ) #     " 
x 0  " x = x0     1    *

  

     

  
 






∂z
∂x

x=x0
y=y0



      

  





   



 
 

∂z
∂y

 

    


x=x0
y=y0







z
M0
y
P0
x

    
M0

z
y

P0
x

    

        !  
"  #
$   %&  
& ' (   " 
&
$  

 &  &    %& % 
   %   
    
  ) "      #  " 
  

∂z
= +2x
*  "  ' ( z = x2 − y 2  "   %
∂x
∂z
= −2y    % #      "
x = 0 y = 0 + $
∂y
' ( "  
%&  
&  
   


  ,!    $ ' (

     
"
       #  & 
   
 &  
"  %  
(  %  
     
      
  

   -

  

     

 f (x; y)      
∂ 2 f (x0 ; y0 ) ∂ 2 f (x0 ; y0 )
·

∂x2
∂y 2

∂ 2 f (x0 ; y0 )
∂x∂y


  fyy
(x0 ; y0 ) < 0
 f (x; y)     

∂ 2 f (x0 ; y0 ) ∂ 2 f (x0 ; y0 )
·

∂x2
∂y 2

∂ 2 f (x0 ; y0 )
∂x∂y

2



>0



∂ 2 f (x0 ; y0 )
< 0;
∂x2

>0



∂ 2 f (x0 ; y0 )
> 0;
∂x2

2


  fyy
(x0 ; y0 ) > 0
 f (x; y)           
2
∂ 2 f (x0 ; y0 ) ∂ 2 f (x0 ; y0 )
∂ 2 f (x0 ; y0 )
·

< 0;
∂x2
∂y 2
∂x∂y
2
∂ 2 f (x0 ; y0 ) ∂ 2 f (x0 ; y0 )
∂ 2 f (x0 ; y0 )
  
·

= 0    
∂x2
∂y 2
∂x∂y
       
     
  !
" #  $ $  !

  %  & ' (     


    (x0 ; y0 ) $ fxx
(x0 ; y0 )  fyy
(x0 ; y0 ) #)!
 
2


*     fxx (x0 ; y0 ) · fyy (x0 ; y0 ) − fxy
(x0 ; y0 ) > 0 
 
2
fxy (x0 ; y0 )


< 0.
# fxx
(x0 ; y0 ) < 0  fyy
(x0 ; y0 ) <
 (x ; y )
fxx
00
  +
z = x3 + y 3 − 3xy !

        ' ()

 

           ! "
 #

∂z

= 3x2 − 3y = 0, ⎪
∂x
∂z

= 3y 2 − 3x = 0. ⎪
∂y
$%   !     

x1 = 1,

y1 = 1

x2 = 0,

y2 = 0.



 

 



  
2

    





2

∂ z
∂ 2z
∂ z
=
−3,
=
6x,
= 6y.
∂x2
∂x∂y
∂y 2
             M(1; 1)



∂ 2z
∂ 2z
∂ 2z
A=
=
6,
B
=
=
−3,
C
=
= 6,
∂x2 x=1
∂x∂y x=1
∂y 2 x=1
y=1

y=1

y=1

AC − B 2 = 36 − 9 = 27 > 0; A > 0( C > 0).
      (1; 1)  !      "
 
zmin = −1.
#    
       M2 (0; 0)
A = 0,

B = −3,

C = 0;

2

AC − B = −9 < 0.
    
      
      $  %

  
 
    

 

!    

  

&      '         
!
       ()      
            
    "
        %

 #*%+      z = f (x; y) 
   M         
    M 
             
 M           
      ! 

, !  z = f (x; y)          
' G 
 !   -  ' %
& -           -  '  ' .
 .        (  ' 
'   "
'  /   !% 0  ' .   .   ! 
        ' G  -      
(   -  ! z = f (x; y)% 1  '  

  

     



   
       
       
    
   G
      !  
    

      
   
              
 z = f (x; y)       G      
      !     
"  
          G #  
   
!   $ 
    
         z = f (x; y)    
  G
"  
    #      
  $
  
   $ 
$ 
     $          #    
 %     

 &'( #  
 z = x2 − y 2   x2 + y 2  4

zy

  

)     * +     
= −2y  )     $
"
2x = 0,
−2y = 0,

 

  
 zx = 2x 

  
    P0 (0; 0)   $   

   
+$         
 
     #   x2 + y 2 = 4 ,   $  #  
 z = x2 − y 2 #      
  $ 
 $ x : z = x2 − (4 − x2)  z = 2x2 − 4 % −2  x  2 - 
 #         $
$  

  #   x2 +y 2 = 4     #   
      $
  $  $ z = 2x2 − 4
   [−2; 2] +$    
   
(−2; 2)      
          
 - z  = 4x 4x = 0         
x = 0. z|x=0 = −4 ,    z|x=−2 = 4 z|x=2 = 4 / 

        &   
     −4

  

  

     




          



z
z=f(x;y)

y
L
x
   



   
  !!" # $    %
#&'   y '  
  x '     
 !!  #    y '        & 
 
  
              x
(  $'  '   $  # '   #  !!"
    
)     *    +#& %
 , 

 



 



- y    x'       !!"'
 u .        x'   '   &
 
      u  x      
  '  /0$    $

du
∂f
∂f dy
=
+

dx
∂x ∂y dx
∂f
∂f dy
+
= 0.
∂x ∂y dx

 !!1

2  /      !!"  x' &  3

∂ϕ ∂ϕ dy
+
= 0.
∂x
∂y dx
(   #    & x  y '
  !!"

 !!4
0& %





     

 
            
  λ   
  !"#
$    
%& !     '
∂f
∂ϕ

∂x
∂x



+

∂f
∂ϕ

∂y
∂y



dy
= 0,
dx

()

$"# $      ! 
*   λ &         $   () 
  +  !+'
,-    .
  ()'

∂f
∂ϕ

= 0.
∂y
∂y
$ x  y  !

    !"  

∂f
∂ϕ

= 0.
∂x
∂x

,   .&      ! $" $  ! $'

∂f
∂ϕ


⎪ ∂x + λ ∂x = 0,

∂ϕ
∂f

= 0,


∂y
∂y


ϕ(x; y) = 0.

(

,    ( $$ $    !   ! -  
 !  /  &   
 !   () $$" $

 . ! 0 - 
F (x; y; λ) = f (x; y) + λϕ(x; y)
((
     x& y  λ
,   .& $   $ ! -   ! !
1  !  2      0 -  ! 
 +  +!" !" ((&  $  !" 

 .  x& y  λ&  . !    (  
  + .  x  y  - +  + λ  !  / 
 &   +! !  $ ( $$" $    ! 
 &  ! $  +          
  3-   4    .  !  $ !  + 
        . . -   .  
5         $ $  !  "-  
    





3xyz

 λ = −
  2a



    

       



3x


yz
1

(y
+
z)
= 0,


2a





⎨xz 1 − 3y (x + z) = 0,
2a



3z


(x
+
y)
= 0,
xy
1



2a



xy + xz + yz − a = 0.

  x y  z           
 

3x


1 − (y + z) = 0,


2a


3y

1 − (x + z) = 0,
2a

3z


(x + y) = 0,
1



2a


xy + xz + yz − a = 0.

      x = y      ! 

y = z      


x=y=z=

a
.
3

   "     
         "# "   x = 0
 y = 0  z = 0
$ $"# "
 "!%   "  &
" " 

a
3

 

        
'         (   
        ! 
 "!%          
 
)    %     
     !   "!%   
 &*   

         



             
   z = f (x; y)          
        P0 (x0; y0)     
grad f (P0 )     
     
!      P1 (x1; y1)   grad f (P1)
  "#$     "#   %    
         grad f (P1)   P2 (x2; y2)
      &  '         (
      # "  "   | grad f (Pn)|
      $
)      
 " &   $
 '             
*              
      !  +  
  
  , $         -     
$ 

         
    
 .//    

− 6x − 3y.



    z = x2 + xy + y2 −

0     1 ( $             
$   
      !  +
     $1






∂z
∂z
= 2x + y − 6;
= x + 2y − 3
∂x
∂y
∂z


= 0,
2x + y − 6 = 0,
x = 3,
∂x


∂z
x
+
2y

3
=
0
y = 0.
=0
∂y

( $                 


 2
· zyy
− (zxy
)   
  
     Δ = zxx

zxx
= 2;


zyy
= 2;


zxy
= 1 ⇒ Δ = 2 · 2 − 1 = 3 > 0.

      !  $    


  M(3; 0)  $ !   2 zxx
> 0+
!  
31 4 M(3; 0)  $   













− 12x − 15y 

 



      

    z = y3 +3x2y −

     

zx

= 6xy − 12; zy = 3y 2 + 3x2 − 15
 
 2

zx = 0,
x + y 2 = 5,
6xy − 12 = 0,




2
2
zy = 0
xy = 2
3y + 3x − 15 = 0
 2


x + 2xy + y 2 = 9,
(x + y)2 = 9,
x + y = ±3,



2
2
x − y = ±1.
x − 2xy + y = 1
(x − y)2 = 1
          
M1 (1; 2);

M2 (2; 1);

M3 (−1; −2);

M4 (−2; −1).

 
 2
         Δ = zxx
zyy − (zxy
)    
! " 



zxx
= 6y; zyy
= 6y; zxy
= 6x ⇒
2
Δ = 6y6y − (6x) = 36(y 2 − x2 )
Δ|M1 = 36(4 − 1) > 0; Δ|M2 = 36(1 − 4) < 0
Δ|M3 = 36(4 − 1) > 0; Δ|M4 = 36(1 − 4) < 0.
# $   " M1 M3 $ !   " M2
M4 % 

        zxx
  " M1 M3 

zxx
|M1 = 6 · 2 > 0;


zxx
|M3 = 6 · (−2) < 0.

# $   M1 &     
'   





( 
z = 2x2 + (y − 1)2 

  M3

   

    
     % 
        )" %   ! 
     

∂z
= 4x;
∂x

∂z
= 2(y − 1)
∂y


∂z




= 0,
x = 0,
4x = 0,
∂x


∂z
y = 1.
2(y

1)
=
0


=0
∂y

         



              
     Δ = zxx zyy − (zxy )2      

zxx
= 4,


zyy
= 2,


zxy
= 0 ⇒ Δ = 4 · 2 − 0 = 8 > 0.

             
       M(0; 1)     
  Δzxx > 0     
!   " M(0; 1) #   
 $%$  
    

z = 1 − x2 − y 2  
 x + y − 1 = 0

&  '    ( ) )  z = 1 − x2 − y2  
   )  *  +,-   L : x + y − 1 = 0 

   Oxy
z

N

z= 1-x 2-y
M
P

A

2

0

x+y-1=
B

y

x
   



.   / 0         
  
1 1
/ '    )       P 2 ; 2  0
1    0  A(1; 0)  B(0; 1)   '  
 2   A  B 
3       2  M     
/   2  N 
.     x + y − √1 = 0  y = 1 − x ! 
z = 1 − x2 − (1 − x)2 ⇔ z = 2x − 2x2  !/    x 
   2x − x2  0 ⇔ x ∈ [0; 1]





    zx =

 



      

2 − 4x


2 2x − 2x2

    

         

          z 12 =

1
zx = 0 ⇔ x0 =
2

1
= √  z(0) = 0 z(1) = 0
2

        
 !   "   ! 
1
1
1
1
=√ 
x 0 = ⇒ y0 = 1 − x 0 = ⇒ z
2
2
2
2
x1 = 0 ⇒ y0 = 1 − x0 = 1 ⇒ z(0) = 0
x2 = 1 ⇒ y0 = 1 − x0 = 0 ⇒ z(1) = 0#
 $%#&         z = 6 − 3x − 4y  
  x2 + y2 = 1
'  (   )     *" 
F (x; y; λ) = 6 − 3x − 4y + λ(x2 + y 2 − 1).

!         


3

⎧ 


x=
,


⎨ Fx = 0,
⎨ −3 + 2λx = 0,


2
F = 0, ⇔
−4 + 2λy = 0,


⎪ y= ,
⎩ y
⎩ 2

x + y 2 − 1 = 0.
Fλ = 0.
λ

⎩ 2
x + y 2 − 1 = 0.


3
3



x
=
,
x=
,










2
2
y= ,


y= ,


λ
λ
2




2


5
2
25 − 4λ



λ=± .
− 1 = 0.
= 0.
2
2
λ



3
3


x2 = − ,
x1 = ,






5
5


4
4


y1 = ,
y2 = − ,


5
5






5

⎩ λ = 5.
.
=

λ
1
2
2
2


3

x=
,






2
y= ,

λ

2



3


+


         



           
  d2F = Fxx dx2 + 2Fxy dxdy + Fyy dy2       
 



Fxx
= 2λ; Fyy
= 2λ; Fxy
= 0 ⇒ d2 F = 2λdx2 + 2λdy 2 
5
3
4
 λ1 = 2  x1 = 5  y1 = 5   d2F = 5(dx2 + dy2) > 0  
       
 λ2 = − 52  x2 = − 35  y2 = − 45   d2F = −5(dx2 + dy2 ) < 0
    
    
4
−4
= 1,
5


4
3
z  = 6 − 3 −
−4 −
= 11.
5
5
z  = 6 − 3

3
5

             
  !" #z $   ! " #z $    
  z = 6 − 3x − 4y  %  x2 + y2 = 1
&'      M  − 35 ; − 45     
M 

3 4
;
5 5



.

 ()*  
     
 z = x2 − xy + y2 − 4y − x   x  0 y  0 3x + 2y − 12  0
+  ,   ' -  %        . %
zx = 0,

zy = 0.

/  

2x − y − 1 = 0,

−x + 2y − 4 = 0.

    

2 > 01 3 > 01 3 · 2 + 2 · 3 − 12 = 0

M(2; 3)

x = 2,
y = 3.



 0  '

-     . %     z|M = 22 − 2 · 3 + 32 − 4 · 3 −
 %  0   / x = 0 
− 2 = −7 2 . %
zI = y 2 − 4y  2y − 12  0 y  0 - 
 ,
0,
    . %      [0; 6]
-           3   (zI )y = 2y−4
(zI )y = 0 ⇔ 2y−4 = 0 ⇔ y = 2 -  
  . %    
zI |y=2 = 22 − 4 · 2 = −4 -  
  . %
 %   '
zI |y=0 = 0 zI |y=6 = 62 −4·6 = 12  
  0,   
 x = 0 . %      y = 6 : (zI  ) = 12  , 4
 y = 2 : (zI  ) = −4







      

 
        
 y = 0              
y = 0     x = 4 : (zII  ) = 12     
1
1
x = : (zII  ) = − 
2
4
        3x + 2y − 12 = 0
!  "   y = 6 − 3x
    # 
2

19x2
− 19x + 12  
zIII =
4



x  0,
x  0,
x  0,
3x


    


y  0.
x  0.
 0.
6−
2
   x                

 

!   
" 
zIII  [0; 4] #!  

     " 
    x = 2 y = 3 : zIII  =
= −7  !  $  x = 0 y = 6 : zIII  = 12 %& '

   $

 

( !) *

  !



&)! 

   )    " 

        



   



z  = 12    !  "      

 M1 (0; 6)
M2 (4; 0)    z  = −7 $    M3 (2; 3)
+, z  = 12 z  = −7
!

   



&    - .$- /





  

  ) " 

 z = x + xy + y − x − 2y
 z = x4 + y4 − 2x2 + 4xy − 2y2
 z = y2 − 2x2 − 2y + 1
2

- .

2



' 

º

- 0

º

º

- /

&    - -$- --   ) ' )  
1) "  




- -
- --

 z = 2x + y
 z = x2 + y 2

 x2 + y 2 = 5
 2x + 3y = 6

&    - -2$- -3    


" 



!







  

   ! 

 z = xy + x + y  

- -2

 1  x  2, 2  y  3.

 

       





 

 z = xy





 x2 + y 2  1.

            
   z = x2 + y 2   z = 2x + y   
M       

 
 

      


         

        
!"  #  $

 "  %  &  '     (  $!

)   


 

* 




    

  +,  (    $ 
-     
     

   



.   w = f (z)      
z     M         
  z ∈ M        
  
    w !      " w = f (z)    
      #   $
  M    
 
 %     "   % N 
w   "   %        
 
/ $  z -          0  w
1  , 0   2 w = f (z) 3 ,  $        (3   3 M    z   3
N    w

   



.. & " w = f (z)     M
       z        w
  
          

4 0 $    
+ ( z = f −1 (w)0  (!
32+  3 N    w   3 M    z
 2+  3    $ 





 

  

   

z









  



w

     



n ∈ N  w = z n  

  

     

w = ρ(cos θ + i sin θ) 

   

  

      ! 



|z|n







z = r(cos ϕ+i sin ϕ)
   



ρ=r ,
θ = nϕ.
w = zn
 z



( ($   

  '   



n

" #    
 '  

  


 

 $ %&


(n − 1) arg z



k 2π
< ϕ < (k + 1) 2π

n
n
    ! w 

 % '         

k = 0, 1, . . . , n − 1



 (



' 

 '!   !(

w=


n

z ) n&  
M   '

  (% % 
 !
   


 

n
z
  n

w = n z

n

 

   

,    




 


x = 0 y = ϕ

  ( ** +'  
$



 w = ez
z = x + iy 

  

 



 



'  



 !

z = 0 '&

   

 (   

ez = ex (cos y + i sin y)



&

-(

**.*

eiϕ = cos ϕ + i sin ϕ.
-  



 !





   

       

e2πki

  

2πi /!
= cos 2πk + i sin 2πk  (k ∈ Z)  !





ez+2πki = ez · e2πki = ez · 1 = ez .
/

   



w







!
1 '

z '  !    ln z 
ew = z  -0
   %    &
 w = ln z 
 !    ! 
        z = 0
    z  %   '  &
 

     


  

 (   !(    &

2π 
ln z = ln r + i(ϕ + 2πk), k ∈ Z.

 

       





         ϕ = 0 r = 0  
  ln z  k = 0           
   !" # #  ln z      ln z 
     k      ln z $      
ln z #      z = 0
% & '          #&'
 '   ' w = za  a = α + iβ   (  za = ea ln z
 )* +  ln(−1).
,  (  - !  +     −1 = 1(cos π + i sin π)    z = −1 |z| = r = 1 ϕ = π .  
    ln z ln(−1) = ln 1 + i(π + 2πk) = i(π + 2πk), k ∈ Z.

!  #           ln(−1)
      sin z cos z
−iz

−iz

$  sin z = e −2ie / cos z = e +2 e .
0 1           
   ' ##&   2   
  - eiz = cos z + i sin z
3  "     ' 44      
2π  sin(−z) = − sin(z) cos(−z) = cos(z) sin2 z + cos2 z = 1 sin 2z =
= 2 sin z cos z  cos 2z = cos2 z − sin2 z   5     sin z
cos z   #  
 )* *  cos i
,  (  - .     
iz

2

cos i =

iz

2

ei + e−i
e−1 + e1
=
≈ 1,54.
2
2

!     # ( +
  



   



)* 4  
 w = f (z)  z = x + iy w =
= u(x; y)+iv(x; y)              
  z0 = x0 + iy0   lim f (z)     
   

z→z0

    

lim f (z) = x→x
lim u(x; y) + i x→x
lim v(x; y).

z→z0

0
y→y0

0
y→y0







 

      

               
    
   w = f (z)       

 z0                
       z→z
lim f (z) = f (z0 )  f (z) 
 
      D          
0

 
          
          
    f (z)  f (z)   

  

f (z + Δz) − f (z)
.
Δz→0
Δz
 $    f (z)

f  (z) = lim

!  "  #
   
  % z
&            ' ($  
 %       )       
    z$        w = f (z)
  *    !  f (z) = z2 − √z+3ez −

− 5 ln z + sin z + cos z + tg z 

+  ,   -

1
1
5
.
f  (z) = 2z − √ + 3ez − + cos z − sin z +
z
cos2 z
2 z

!  ( w      .  u = u(x; y)    %
. v = v(x; y)$        w = u + iv
(   .    
   / "#  $%&'() *  f (z) =

= u(x; y) + iv(x; y)             z 
    u(x; y)  v(x; y)    (    
   (   f (z)  z  +(    
   


  (

∂u
∂v


=
,
∂x
∂y
∂u
∂v


=− .
∂y
∂x

'/)

 

       





∂v
∂v
∂u
∂u
∂u
∂v
∂u
∂u
+i
=
−i
=
−i
=
+i .
∂x
∂x
∂y
∂y
∂x
∂y
∂y
∂x

f  (z) =




  



 

       f (z) = z̄





 

       

    #$ %% !

 !

z̄ = z − iy  



z = x + iy

 



"


∂v
∂u
∂v
∂u
= 1;
= −1 ⇒

=
,
u(x; y) = x, v(x; y) = −y →
∂x
∂y
∂x
∂y


&  

'  #

 





' #

f (z) = z̄



'"



    (    f (z)         
      D     
      ! 


)

   ' #  *  

  + 

+ 

   +  + 
$

 + 

+ 

 $ !  ,  

' #$ -''  #    

y,

 !



*

 + !  + 

+ . 

 +,  !

2

v(x; y)

 !
2

"

x,

   

  

2

∂ u ∂ u
+
= 0.
∂x2 ∂y 2
12! 



, $  !  $

∂ 2u
∂ 2v ∂ 2u
∂ 2v
=
/
=−

2
2
∂x
∂x∂y ∂y
∂x∂y

0   ! 

 *

 + ! $  ! + ' # 

%

  
2

∂ v ∂ v
+
= 0.
∂x2 ∂y 2



3  %,   $     4,  ' "
#,



 6

$5

' # 
0
! 7
 



  ,  $  2 ! "

 ,  + 


 

  !   ! +

 2 !   ' # 

    

 +  !  *  *, 

  4,



    888 !   5 2



 



= x3 − 3xy 2

 



   

 



       ϕ(x; y) = x y  ψ(x; y) =
        
3 2

 
  ϕ(x; y)
ψ(x; y)    
 
       
 ! 
∂ϕ
= 3x2 y 2 
"   
# $%
#  % &   
∂x
∂ 2ϕ
∂ϕ
∂ 2ϕ
∂ 2ϕ ∂ 2ϕ
= 2x3 y 
= 6xy 2 
= 2x3
+ 2 = 6xy 2 + 2x3 = 0
2
2
∂x
∂y
∂y
∂x2
∂y
'   ϕ(x; y) = x3 y 2    (   
  !    
  )   
 

(  "( ψ(x; y) *
∂ψ
∂ 2ψ
∂ψ
∂ 2ψ
∂ 2ψ ∂ 2ψ
= 3x2 − 3y 2 +
= −6xy +
= 6x+
= −6x
+
=
2
2
∂x
∂x
∂y
∂y
∂x2 ∂y 2
3
2
= 6x − 6x = 0   (, ψ(x; y) = x − 3xy   (
    -    
  (
ψ(x; y) = x3 − 3xy 2 !    
  )
'   "(     
" .  
 
     (   
/ #" //%

   





0    
  ! ( (  
"  "(  "(      "
1 ( 

     f (z)      
        a !    
"#
f (z) = f (a) +
2, (, !
"   

f  (a)
f  (a)
(z − a) +
(z − a)2 + . . .
1!
2!
3 (1 

ez = 1 + z +

sin z = z −

z2 z3
+
+ ...
2!
3!

z3 z5
+
−...
3!
5!

# %

 1( )  
# /%
# 4%

 

       
cos z = 1 −

 



   


+∞


  

Cn (z − a)n

     



n=0

$ ' 
+

½





z2 z3
+
− ...
2
3

a(a − 1) 2 a(a − 1)(a − 2) 3
z +
z + ...
2!
3!

     ! 



z2 z4
+
− ...
2!
4!
  z 

ln(1 + z) = z −

(1 + z)a = 1 + az +







|z| < 1

""  

 # 



 $ %& $
¾

( #  

)  *   " 

"     * !   ,      !  -

 $ $

   

 .  
    
n
Cn (z − a)     
   a :
n=0
 R      
z||z − a| < R     
+∞


R=



)  

1


 Cn+1  .

lim 
n→+∞
Cn 

   !  /

  &    #

   !  " # 

 

0  #  )  *   
+∞

n=0

 
√ 1   
(z − i)n n

2n
2  '  

" 

3 

    

 

|z − i| < R



  

    
 "$ .   #  -

& "    i 4$"

  
      
      !    

½
¾

 



 

  

 



    

 





R=





1
√
 = 2.
 n + 1 · 2n 

√ 
lim
n→+∞  2n+1 ·
n
+∞


   



   

   Cn(z − a)n 
n=0
     

 
         
  
  
!
"   #   
"  
$  %  
"&      " ! '   
r < |z − a| < R  0  r  +∞ 0  R  +∞    % # (
   #
!   "
!    (z − a)

f (z) =

+∞


Cn (z − a)n ,



n=−∞

 )  '')    &    % # 

     *       !"!# $ %
  &¿   f (z)'   
−1


Cn (z − a)n = C−1 (z − a)−1 + C−2 (z − a)−2 + . . .

+

n=−∞
+∞


$

     &'  Cn(z − a)n = C0 +
n=0
+C1 (z − a) + C2 (z − a)2 + . . . (   
 , ) f (z)     r < |z − a| < R
     '     $        
  &  !"!#
-  
% #  %   %    
"&
    %  %        !  %! !
 '!  

     . * a $    
  f (z)'  +  $     , 
 0 < |z − a| < R'    f (z)  
¿

 

  

 

       

      

a  
  lim f (z)







     




    

z→a

a      |f (z)|     
z → a  f (z)         z → a
a    

 lim f (z)   
z→a

 

        f (z)     

              !
 "#!$    a      


! f (z) "     #   $ 
   %   &      
 ' f (z) =

+∞


n=0

Cn (z − a)n 

   a    (
! f (z) "  
   #   $     %  
&                  ' f (z) =
=

+∞


Cn (z − a)n 

n=−k

   a       
! f (z)
"     #   $     %
 &            '
+∞


f (z) =

n=−∞

Cn (z − a)n 

   "#!% ) a *  ( ! f (z)     k  
     #   $      ( +
1
   ( &  
!
  z = a
f (z)

 

 

!

1
f (z)

n − 1 #    

  "#!& ,

- 
-

! f (z)  !    
        " z      " "

'  (          (  )
*
   ! +      , )
(    ( sin z( cos z   !









 

      



  
  z = 0  
sin z
f (z) =

z
 
        
 !      "    z
z2 z4
sin z
=1−
+
− ...
z
3!
5!
#      $  % z = 0     $  & $
 ' $ ( $  ! 


cos z

f (z) =



  

)

  z = 0  

z
 
     )   
 !      "    z
cos z
1
z
z3
= − +
− ...
z
z 2! 4!
#  
   $  % z = 0      *+,
   ( $  !  -  ' z = 0      ,
1
z
=
      !
 .$     z = 0 &+
f (z)
cos z
z
/      ! 
  0   
cos z
 z  cos z + z sin z
=
cos z
cos2 z
      z = 0



f (x) = e1/z 

  

1

  z = 0  

1
1
1
 
 %  e1/z = 1 + +
+
+...
2
z 2!z
3!z 3
2  '       & '  '  '     +
    '  z = 0    ! f (z) = e1/z   /
 & $

           

           
   



         
         
z = arcsin(4x2 + y 2 )
         
4x2 − 36y − 3z 2 = 0
 √ 
√       
x x−x+ y

 z =
y




∂z
dz
  ∂x
 dx
   z = xy  y = ctg x
  y   y     







 ln y + x = ln x
     z = √x + 2y  
 M(4; 2)       N (5; 3)  grad z(M)
  !   "   z = x2 + xy +
2
y
+ +x−2y   #  $ m    $ M  
2
    x  0 y ≥ 0 y  10+x    
       M0 (1; 1; 3/2)      % 
 " 
        





 |4x2 + y 2 |  1 ⇒ −1  4x2 + y 2  1 ⇒

4x2 + y 2 ≥ −1,   
2

2

4x + y  1,

 





,

     



  

z2
x2


9
12
Ox

4x2 − 36y − 3z 2 = 0 ⇔ y =
     

1
a = ;b = 1
2









     

y

11111
00000
00000
11111
00000
11111
00000
11111
00000
11111
00000
11111
00000
11111
1

1/2

-1/2

x

-1

    















x x−x+ y
x3/2 − x
⇔z=
+ y −1/2 ⇒
y
y

3 1/2
x −1
3 x − 2 ∂z
x3/2 − x 1 − 3
∂z
= 2
=
=−
− y 2

∂x
y
2y
∂y
y2
2
3 1/2
x −1
∂ 2z
∂ 2z
3
2(x3/2 − x) 3 −5/2
4
= √
=
=
+ y
∂x2
y
y3
4
4 xy ∂y 2

3 1/2
x

1
2

3
∂ 2z
x
= −2
=

∂x∂y
y2
2y 2
z=











∂z
∂z
= y · xy−1 ;
= xy ln x ⇒
∂x
∂y

dz
∂z ∂z dy
1
=

=
+
= y · xy−1 + xy ln x − 2
dx
∂x ∂y dx
sin x
xctg · ln ctg x
= ctg x · xctg x−1 −
.
sin2 x
z = xy ; y = ctg x ⇒











1
y
y
ln y + x = ln x ⇔ + 1 = ⇒ y  = − y = y
y
x
x

1
−1
x



           
y  =

y
=y








1
1
−1 −y 2 =
x
x
x
2

1
y
2
−1 − 2 = y 1−
.
x
x
x

1
−1
x





= y



x + 2y M(4; 2) N (5; 3) ⇒

1
1
MN = (1; 1) ⇒ |MN | = 2 ⇒ cos α = √ ; cos β = √ ⇒
2
2






∂z 
∂z 
∂z 
=
cos α +
cos β =

∂l M
∂x M
∂y M

 
1
1
1 
2

√ + √
√ 
=
=
2 x + 2y 2 2 x + 2y 2  x = 4
 y=2



 z=

1 1
3
1 1
= √ √ +√ √ = ,
8
2 8 2
8 2


∂z   ∂z  
1
1
grad z(M) =
i
+
j = √ i + √ j.
∂x M
∂y M
2 8
8







y2
+ x − 2y ⇒
2
∂z
∂z
∂ 2z
∂ 2z
= 2x + y + 1;
= x + y − 2;
=
2;
= 1;
∂x
∂y
∂x2
∂y 2

∂z




= 0,
∂ 2z
x = −3,
2x + y + 1 = 0,
∂x

=1⇒

∂z
y
= 5.
x
+
y

2
=
0

∂x∂y

=0
∂y
2
∂ 2z ∂ 2z
∂ 2z
∂ 2z
Δ=

= 2 − 1 > 0; 2 = 2 > 0 ⇒ 
2
2
∂x ∂y
∂x∂y
∂x
x  = −3; y  = 5; z  = −6,5.
    x  10 + x x  0 y ≥ 0  !
"  # $%& x = 0 y = 0
" #  ABC #


 z = x2 + xy +









     

y = x + 10  M(−3; 5)   
     
z = −6,5   
  ABC   
B(0;10)

K(-3,8;6,2)
M(-3;5)

D(0;2)
A(-10;0)

E(-0,5;0)

    
 



C(0;0)



    ! "

y2
dz
− 2y # y ∈ [0; 10]
= y − 2 = 0 ⇒ y  = 2
• x = 0" z =
2
dy
$   m M    
 B(0; 10)
C(0; 0) D(0; 2)
dz
1
= 2x+1 = 0 ⇒ x  = − 
• y = 0" z = x2 +x # x ∈ [−10; 0]
dx
2
  !  m M       %
1
%&  '  A(−10; 0) E(− ; 0)
2
(x + 10)2
+ x − 2(x + 10) =
• y = x + 10" z = x2 + x(x + 10) +
2
dz
5 2
= x + 19x + 30(
= 5x + 19 = 0 ⇒ x  = −3, 8 m M
2
dx
    '  K(−3, 8; 6, 2)
  z(A) = z(−10; 0) = 90 z(B) = z(0; 10) = 30
z(C) = z(0; 0) = 0 z(D) = z(0; 2) = −2 z(E) = z(−0, 5; 0) = −0, 25
z(K) = z(−3, 8; 6, 2) = −6 z(M) = z(−3; 5) = −6, 5 %!   )
!& z(A) = z(−10; 0) = M = 90  & z(M) = z(−3; 5) =
= m = −6, 5

*      





z − z0 = fx (x0 ; y0 ) · (x − x0 ) + fy (x0 ; y0 )(y − y0 )

           



 x0 = y0 = 1 z0 = 3/2 fx (x0 ; y0 ) = 2x0 + y0 + 1 = 4
fy (x0 ; y0 ) = x0 + y0 − 2 = 0  
   z − 3/2 = 4(x − 1) 
8x − 2z − 5 = 0



  

         

z = ln(x2 − y 2 − 4)

         
 4x − 2y2 − z2 = 0
  
       
x
  z = arcsin y 
dz
   dx
   z = u −1 v  u = sin x v = √x
2

dy d y
   dx
 dx2    

 2y = x + ln x


     !"    

 z =

  M(3; 4)
  #   $  " z = x2 + y2 +
+y −2x   m  M      0  x  2 0  y  3
      M0(1; 0; −1)    
"%   $ 
x2 + y 2







       

 

  
 
     

  
 

     


           
  !"    !  "   # "  $ 
   %  &   
 '  &  &
   (  ) &

 



  

   *& &  &  )   " +  )
      ) !    !,)   $ (   
       !"
- &  &  +
 ,   ) .      !" f (x) 
[a; b]    ! ,  !", F (x)     ! 
  + 
    !" f (x) 
F  (x) = f (x).
/0123
4  &   ,*   &  ! 5    ).    
 !" f (x)    ! ,  !", F (x)  "  !  
  f (x)dx 
dF (x) = F  (x)dx = f (x) dx.
/0163
 012  F (x)       [a; b]

  f (x)    

     f (x)  [a; b]

%)  ) F (x)         [a; b]
# !   &  
   !" f (x) = cos 2x  
 !" F (x) = 12 sin 2x  ! ! !

1
sin 2x = cos 2x
2

 d


1
sin 2x = cos 2x dx.
2

%!       !"  
      
 ,   )  +  )   5 & !   .

  

       



  

       
      
  !         

 

 

 

"#   $ % #      &
'
  ()    ( (     
) * )   
( (
+       ( ,  '
          - #  
  
  .   f (x)   [a; b]   



  F (x)          
     F (x) + C   C !   "    

/     F (x) 0   
f (x)  F (x) + C 0 * (F  (x) = f (x) ⇒ (F (x) + C) = f (x)) / '
     [a; b]
  f (x)    ( '
( F (x) Φ(x) +     % !&  ,
Φ (x) = f (x),
F  (x) = f (x).

1(          (    '
 ()  )
         # )
 
  ,
(Φ(x) − F (x)) = 0.
%  &
2  ( 3 *  *    
    *    

  '
 
   #   *    "# 
 ( %  &   
Φ(x) − F (x) = C 
Φ(x) = F (x) + C.
% &
1   % & C 0      4   (* 
F (x) + C )(    )  ()  
'
 2     (

cos 2x  
1
x3
sin 2x + C,    (
+ C. '

x2  
2
3
        ( C  *   ( '

   * (   ( -   (



 

       

 x1   ln x + C1  x > 0  ln(−x) + C2  x < 0
   C1  C2        
         !  x1   "
    ln |x| + C           #
C  x > 0  x < 0       
   

   

$          
 %&'    F (x)      

         
 f (x)    F (x) + C  C     
               
            
   !

(  #    
$

#

f (x) dx ) 

f (x) dx = F (x) + C.

*%&+,

- $

     ,
f (x)
−    ,
f (x) dx
−     
.  
       /
$


cos 2x dx =
$

x2 dx =

1
sin 2x + C,
2

x3
+ C.
3

0#         *    
      !,     "
  -       1#   2    "
    1    2
(!           3    #
        #  f (x)   F (x) "
     # #

  

       



             
            
  !
 !   " !#  $   %   &"  
'         #   #
$

$

sin x
dx −
x
2

e−x dx −

 !  ,
   !.

(                  
)   *#           
 $          
+     #   %   ! &"   
 ,        !-    %   ! &
" !
  

   

 

 

f (x) dx,

k = 0.

 .  !     k       
$

$

kf (x) dx = k

/
,0-

1 2  $!     !   &
" !      $    % &" !/
$

$

(f (x) ± φ(x)) dx =

$

f (x) dx ±

φ(x) dx.

,3-

    &  ,0- ,3-       
 &&"      ! 1        !  
, 4  -         
 .     $       
 ! &" /

$
f (x) dx = f (x).
,5 + &&"   $       
    /

$
d
f (x) dx = f (x) dx.
,6         !     
  $   

  

       



dx
= d arcsin x,
1 − x2
dx
= d ln x.
x


             
                
           !  
  "       #    ! $
!    $  !      
   %           
          !   & $
!    '   '       
  ( !  $     #   sinx x dx e−x dx
  '    )  *   $   
 $   sinx x e−x  + ,     
2

2

   

  

-     !$       
.    $ !       
/       0  !.   $ 
     * )  *     
   0  $  $  0    * 
       *   $  
 
    
"               '    
 $    *     
* ! * 
!*
1 !            
*
  $ * n+1

2 n+1

$
xn dx =

1.

d

!  $ 

x
x
=
+ C, (n = −1),
n+1 $ n+1
n=0
dx = x + C,

$
dx
= d(ln |x|) = ln |x| + C,
$ x
$
3. sin x dx = d(− cos x) = − cos x + C,
$

2.



$
4.





       

$

cos x dx = d(sin x) = sin x + C,
$
dx
=
d(tg x) = tg x + C,
5.
2
$ cos x $
dx
6.
= d(− ctg x) = − ctg x + C,
2
sin
x

$
$
x
1
x
1
dx
arctg
= arctg + C,
=
d
7.
2 + x2
a
a
a
a
a
$
$ 
dx
x
x

8.
= arcsin + C,
= d arcsin
a
a2 − x$2

$
$ a
x
x
a
a
x
9.
a dx = d
=
+ C,
ex dx = ex + C,
ln a
ln a
$

dx

= ln |x + x2 ± a2 | + C,
10.
x2 ± a2




$
$
x − a
a + x
1
1
dx
dx

 + C,

 + C.
ln
ln
=
=
11.
x2 − a2
2a  x + a 
a2 − x2
2a  a − x 
$

         
           !     
    "  #   # $ %   #
&  #    % & &" % ' %
&    ( &   % ) #   #&
   &     %  &
 *+,  
      

       x        
    x
 *++  
          
      ! " n < 0# $ % & !' !!   
    ( C  )
     
 ( )     

  %   - %   
    #    -     
 )  #         #  #    
 % 
.   #    )   "   
 % # & 

  

       

 



        

  
$

$


          
 ! $" #
f (x)dx =

d

f (φ(t))φ (t)dt,

f (x)dx = f (x)dx,
$

d

f (φ(t))φ(t)dt = f (φ(t))d(φ(t)) = |x = φ(t)| = f (x)dx.

$  " %    "      
&%  '(   x = φ(t)   t : t = ψ(x) 
  %  Φ(t) :
$

$

f (x)dx =

f (φ(t) · φ (t))dt = Φ(t) + C = Φ(ψ(x)) + C.

          
 
#
           f (x)dx 
 x  φ(t) dx  φ(t)dt
 ) 
 !"
  #  "
   ϕ(x) = t
#
  $%
  I = x2ex dx.
*  (    # +    %  %    ,
 -       x3  x2. . %  x  
  (    '    +/,
     '    x3 = t,    ,
   %    " 3x2dx = dt. .   
  x2 01  dt.
2   %  -3     3,
-  '#
3


 1
I = x3 = t ⇒ 3x2 dx = dt =
3



4 $%

$

1
1 3
et dt = et + C = ex + C.
3
3

  I =

#

sin kx dx.



 

       

dt
   
k
$
1
1
1
sin tdt = − cos t + C = − cos kx + C .
I=
k
k
k

        

kx = t =⇒ dx =

    

$
I=



     
t=x+



dx
.
± a2

x2

x2 ± a2 ⇒

 √ 2
x ± a2 + x
x
= √
dx ⇒
⇒ dt = 1 + √
2
2
x ±a
x2 ± a2
dt
dx
dt
dx

=
⇒√
= .
⇒√
t
x2 ± a2
x + x2 ± a2
x2 ± a2

  

$
I=


dt
= ln |t| + C = ln |x + x2 ± a2 | + C.
t

        !   "  # $  
 

       

%          &  $ ' " # 
   '( #"     "  )  *+
 $ $  
   I = # (x − 3)2dx
     
$

I=

$

2

(x − 6x + 9)dx =

2

x dx − 6

$

$

xdx + 9

dx =

x3
x2
x3
+ C1 ) − (6 + C2 ) + (9x + C3 ) =
− 3x2 + 9x + C.
3
2
3
, -  
*(    '(   .( C1 − C2 + C3 
 ' .   . .-   / &   '   C   
=(

+


  ( & $      '(  $  ( 
 '  '     '   $  

 0  I =

$

x2 − 3
√ dx.
x

  

       

     
$

3
2

(x − 3x

I=

− 21

3

1


x− 2 +1
2 √
x 2 +1
)dx = 3
−3 1
+ C = x2 x − 6 x + C.
5
+
1

+
1
2
2

    I =
     
$

I=



sin2 x + cos2 x
dx =
sin2 x cos2 x

$

$

dx

sin2 x cos2 x
dx
+
cos2 x

$

dx
= tg x − ctg x + C.
sin2 x

        
$

dx
=2
sin2 2x

I=4

$

    
 $    

d(2x)
= −2 ctg 2x + C.
sin2 2x
#
 I = tg5 x dx.


$
1
dx
− 1 dx = tg 3 x 2 −
I = tg x tg xdx = tg x
cos2 x
cos x
$
$
$
$
tg 4 x
− tg 3 xdx.
− tg 3 xdx = tg 3 xd tg x − tg 3 xdx =
4
        n = 5    n = 3 
3



$

2

3



   


$
1
tg4 x
− tg x

1
dx =
4
cos2 x
$
$
tg4 x
tg4 x tg2 x
=
− tg xd tg x + tg xdx =

− ln | cos x| + C.
4
4
2
I=

  

           

     
 

 

  

   


 

  



 

 ! 

1
(sin(n − m)x + sin(n + m)x) ,
2
1
sin nx sin mx = (cos(n − m)x − cos(n + m)x) ,
2
1
cos nx cos mx = (cos(n − m)x + cos(n + m)x) .
2
sin nx cos mx =



"
#$% &'(



 




       

   



$

I=

#

sin 2x cos 3x dx.



1
1
1
(− sin x + sin 5x)dx = cos x −
cos 5x + C.
2
2
10

I=









$

   

I=

dx
.
x2 − a2

   

1
1
=
x2 − a2
2a

1
1

x−a x+a


.

              !"
!# $ % !"

$
$
d(x − a)
d(x + a)
1

=
I=
2a
x−a
x+a


x − a
1
1

 + C.
=
(ln |x − a| − ln |x + a|) =
ln
2a
2a  x + a 
& '  ( ) * ++

 

   

,  d(uv) = udv + vdu-  )     % )
  " !
$
$
udv = uv − vdu.
. +/
0 !" . +/ ( 1 !"  )     !
,  !  )
2/  () 1"3          4
"#   )  ! "# 1"3
$
$
$
Pn (x)eαx dx 
Pn (x) sin αx dx 
Pn (x) cos αx dx.

  

       



             
      
$

Pn (x)eαx dx =⇒
eαx
dv = e dx = d
α

Pn (x)dx,



αx

u = Pn (x), du =
$
Pn (x) sin αx dx =⇒

, v=

eαx
.
α

 cos αx 
cos αx
, v=−
.
u = Pn (x), du = Pn (x)dx, dv = sin αx dx = d −
α
α
$
Pn (x) cos αx dx =⇒

sin αx
sin αx

, v=
.
u = Pn (x), du = Pn (x)dx, dv = cos αx dx = d
α
α

          !   
  "   "    "  
$

Pn (x) ln x dx



$

Pn (x) arcsin αx dx



$

Pn (x) arctg αx dx.

             
      
$

Pn (x) ln x dx =⇒
dx
, dv = Pn (x)dx, v =
u = ln x, du =
x
$
Pn (x) arcsin αx dx =⇒
u = arcsin αx, du = 
$

αdx
1 − (αx)2

$
Pn (x) dx,

$
, dv = Pn (x)dx, v =

Pn (x) dx,

Pn (x) arctg αx dx =⇒
u = arctg αx, du =

αdx
, dv = Pn (x)dx, v =
1 + (αx)2

$

       #
 $%&'(    I = # x2 ln x dx.

Pn (x) dx.



 

       

     






 u = ln x
du = dx
x  =
I = 
3
3
x
x
2
dv = x dx = d 3 v = 3 
$
x3
1
x3
x3
=
ln x −
x2 dx =
ln x −
+ C.
3
3
3
9
#

   I = x arctg x dx.

     




$
 u = arctg x
1
du = x2dx+1  x2
x2 dx
arctg
x

=
=
I = 
2
2
x
x

dv = xdx = d 2 v = 2
2
2
x2 + 1
$ 2
x2
1
x +1−1
x2
=
arctg x −
dx =
arctg x−
2
2
2
x +1
2
$
$
1
1
dx
x2
1
1

dx +
=
arctg x − x + arctg x + C.
2
2
2
x +1
2
2
2
# 2

   I = x sin x dx.





      
     

 u = x2
du = 2xdx
I = 
dv = sin xdx = d(− cos x) v = − cos x

$
 u=x
+ 2 x cos xdx = 
dv = cos xdx = d(sin x)
= −x2 cos x + 2x sin x + 2 cos x + C.

     

I=

#


 = −x2 cos x+


du = dx 
=
v = sin x 

xe3x dx.

     


$
 u=x
du = dx  1 3x 1
e3x dx =
I = 

1 3x  = xe
3x
dv = e dx v = 3 e
3
3
1
1
= xe3x − e3x + C.
3
9

         !  """
# $%& & &  '   (
       $  )   
 *      !  & 
   I = # eax cos nx dx.

  

       



     


 u = eax
du = aeax dx 
=
I = 
1
dv = cos nx dx v = n sin nx 
$
1
a
= eax sin nx −
eax sin nx dx =
n
n


 u = eax
du = aeax dx  1 ax

=
= e sin nx−
dv = sin nx dx v = − n1 cos nx  n

$
1
a
a
− eax cos nx +
eax cos nx dx =

n
n
n
a ax
a2
1 ax
= e sin nx + 2 e cos nx − 2 I.
n
n
n
        I  


  
$

I=



eax cos nx dx =

 

eax (a cos nx + n sin nx)
+ C.
a2 + n2

   C           !
   "#   $ "  

 %&'(    I = # x2 − a2 dx.
   √ 


$


 u = x2 − a2 du = √ xdx
x2 dx
x2 −a2  = x x2 − a2 −

=
I = 

dv = dx
v=x
x2 − a2
$
$



x2 − a2 + a2

= x x2 − a2 −
dx = x x2 − a2 −
x2 − a2 dx−
x2 − a2
$


dx
= x2 x2 − a2 − I − a2 ln |x + x2 − a2 | + C1 .
− a2 √
2
2
x −a

)   

I=x

 

 

2



x2





a2

− I − a2 ln |x +


x2 − a2 | + C1 ,


1 √
a2
I = x x2 − a2 − ln |x + x2 − a2 | + C.
2
2









   

     

        
     

 
           
              !
"            

  f (x) = cos12 2x .
# $   % F (x) = 12 tg 2x + C. 

&  "% f (x) = F  (x) = 12 tg 2x = 21 · 2 cos12 2x = cos12 2x .

 ' f (x) = x4.
x5
+ C.
5

x5
1
+ C = · 5x4 + 0 = x4 .
f (x) = F  (x) =
5
5

# $  %
&  "%

F (x) =

  f (x) = x2 .
# $   % F (x) = 2 ln | − x| + C.
&  "% f (x) = F  (x) = (2 ln | − x| + C) = 2(− x1 )(−1) + 0 = x2 .
    
 '  
(    ) 
  !    
&  *   
(!      +  !
     "  )    !    ,  
   "   "    
#  " "   - 
(!. /   "
0    !       ! 1    !  
  %
   I = # sin3 x cos x dx.
# $  %
2/!) / d(sin x) = cos xdx,  
$

I=

sin3 xd sin x =

sin4 x
+ C.
4

              





$
I=



$ √

arctg x
dx.
1 + x2

 I =









(arctg x)1/2 d arctg x =

 d(arctg x) =

(arctg x)1/2+1
1/2 + 1

dx
, 
1 + x2
2
= (arctg x)3/2 + C.
3

       ! " # $  %





& I1 =

#

tg x dx, I2 =

#

ctg x dx.




$
$
d cos x
sin x dx
=−
= − ln | cos x| + C.
I1 =
cos x
cos x
$
$
d sin x
cos x dx
=
= ln | sin x| + C.
I2 =
sin x
sin x
$
dx
.
' I =
x ln x





I=



$



dx
=
x ln x

$

dx/x
=
ln x

$

d ln |x|
= ln | ln |x|| + C.
ln x


       ! 
 
#
( I = sin 5x dx.



!

# $



      )      *       %
  +   *  $  +  
   15 :
$
1
1
sin 5x d5x = − cos 5x + C.
I=
5
5
#
, I = ex cos ex dx.







-* ** d(ex ) = ex dx, 
$
I = cos ex dex = sin ex + C.









   

     

             
              
             

 !"#$ I =

$

%     &

dx
.
x2 cos2 x1
$

I=−

 !"## I =
%     &
I=

1
3

 !"#'
%     &
1
I=
4

$

 !"#!

$

d x1
1
= tg + C.
x
cos2 x1

dx
.
sin2 (3x − 5)

$

d(3x − 5)
1
= − ctg(3x − 5) + C.
3
sin2 (3x − 5)
$
3
x dx
I=
.
5 − x8
√

 5 + x4 
dx4
1



= √ ln  √
 + C.
( 5)2 − (x4 )2
8 5  5 − x4 
#
2
I = x3x dx.

%     &

1
I=
2

$

2

3x dx2 =

2

3x
+ C.
2 ln 3

%           
( )   *)          
               
 &
$

$
$
(f (x) ± ϕ(x)) dx = f (x) dx ± ϕ(x) dx,
$
$
kf (x) dx = k f (x) dx.

              





I=

$



x4 − 10x2 + 5
dx.
x2

 

$
$
$
$
5
I=
x2 − 10 + 2 dx = x2 dx − 10 dx + 5 x−2 dx =
x

5
x3
− 10x − + C.
3
x

 
# √
2
dx.
I=
2x +
x
=







 
√ $ 1
√ $

1
I = 2 x 2 dx + 2 x− 2 dx = 2
#
 I = cos 2x cos 5x dx.







2 √
x x + 2 x + C.
3



$
$
1
1
(cos 7x + cos 3x) dx =
cos 7xd(7x)+
I=
2
14
$
1
1
1
+
cos 3x d(3x) =
sin 7x + sin 3x + C.
6
14
6

         
 
! "# " " $ # "#
 #  "%& '"# "
$

3
( I = 9x2 x3 + 10 dx.






 3
1
+1
 x + 10 = t 
#
3
 = 3 t 13 dt = 3 t

      I =  2
+C =
1

3x dx = dt
+1
3


3
= 94 t t + C = 94 (x3 + 10)3 x3 + 10 + C.
$
4xdx

) I =
.
5
8 − x2


− 15 +1
 8 − x2 = t 
#
 = −2 t− 15 dt = −2 t
+C =
      I = 
−2x dx = dt 
−1 + 1


4



4

= − 25 t 5 + C = − 52 (8 − x2 ) 5 + C.

5











     



2 cos x dx
.
4 + sin x

 4 + sin x = t
I = 
cos x dx = dt

 I =

   



= 2 ln(4 + sin x) + C.

  

   



   

$




$

dt
 = 2
= 2 ln |t| + C =

t

  4 + sin x > 0



I=

$ 

    

arcsin x
dx.
1 − x2



 arcsin x = t 

#√
 =
   
 I =  √ dx
t dt = 23 t t + C =

=
dt
1−x2

= 32 arcsin x arcsin x + C.
   
    ! "#
√ 
1 − x2  $ " 
 # 
$ √
$ √
dx
I=
arcsin x √
=
arcsin x d(arcsin x) =
1 − x2

2
= arcsin x arcsin x + C.
3
%
&   
 # 
#
  I = ex (ex + 2)2 dx.





! "#   $ " 

'



#
(ex + 2)3
+ C.
 I = (ex + 2)2 d(ex + 2) =
3
$ x
e + sin x
dx.

I=
ex − cos x
$
d(ex − cos x)
= ln |ex − cos x| + C.

 I=
ex − cos x
$
x+5

dx.
  I =
x2 + 3
$
$
dx
d(x2 + 3)
1
x dx

+5 √
=
+
   
 I = √
2
x2 + 3
x2 + 3
x2 + 3
$


dx

= x2 + 3 + ln |x + x2 + 3| + C.
2
(x + 3)










              





I=

$

x4 dx
.
1 + x10



$
dx5
1
1
= arctg x5 + C.
5
2
5
1 + (x )
5
           
#
 I = xeax dx.


$
 u=x
du = dx  xeax 1


eax dx =
  I=
1 ax  =
ax
dv = e dx v = a e
a
a
xeax eax
− 2 + C.
=
a
a
#
 I = xn ln x dx (n = −1).



 u = ln x
#
xn+1
du = dx
x 
ln x+ xn−1 dx =
=
      I = 
n+1
x
n

dv = x dx v = n+1
n
+
1

1
xn+1
ln x −
+ C.
=
n+1
n+1

 ! "   n = −1,     #$   !
$
$
1
dx
= ln x d(ln x) = ln2 x + C.
I = ln x
x
2
# ax
% I = e sin nx dx.


 I=













 


 u = eax ,
1
du = aeax dx 

= − eax cos nx+
I=
dv = sin nx dx, v = − n1 cos nx 
n


$
 u = eax
a
du = aeax dx 
=
eax cos nx dx = 
+
dv = cos nx dx v = n1 sin nx 
n

$
a 1 ax
a
1
e sin nx −
eax sin nx dx =
= − eax cos nx +
n
n n
n
a
a2
1 ax
= − e cos nx + 2 − 2 I. ⇒
n $
n
n
eax (a sin nx − n cos nx)
ax
+ C.
⇒ I = e sin nx dx =
a2 + n2

# &   !'
  eax cos nx dx.

    ! 

 ( #









   



     

  

 
    
 
  f (x) = 6x2.
  f (x) = tg 5x.
     
   I = # √x dx 4 .

    

2−x

 ! I = # sincosx2xdx .
2

x dx

.
  I = # cos
sin x
  I = # (1 − 7x)5x dx.
  I = # etg x cosdx2 x .
3

#



3

x
 " I = arcsin
dx.
1 − x2
# x +2x
 # I = e (x + 1) dx.
 $ I = # √xx2dx− 6 .
2

  I = # e



x

dx
√ .
x

  I = # √9 − exex dx.
   I = # (√x − 1)2 dx.
5

 ! I = # (x −x 1) dx.
  I = # (sin 5x cos x) dx.
3

   %   &'    

  I = # x 2x2 + 7 dx.

 

        
+ 5) dx
.
 I = # x(2x
2 + 5x − 13







  I =






   



# 2 + ln x
.
x
# sin 2x dx
.
 " I =
7 + cos2 x
# x + x3
dx.
 # I =
x4 + 5
  
#
% I = x sin 2x dx.
#
& I = arctg x dx.
#
' I = e2t cos 3t dt.
 ! I =











        









 

(

#

sin 3x dx

.
5 + cos 3x
#√
dx
  I = 3 tg 2x 2 .
cos 2x
    






 

  $ 

        

 
 ) * +   * ,  -  
      *   

 

 

 



  

.        
  * 
,    * $ /* 
A
,
I.
x−a
A
II.
(n = 2, 3, ...),
(x − a)n
Mx + N
III. 2
(D = p2 − 4q < 0),
x + px + q
Mx + N
IV. 2
(D = p2 − 4q < 0, n = 2, 3...).
(x + px + q)n







 

     

         
         
             !
$
d(x − a)
Adx
=A
= A ln |x − a| + C.
x−a
x−a
$
$
(x − a)−n+1
Adx
+C =
= A (x − a)−n d(x − a) = A
II.
n
(x − a)
−n + 1
A
=
+ C.
(1 − n)(x − a)n−1
$

I.

    "       
#    $  ax2 + bx + c   #   
"%    
1
b
(ax2 + bx + c) = ax + = t.
2
2
 1 2
 (x + pq + q) = t dx = dt
Mx + N
dx =  2 p
III.
x=t−
x+ 2 =t
x2 + px + q
$
$
p
Mt + (N − Mp
M(t − 2 ) + N
)
2
dt =
dt.
=
p 2
p
P2
2
(t − 2 ) + p(t − 2 ) + q
t + (q − 4 )

&'' (

$

)  %  *

q−



p
2



=


p2
= a2 > 0,
4

$
$
dt
Mx + N
tdt
Mp
dx
=
M
+
N

=
x2 + px + q
t2 + a2
2
t2 + a2

t
Mp 1
M
ln(t2 + a2 ) + N −
arctg + C.
=
2
2
a
a

$

+  t  a  #  *
$

=

Mx + N
dx =
x2 + px + q

N − Mp
x + p2
M
2
ln(x2 + px + q) + 
arctg 
+ C.
2
2
2
q − p4
q − p4

&''!(

 

        



   
   
      
  
          
    
      ! ! 2x + p. "       
 2x+p       Mx+N.  #   2x+p  
   N/2            N − Mp/2.
$    
(2x + p)

Mp
M
+N −
= Mx + N.
2
2

 %     
Mx + N
x2 + px + q

   
(2x + p) M2 + N −
x2 + px + q

Mp
c

       &   
N − Mp
M 2x + p
2
+
.
2 x2 + px + q x2 + px + q



'              # 
  (        )     !
 
                
   

p 2
p2
+q− .
x2 + px + 1 = x +
2
4

*

             + ,, 
    + -  4q − p2 > 0.
 ..!,           

4q − p2 < 0,

     ax2 + bx + c,      
            a     

x2 + px + q

 ..!,     

$

I=

x+1
dx
x2 + 4x + 8





     

                 
   t  t = x + 2  x = t − 2  dx = dt    
$
$
$
t−2+1
t−1
x+1
dx
=
dt
=
dt =
I=
x2 + 4x + 8
(t − 2)2 + 4(t − 2) + 8
t2 + 4
$
$
tdt
dt
1
t
1
=

= ln(t2 + 4) − arctg + C =
t2 + 4
t2 + 4
2
2
2
1
x+2
1
= ln(x2 + 4x + 8) − arctg
+ C.
2
2
2

       ! !
  "  "   2x + 4 #      
 $ %! !     & $  !'   ($
x+1
1 2x + 4 − 2
=
.
x2 + 4x + 8
2 x2 + 4x + 8

 '   !  "       
            ' "  '   
1 2x + 4 − 2
1 2x + 4
1
=

.
2 x2 + 4x + 8
2 x2 + 4x + 8 (x + 2)2 + 4

)  

 

$
d(x2 + 4x + 8)
d(x + 2)

=
2
x + 4x + 8
(x + 2)2 + 22
x+2
1
1
+ C.
= ln(x2 + 4x + 8) − ln arctg
2
2
2

I=

1
2

$

*+       !   *+   
!           ***    



$

Mx + N
dx =
(x2 + px + q)n
$
$
dt
Mp
tdt
+
N

.
=M
(t2 + a2 )n
2
(t2 + a2 )n
$

 '  
tdt
1
=
(t2 + a2 )n
2

$

,((-.

,((-.  '! "!"
(t2 + a2 )−n d(t2 + a2 ) =

1
+ C.
2(1 − n)(t2 + a2 )n−1

 

        

   
 
$

In =
=

  

1
a2
#

    In =

#

#

dt
(t2 +a2 )n

   

$ 2
(t + a2 ) − t2
dt
1
=
dt =
2
2
n
2
(t + a )
a
(t2 + a2 )n

$
$
dt
t2 dt
.

(t2 + a2 )n−1
(t2 + a2 )n

dt
(t2 +a2 )n−1

In =

   



t2 dt
(t2 +a2 )n

= In−1 

1
a2

In−1 −

 

$

t2 dt
2
(t + a2 )n





.

            



 u=t

du = dt


1
 dv = 2 tdt2 n v =

(t +a )
2(1−n)(t2 +a2 )n−1
$
t2 dt
t
1
In−1 .
=

2
(t + a2 )n
2(1 − n)(t2 + a2 )n−1 2(1 − n)

        
  ! "    

       

2n − 3
t
In−1 +
2n − 2
2(n − 1)(t2 + a2 )n−1



#
$ % &
   %      '   (
         ! )*    &      n &
    ! )*    &      n − 1
+  #     , n − 1   &  & ,   
      
   - 
 .    I3 = # (t2 +dt 1)3
In =

/ 
 


   , a

1
I3 = 2
1

I2 =

$

1
a2

0

= 1, n = 3

  

2·3−3
t
I2 +
2·3−2
2(3 − 1)(t2 + 1)2

 



.

 #

3
t
= I2 +
.
4
4(t2 + 1)2

1
dt
2·2−3
t
t
I1 +
= I1 +
.
=
(t2 + 1)2
2·2−2
2(2 − 1)(t2 + 1)
2
2(t2 + 1)





 

$
I1 =


I2 =



     

dt
= arctg t + C,
t2 + 1

t
1
arctg t +
+C
2
2(t2 + 1)


1
t
t
arctg t +
+
+C =
2
2(t2 + 1)
4(t2 + 1)2
3
3t
t
+ arctg t + C.
+
=
2
2
2
4(t + 1)
8(t + 1) 8

3
I3 =
4

#

   R(x)dx  R(x)      
                
 
#    !  "  #$   %   &
 R(x)dx                
"   #$  

     
$

I=

  

2x2 + 5x − 8
dx.
(x − 1)3 (x + 2)2

           

D
A
B
C
E
2x2 + 5x − 8
+D
.
=
+
+
+
(x − 1)3 (x + 2)2
(x − 1)3 (x − 1)2 x − 1
(x + 2)2 x + 2

         !   "    
 
2x2 + 5x − 8 = A(x + 2)2 + B(x − 1)(x + 2)2 + C(x − 1)2 (x + 2)2 +
+ D(x − 1)3 + E(x − 1)3 (x + 2).

#$%%& ' A, B, C, D, E   !     (
! ') !  *       ') $%%& 

 

        


x = 1 ⇒ −1 = 9A ⇒ A = − 19 ,



10


⎨ x = −2 ⇒ −10 = −27D ⇒ D = 27 ,
x = 2 ⇒ 10 = 16A + 16C + D + 4E ⇒ 4B + 4C + E = 77
,
27


4


C
+
E
=
0,
x



  ⇒ −8 = 4A − 4B + 4C − D − 2E ⇒ 2B − 2C + E =



               
        
   B, C, E       



⎨C + E = 0,
2B − 2C + E =

⎩4B + 4C + E =

     !



97
.
27



97
,
27
77
,
27

"

B=

13
13
29
, C=− , E= .
27
27
27

#  $  !

$

$
2x2 + 5x − 8
−1/9
29/27
−13/27
+
dx
=
(
+
+
(x − 1)3 (x + 2)2
(x − 1)3 (x − 1)2
x−1
10/27
1
1
13/27
29 1
+
)dx =

+

(x + 2)2
x+2
18 (x − 1)2 27 x − 1
10 1
13
13
ln |x − 1| −
+
ln |x + 2| + C =

27
27 x + 2 27

13  x + 2 
26x2 + 5x − 34
+
ln
+ C.
=−
18(x − 1)2 (x + 2) 27  x − 1 

 %%%   
$

I=

x4 + 5x3 − 6x + 5
dx.
x3 + 2x2 − 1

&   
 " '    $!  (    )  !
      *         $"

x4 + 5x3 − 6x + 5
−6x2 − 5x + 8
= x+3+ 3
.
3
2
x + 2x − 1
x + 2x2 − 1





     

       x3 + 2x2 − 1      
      x = −1       
 x + 1           
x3 + 2x2 − 1 = (x + 1)(x2 + x − 1).

!  "# x2 + x − 1      
        $      
   %   
    &       
−6x2 − 5x + 8
A
Bx + C
=
+
.
(x + 1)(x2 + x − 1)
x + 1 x2 + x − 1

      '      &   
  
−6x2 − 5x + 8 = A(x2 + x − 1) + (Bx + C)(x + 1) =
= (A + B)x2 + (A + B + C)x − A + C.

!(( %   A, B, C   
    )
#      " # (( %  


⎨ x = −1 =⇒ 7 = −A =⇒ A = −7,
x2 ⇒ −6 = A + B =⇒ B = 1,

⎩     ⇒ 8 = −A + C =⇒ C = 1.

*  
−6x2 − 5x + 8
−7
x+1
=
+
.
(x + 1)(x2 + x − 1)
x + 1 x2 + x − 1

      &   
  

  )

x+1
1 2x + 1 + 1
1 2x + 1
1
1
= · 2
=
+
.
x2 + x − 1
2 x +x−1
2 x2 + x − 1 2 (x + 12 )2 − 54

 

        

 

  






1
2x + 1
1
1
7
+ ·
+
I=
dx =
x+3−
x + 1 2 x2 + x − 1 2 (x + 12 )2 − 54
$
$
$
$
d(x + 12 )
d(x2 + x − 1) 1
1
+
=
= x dx − 3
dx +
2
x2 + x − 1
2
(x + 12 )2 − 54

√ 
1
1  x + 12 − 25 
x2
√  + C.
+ 3x − 7 ln |x + 1| + ln |x2 + x − 1| + ln 
=
2
2
2 x + 1 + 5 
$

2

    
$

I=

4

2



3

x + 5x − 7x2 + 5
dx.
x3 − x2 + 5x − 5

                   
             !


x4 + 5x3 − 7x2 + 5
6x2 + 25x − 35
=
x
+
6

.
x3 − x2 + 5x − 5
x3 − x2 + 5x − 5

"      "  
3



x − x2 + 5x − 5 = x2 (x − 1) + 5(x − 1) = (x − 1)(x2 + 5).

"    #    !

A
Bx + C
6x2 + 25x − 35
=
+ 2
.
x3 − x2 + 5x − 5
x−1
x +5

$   !
   

       #   

6x2 + 25x − 35 = A(x2 + 5) + (Bx + C)(x − 1).

%&''( ) A, B, C  !         )*
 !     +)* &''( 

2

⎨ x = 1 ⇒ −4 = 6A =⇒ A = − 3 ,
2
x ⇒ 6 = A + B =⇒ B = 6 − A = 6 +

⎩   ⇒ −35 = 5A − C =⇒ C = 95 .
3

2
3

=

20
,
3

  

6x2 + 25x − 35
2
1
20x/3 + 95/3
=− ·
+
.
3
2
x − x + 5x − 5
3 x−1
x2 + 5









    



   

    
$

I=
x2
2
x2
=
2

=


1
20x/3 + 95/3
2
+
=
x+6+ − ·
3 x−1
x2 + 5
$
$
2
20
x dx
95
dx
+ 6x − ln |x − 1| +
+
=
2
2
3
3
x +5
3
x +5
x
1 (x2 + 5)10
95
+ 6x + ln
+ √ arctg √ + C.
3
(x − 1)2
3 5
5

         
    

       
         
 !   "        
 #
$    #
$
.
 %%#&        I = x dx
−5
'  (    

$

I=

d(x − 5)
= ln |x − 5| + C.
x−5

 %%#)    
'  ($   
I=

(x + 2)−4 d(x + 2) =

I=

x+3
dx.
x2 + 4x + 29

'  (    

$

dx
.
(x + 2)4

1
(x + 2)−4+1
+C =−
+ C.
−4 + 1
3(x + 2)3

 %%#*    

$

   I =

  

$
1
t+1
dt =
I = | (x2 + 4x + 29) = x + 2 = t, dx = dt| =
2
t2 + 25
$
$
dt
1
t
1
t dt
+
= ln(t2 + 25) + arctg + C =
=
t2 + 25
t2 + 25
2
5
5
x+2
1
1
+ C.
= ln(x2 + 4x + 29) + arctg
2
5
5

              





    

   I4 =


$

dx
.
(x2 + 1)4

      
       


$
dx
1 2n − 3
x
I
In =
=
+
;
n−1
(x2 + a2 )n
a2 2n − 2
2(n − 1)(x2 + a2 )n−1
5
x
;
I4 = I3 +
6
6(x2 + 1)3
3
x
;
I3 = I2 +
4
4(x2 + 1)2
1
x
.
I2 = I1 +
2
2(x2 + 1)
$
dx
= arctg x + C 
   I1 =
2
x +1
      


1
2
arctg x +
;
3
2(x2 + 1)

1
1
3 2
arctg x +
+
=
I3 =
2
2
4 3
2(x + 1)
4(x + 1)2
1
3
1
= arctg x +
+
;
2
8(x2 + 1) 4(x2 + 1)2

3
1
5 1
1
I4 =
arctg x +
+
=
+
4 2
8(x2 + 1) 4(x2 + 1)2
6(x2 + 1)3
5
15
5
1
= arctg x +
+
+
+ C.
2
2
2
2
8
32(x + 1) 16(x + 1)
6(x + 1)3

I2 =



  I =



$

x4 − 3x3 − 5x2 + 30x − 22
dx.
x3 − x2 − 8x + 12

      
       !  
 " #       # $  

x4 − 3x3 − 5x2 + 30x − 22
x2 + 2x + 2
=x−2+ 3
.
3
2
x − x − 8x + 12
x − x2 − 8x + 12











$
I=

=

x2 + 2x + 2
3
x − x2 − 8x + 12

x−2+
x2
− 2x +
2

    

$
x3



   


dx =

x2 + 2x + 2
dx.
− x2 − 8x + 12

    x3 − x2 − 8x + 12 = (x − 2)2(x + 3)     
         
x3

x2 + 2x + 2
x2 + 2x + 2
A
B
C
=
=
+
.
+
2
− x − 8x + 12
(x − 2)2 (x + 3)
x − 2 (x − 2)2 x + 3

            
     

 

x2 + 2x + 2 = A(x − 2)(x + 3) + B(x + 3) + C(x − 2)2 .

!""   A B C        
 #     $ # ""   %


I=



⎨ x = 2 ⇒ 10 = 5B ⇒ B = 2,
x = −3 ⇒ 5 = 25C ⇒ C = 15 ,

⎩ x2 ⇒ 1 = A + C ⇒ A = 4 .
5
4
2
1
x2
− 2x + ln |x − 2| −
+ ln |x + 3| + C.
2
5
x−2 5

 &&'(  I =

$

x2 − 5x + 9
dx.
(x − 1)2 (x2 + 2x + 2)

)     % * +   
)    $   %

  '

x2 − 5x + 9
A
=
+
(x − 1)2 (x2 + 2x + 2)
x−1
+

Cx + D
B
.
+
(x − 1)2 x2 + 2x + 2

              




x2 − 5x + 9 = A(x − 1)(x2 + 2x + 2) + B(x2 + 2x + 2)+
+ (Cx + D)(x − 1)2 ,



x2 − 5x + 9 = (A + C)x3 +

+ (A + B − 2C + D)x2 + (2B + C − 2D)x + (−2A + 2B + D).

 
  

        x  


x3


⎨ 2
x
x


⎩  :

    






A + C = 0,
A + B − 2C + D = 1,
2B + C − 2D = −5,
−2A + 2B + D = 9.

7
21
7
A = − , B = 1, C = , D = .
5
5
5

 ! 
$

x2 − 5x + 9
dx =
(x − 1)2 (x2 + 2x + 2)
$
$
$
7
dx
dx
x+3
7
=−
+
dx.
+
5
x−1
(x − 1)2 5
x2 + 2x + 2

I=

    "   

#!$    

1 2
(x + 2x + 2) = t ⇒ t = x + 1, x = t − 1; dx = dt.
2

% "
$

$
$
$
x+3
t+2
t dt
dt
dx
=
dt
=
+
2
=
x2 + 2x + 2
t2 + 1
t2 + 1
t2 + 1
1
1
= ln(t2 + 1) + 2 arctg t + C = ln(x2 + 2x + 2)+
2
2
+ 2 arctg(x + 1) + C.

%  & 
1
7
7
14
+ (x2 + 2x + 2) +
arctg(x + 1) + C.
I = − ln |x − 1| −
5
x − 1 10
5

 ''( I =

$

2x + 2
dx.
(x − 1)(x2 + 1)2







         

     
 

Bx + C
Dx + E
A
2x + 2
+ 2
+ 2
=
.
(x − 1)(x2 + 1)2
x−1
x +1
(x + 1)2

       

2

2x + 2 = A(x + 1)2 + (Bx + C)(x − 1)(x2 + 1) + (Dx + E)(x − 1)



2x + 2 = (A + B)x4 + (C − B)x3 + (2A + D + B + C)x2 +
+ (E − D + C − B)x + (A − C − E).

          
   !  




A + B = 0,




⎨ C − B = 0,
2A + D + B + C = 0,


E−D+C −B =2


⎩ A − C − E = 2.

"#  A = 1 B = −1 C = −1 D = −2 E = 0$
%   


$
2x
1
x+1
− 2
dx =
I=

x − 1 (x + 1)2 x2 + 1
$
$
$
$
d(x2 + 1) 1
d(x2 + 1)
dx
dx


=

=
2
2
2
2
x−1
(x + 1)
2
x +1
x +1
1
1
− ln(x2 + 1) − arctg x + C.
= ln |x − 1| + 2
x +1 2



  

  &   $

I=

 ''$(    

   I =

 ''$)    
$ ''$*+    

   I =

2x + 5
dx.
x2 + 2x + 5

  

$
$

dx
.
x+3
dx
.
(x − 2)5

 

        





















    

x+1
dx.
I=
x2 + 4x + 5
            
$
dx
.
 I =
x3 − 2x2 + x
$
x dx
 I =
.
(x − 1)(x + 1)2
$
dx
 I =
.
(x3 − 1)2
$
x dx
 I =
.
(5x2 + 2x + 4)2

$

 
 





      

                
           ! 
"   #
    $% 
&      !  '         #
 (
$
) *

R(sin x, cos x) dx,

 R(sin x, cos x) +     $% 
  !   x2 y 3 +     $%      x  y,
2

sin
x cos3 y +     $%    √ sin√
x  cos y, ,
√ 2 √
( 2) ( 5 5)3 +     $%      2  5 5.

 

          

-'       '  !          $% 
 %  x       .  ' 
      #
% (
2 tg x2
1 − tg2 x2
sin x =
,
cos
x
=
.
1 + tg2 x2
1 + tg2 x2
/0%  ". $ % (
2t
x
1 − t2
tg = t, sin x =
, cos x =
,
2
2
1+t
1 + t2

dx =

2dt
.
1 + t2

) *

 

        

 

  

#





sinn x cosm xdx

 
        
    2k + 1 (k  0, k ∈ Z)  
    
   

m = 2k + 1
cos x = t 


 


!" 
 

 $




 

m,



n

sin x = t



  

!





 

n = 2k + 1

   

 



# 

     

##   


 



 

     

 

 

2k + 1

)

   

I=

%&'

 

#

sin2 x cos3 x dx.

$

  * 

 $

$
I = | sin x = t, cos xdx = dt| =

(1 − t2 )t2 dt =

$

(t2 − t4 )dt =

sin3 x sin5 x
t3 t5
− +C =

+ C.
3
5
3
5

=

  *    #  

$



##    $

$

I = sin2 x(1 − sin2 x) cos xdx = sin2 x(1 − sin2 x)d sin x =
$
sin3 x sin5 x

+ C.
= (sin2 x − sin4 x)d sin x =
3
5


(

)

   

%&%

 

$

+  

cos x



$
I=


cos5 x

dx.
3
sin x

##    $

cos xdx = d(sin x),
  

$

cos 4 x = (1 − sin2 x)2 .



 

##    


(

 

 

  "  

    









  



$
1 − 2 sin 2 x + sin 4 x
d(sin x) =
I=
sin 1/3 x
$
$
−1/3
= (sin x)
d(sin x) − 2 (sin x)5/3 d(sin x)+
$
3
3
+ (sin x)11/3 d(sin x) = (sin x)2/3 − (sin x)8/3 +
2
4
3
(sin x)14/3 + C.
+
14


       
    ! "# $ % & &'  (
  ) &
sin2 x =

sin 2x
1 − cos 2x
1 + cos 2x
, cos2 x =
, sin x cos x =
.
2
2
2

+ 
!!  

 *#
   !  &'  , 

     

I=

#

sin4 x cos2 x dx

-  .  $  

$
1 − cos 2x sin2 2x
·
dx =
sin2 x(sin x cos x)2 dx =
2
4
$
$
1
1
=
sin2 2xdx −
sin2 2x cos 2xdx.
8
8

I=

+ !/     && 
+%&

0 ! /  &&  ,

$
$
1 − cos 4x
1
1
dx −
sin2 2xd(sin 2x) =
8
2
16
1
1
1
sin 4x −
sin3 2x + C.
= x−
16
64
48

I=

   1  !/ 
$ % &       cosk x0
(sink x)0  k = |m+n|
∈ N 0  !! )) 1  (
2
#  ! 0   m  n  1    
 10  !  

 

        





   




$









$
I=



dx
.
cos3 x sin x

$
dx
tg2 x + 1
cos2 x
=
d tg x =
I=
sin x cos x
tg x
$
$
tg2 x
d tg x
=
+ ln | tg x| + C.
= tg x d tg x +
tg x
2

I=

$

dx
.
sin3 x cos5 x

  

dx
= d tg x,     
cos2 x
3
1 + tg2 x
1
1
=
.
=

3
tg x
sin3 x cos3 x
tg x
1

·√
2
2
1+tg x

1+tg x


3
$
$
1
1 + 3 tg2 x + 3 tg 4 x + tg 6 x
1 + tg2 x
d tg x =
I=
d tg x =
tg x
3
tg3 x

$
3
1
tg −3 x +
+ 3 tg x + tg 3 x d tg x =
=
3
3 tg x
3
1
1
= ctg 2 x + 3 ln | tg x| + tg 2 x + tg 4 x + C.
2
2
4
 ! "#    $%&'"  %( $  &
 )  * !) $! 
+ R(sin x, cos x) & %! $ % sin x  − sin x $%
$! cos x = t.
+ R(sin x, cos x) & %! $ % cos x  − cos x $%
$! sin x = t.
+ R(sin x, cos x)  && $ ) % sin x 
− sin x, cos x  − cos x,  $ && $! tg x = t.
$
dx
,    I =
.
a2 cos2 x + b2 sin2 x









  

                 
            
    !
"     
tg x = t =⇒ x = arctg t =⇒ dx =

# 

t
1
sin x = √
, cos x = √
,
2
1+t
1 + t2
t2
1
, cos2 x =
.
sin2 x =
1 + t2
1 + t2

tg x = t,

$   

$

I=
=

dt
.
1 + t2



dt
1+t2
a2
1+t2

+

b2 t2
1+t2

$
=

dt
1
=
a2 + b2 t2
b

bt
1
1
arctg + C =
arctg
ab
a
ab

 %&!'   

$

bdt
=
a2 + (bt)2


b
tg x + C.
a
$

I=

dx
.
sin 3 x cos2 x

      $  sin x  − sin x     
          
cos x = t =⇒ sin x =


dt
1 − t2 =⇒ x = arccos t =⇒ dx = − √
.
1 − t2

(  
$

I=−

dt

=−

2
1 − t (1 − t2 )3 t2

) *    

$

dt
.
(1 − t2 )2 t2

 +!    +

1
(1 − t2 )2 t2

       ,   +  
  


I=

cos x
1
3  x

+ ln tg  + C.
cos x 2 sin2 x 2
2



 

        

 

  

  
 
     



#



tg n xdx

1
−1
cos2 x
n
tg x = t
x = arctg t
# 4
  I = tg 2xdx

tg 2 x =



          
   !    
"  
 dx =
 #$ 
%  &     ' ( tg 2x = t" ) x = arctg t  dx =
*+ 

1
2

dt
1+t2



1 dt
2 1+t2



$ 4
$
t dt
1
1
1
=
t2 − 1 + 2
dt =
I=
2
t2 + 1
2
t +1
t 1
tg3 2x tg 2x 1
t3

+ arctg tg 2x + C =
= − + arctg t + C =
6
2 2
6
2
2
tg3 2x tg 2x

+ x + C.
=
6
2
#
ctg n xdx
#
  
    R(tg x) dx
tg x = t
t
$
tg x + 3
dx.
    I = tg
x−1

, )(  -    )  

. +  (    !    
    /  ) 
 ##
%  &     .    ! !

t = tg x =⇒ x = arctg t =⇒ dx =



(   ) 

dt
,
1 + t2

(   )    $ /    / 
I=

t+3
dt.
(t − 1)(t2 + 1)

%  )      /&- /
t+3
A
Bt + C
=
+ 2
.
(t − 1)(t2 + 1)
t−1
t +1









   
     

    

    

   

         

t + 3 = A(t2 + 1) + (Bt + C)(t − 1).

       t = 1   A = 2  
   !  t2    ! !   B = −2
 C = −1.
" #

2t + 1
2

dt =
I=
t − 1 t2 + 1
$
$
$
dt
d(t2 + 1)
dt
=2


=
t−1
t2 + 1
t2 + 1
= 2 ln |t − 1| − ln(t2 + 1) − arctg t + C.
$

"         !  
1
tg 2 t + 1 =
 arctg tg t = t,
cos2 t
 

I = 2 ln | tg x − 1| + ln | cos x| − x + C.

         
    

$      !      %  &  
&   %    $ !  & ! &  !
 %          
 '()    I = # cos 3x cos 9x dx.
*       + #       
     
$
$
1
1
(cos(−6x) + cos 12x) dx =
(cos 6x + cos 12x) dx =
I=
2
2
1
1
sin 6x +
sin 12x + C.
=
12
24

 '(,   

I=

#

sin 2x cos 5x sin 9x dx.

               

     

$
$
1
1
(− sin 3x + sin 7x) sin 9x dx = −
sin 3x sin 9x dx+
I=
2
2
$
$
$
1
1
1
+
sin 7x sin 9x dx = −
(cos 6x − cos 12x) dx +
(cos 2x−
2
4
4

1 sin 12x sin 6x sin 2x sin 16x
− cos 16x) dx =

+

+ C.
4
12
6
2
16
#


     
sinn x cosm x dx
                    !
 "   #   
 $%&    I = # sin2 x cos7 x dx.
     
$
$
I = sin2 x cos6 x cos x dx = sin2 x(1 − sin2 x)3 d sin x =
$
= (sin2 x − 3 sin4 x + 3 sin6 x − sin8 x) dx =
=

sin3 x 3 sin5 x 3 sin7 x sin9 x

+

+ C.
3
5
7
9

 $%$   

$
I=

sin5 x

dx.
cos x

      '   "        
( 

− sin x dx = dt

cos x = t!

$

$

 −1/2
(1 − t2 )2

+ 2t3/2 − t7/2 dx =
dt =
−t
t


4 2√
2 √
4
2
= −2 t + t t − t4 t + C = cos x(−2 + cos2 x − cos4 x) + C.
5
9
5
9

I=−

 )            *   +!
   !     "#
 $%%    I = # cos4 x dx.









    

      

    

   



2
1 + cos 2x
,
cos x = (cos x) =
2
$
$
1
1
(1 + cos 2x)2 dx =
(1 + 2 cos 2x + cos2 2x) dx.
I=
4
4
4

2

2

    


   

cos2 2x =

1+cos 4x
2




$
1 + cos 4x
1
1 + 2 cos 2x +
dx =
4
2
$
1
3
1
1 3
1
=
( + 2 cos 2x + cos 4x) dx = ( x + sin 2x + sin 8x) + C.
4
2
2
4 2
8

I=

    

I=

     
$

#

cos2 3x sin4 3x dx.

$

sin2 6x 1 − cos 6x
dx =
4
2
$
$
1
1 − cos 12x
1
=
(sin2 6x − sin2 6x cos 6x) dx =

8
8
2


1 x sin 12x sin3 6x
− sin2 6x cos 6x dx =


+ C.
8 2
24
18

I=

(cos 3x sin 3x)2 sin2 3x dx =

        ! " #  $  %   &
  'm + n = 2k k ∈ N 
(  )   (# m  n (# "#   ( &
" #    (  #
$ 

 *   

I=

3

cos2 x
dx.
sin8 x

      + ,  
    m = − 83  
2
       n = 3  
 m + n = − 83 + 23 = −2
 $    ctg x = t )$
dx
− 2 = dt
sin x




3

2
cos2 x
= ctg 3 x.
2
sin x

               



$

I=−


2
3 5
3
t 3 dt = − t 3 + C = − ctg x 3 ctg 2 x + C.
5
5

            
         n    tg x   ctg x
      I = # tg4 x dx.
! "  # 


dt 
=
I = tg x = t, x = arctg t, dx = 2
t + 1

$
$ 4
1
t dt
=
dt =
=
t2 − 1 + 2
t2 + 1
t +1
tg3 x
t3
− tg x+
= − t + arctg t + C =
3
3
3
tg x
+ arctg(tg x) + C =
− tg x + x + C.
3

 $   

I=

#

ctg 5 x dx.

! "   #  %&  ' 
1
dx
ctg 2 x =
−1 
= − d ctg x :
2
2
sin
x
sin

$x
$
1

1
dx =
I = ctg 3 x ctg 2 x dx = ctg 3 x
sin2 x
$
$
ctg 4 x

= − ctg 3 x d ctg x − ctg 3 x dx = −
4

$
$
1
ctg 4 x
− ctg x
+ ctg x d ctg x+
− 1 dx = −
2
4
sin x
$
ctg 4 x ctg 2 x
+
+ ln | sin x| + C.
+ ctg x dx = −
4
2

()  )  "       %  
*   
$
 +,    I = sindx3 x .









    

    

   

     



 x
2t
dt 

=
I = tg = t, sin x =
, dx =
2
1 + t2
1 + t2 

$
$
1
(1 + t2 )2
1
1
2
=
dt =
+ + t dt =
4
t3
4
t3
t

1
t2
1
− 2 + 2 ln |t| +
+C =
=
4
2t
2
x 1
x
1
x
1
− ctg2 + ln | tg | + tg2 + C.
8
2 2
2
8
2
#

 
  
 cosdx x      

 
5 π
5
    cos x  sin 2 + x      
    
5

 !""   

$

I=

5 + 6 sin x
dx.
sin x(4 + 3 cos x)

     
#$        tg x2 = t  
$
I=

2t
1+t2

5 + 12t2
2 dt
 1+t 2 
=
3(1−t ) 1 + t2
4 + 1+t2

$

5t2 + 12t + 5
dt.
t(7 + t2 )

      %
5t2 + 12t + 5
A Bt + C
= +
.
t(7 + t2 )
t
7 + t2

#
5t2 + 12t + 5 = A(7 + t2 ) + t(Bt + C);
5
30
A = , B = , C = 12.
7
7

 & 

               

30
t + 12
5
dt =
+ 7
7t
7 + t2
5
15
12
t
= ln |t| +
ln(7 + t2 ) + √ arctg √ + C =
7
7
7
7
 12
x
x
1
x
5
ln | tg | + 3 ln(7 + tg2 ) + √ arctg( √ tg ) + C.
=
7
2
2
7
7 2
$

I=












 



 





   





   



  
  
  
  
  
  
  

  
I=
I=
I=
I=
I=
I=

#
#
#
#
#
#
$

sin 6x cos 2x dx.
cos 2x cos 3x dx.
sin5 x cos2 x dx.

3
cos5 x sin2 x dx.
sin4 x dx.
sin4 x cos6 x dx.

dx
.
sin4 x cos6 x
$ 
sin x
dx.
I=
cos9 x
$
I = ctg5 x dx.
I=

$





   

I=





   

I=

$

tg8 x dx.
dx
.
sin5 x





 
 

  

     

      
       
      
    
 !      "     # 
  
      
 
 
        $     
       

#
R(x; n ax + b) dx


%      R(x; n ax + b)dx
$  R(x; n ax + b) & 

        x n ax + b n     

 

#



 
 
   ' $   "          
        (

ntn−1
tn − b
, dx =
dt, ax + b = t.
ax + b = tn ,   x =
)*+,a
a
.   $
n

$

$

n
R(x; ax + b)dx = R

 n−1
nt
tn − b
;t
dt.
a
a

%             "  
  $   

 *+,   

  '   ( /  (
x + 1 = t2 ,   x = t2 − 1
/0 (
$

I=

t · 2tdt
=2
t2 − t − 1
# t+1

$


x+1

dx
x− x+1

$

I=

t2 dt
=2
2
t −t−1

dx = 2tdt.
$
1+

t+1
t2 − t + 1


dt.

%   t −t−1       "   0 
    " #$       
1 2
1
(t − t − 1) = z,   t = z +
dt = dz.
2
2
1 '   '    (
2

 

       



$

$
$
z + 32
d(z 2 − 54 )
dz
dz
=
2t
+
+
3
=
5
5
2
2
2
z −4
z −4
z − 54





z − 5 

3
5

2
2 
√  + C = t + ln |t − t − 1|+
= t + ln z 2 −  + √ ln 
4
5  z + 25 

√ 
t − 1 − 5 
3

2
2 
√ +C =
+ √ ln 
5  t − 12 + 25 
 √

 2 x + 1 − 1 − √5 


3


√  + C.
= x + 1 + ln |x − x + 1| + √ ln  √
5 2 x + 1 − 1 + 5

I = 2t + 2

 



$


R x;


n

ax + b
cx + d


dx

 
          
   
ax + b
= tn .
cx + d

    



 I =



$
x

x−1
dx
x+2

 !     "
x−1
= t2 ,
x+2

 

" # 

$
I=



1 + 2t2
x−1
= t, x =
x+2
1 − t2

6t
1 + 2t2
t
dt = −6
1 − t2 (1 − t2 )2

$

 dx = (1 −6tt2)2 dt.
2t4 + t2 dt
.
(t2 − 1)3

     $ $   !  %
2t4 + t2
2t4 + t2
=
=
2
3
(t − 1) )
(t − 1)3 )(t + 1)3
B
E
C
D
F
A
+
+
+
+
+
.
=
t − 1 (t − 1)2 (t − 1)3 t + 1 (t + 1)2 (t + 1)3





  

           


2t4 + t2
=
A(t − 1)2 (t + 1)3 + B(t − 1)(t + 1)3 + C(t + 1)3 +
(t − 1)3 )(t + 1)3
 

+ D(t − 1)3 (t + 1)2 + E(t − 1)3 (t + 1) + F (t − 1)3 / (t − 1)3 (t + 1)3 .

       
 t = 1 : 3 = 8C ⇒ C = 3/8
 t = −1 : 3 = −8F ⇒ F = −3/8
             
   "##$       

!

2t4 + t2 = A(t2 − 1)(t + 1) + B(t2 − 1)(t + 1)2 + C(t + 1)3 +
+ D(t2 − 1)2 (t − 1) + E(t2 − 1)(t − 1)2 + F (t − 1)3 =
= A(t4 − 2t2 + 1)(t + 1) + B(t2 − 1)(t2 + 2t + 1) + C(t3 + 3t2 + 3t + 1)+
+ D(t4 − 2t2 + 1)(t − 1) + E(t2 − 1)(t2 − 2t + 1) + F (t3 − 3t2 + 3t − 1).

%    

2t4 + t2 = A(t5 + t4 − 2t3 − 2t2 + t + 1) + B(t4 + 2t3 − 2t − 1)+
+ C(t3 + 3t2 + 3t + 1) + D(t5 − t4 − 2t3 + 2t2 − t − 1)+
+ E(t4 − 2t3 + 2t − 1) + F (t3 − 3t2 + 3t − 1).

    "##$    &   &    !
 &       

t5 :



⎨ t4 :
⎪ t3 :



t:

A + D = 0,
A + B − D + E = 2,
−2A + 2B + C − 2D − 2E + F = 0,
A − B + C − D − E − F = 0.

    "        C = 38  F
  

= − 38 


A + D = 0,



⎨ A + B − D + E = 2,
⎪ −A + B − D − E = 0,



A − B − D − E = − 34 .

'   A =
  

5
;
16

B =

11
;
16

5
D = − 16
; E =

11
16





 

      

                
            

$
t8 dt
1
= 12
t7 + t6 + t5 + t4 + t3 + t2 + t + 1 +
dt =
t−1
t−1

t8 t7 t6 t5 t4 t3 t2
= 12
+ + + + + + + t + ln |t − 1| + C.
8
7
6
5
4
3
2

    !   t = 12 x + 1     




3
12
12
(x + 1)2
(x + 1)7
(x + 1)5
x+1
+
+
+
+
I = 12(
8√
7
6
5


3
4
6


x+1
x+1
x+1
+
+
+ 12 x + 1 + ln | 12 x + 1 − 1|) + C.
+
4
3
2

#
R(x; Ax2 + Bx + C) dx
 

"    12 (Ax2 + Bx + C) = t    # 
$

12

 

  $ %    




a2 − t2 , t2 − a2 , a2 + t2 .

&'(')
*        #   #  $ %
   &'(')   !   

a2 − t2 =⇒ t = a sin z   t = a cos z,

a
a
,
t2 − a2 =⇒ t =


t=
sin z
cos z

a2 + t2 =⇒ t = a tg z   t = a ctg z.

 '('   

 I =

+  ,     "   
1 2
(x + 2x − 3) = t   x + 1 = t,
2
  ,  

$ √ 2
x + 2x − 3
dx
(x + 1)3

x = t − 1, dx = dt

$ 
$ √2
(t − 1)2 + 2(t − 1) − 3
t −4
I=
dt =
dt.
t3
t3

-   $
t=

2
,
cos z





t2 − 4 = 2 tg z, dt =

2 sin z
dz.
cos2 z

 

       



  

$
$ √2
$
1
t −4
2 tg z 2 sin z
dz
=
sin2 z dz =
dt
=
t3
2
( cos2 z )3 cos2 z

$
1
sin 2z
1
1
(1 − cos 2z)dz =
z−
+ C = (z − sin z cos z) + C.
=
4
4
2
4

I=

 
2
2
2
,  cos z = , z = arccos ,
cos z
t√
t
2−4

t
.
sin z = 1 − cos2 z =
t

t=

 



2 2 t2 − 4
1
+C =
arccos −
4
t
t2


1
2
2 x2 + 2x − 3
=
arccos

+ C.
4
x+1
(x + 1)2

I=

                !
"    " #$%

 %   

 I =

&'
$

I=



$

dx


( 5 + 2x + x2 )3

 1 2
 (x + 2x + 5) = t dx = dt
=  2
2
3
x+2=t
x= t−2
(5 + 2x + x )
dx



=




$
 t = 2 tg z
dt
dt = cosdz2 z  1



=
=
=
2
 4 cos zdz =
t2 + 4 = cos z
(t2 + 4)3
z
1
t
1
1
+C =
= sin z + C = sin arctg + C =  2
4
4
2
4 z2 + 1
$

4

x+1
+ C.
= √
4 5 + 2x + x2





  



$



      

dx

 x>m
(x − m) ax2 + bx + c

             
         

 

dt
1
x − m = , dx = − 2 .
t
t
$
   I = √ 2 dx
x 5x − 2x + 1



!  "    # $       %#

$
d(t − 1)
dt

=− 
=
2
1
5
2
t − 2t + 5
(t − 1)2 + 4

+
1
2
t
t
t




1

1
2


2
+
5
+
= − ln |t − 1 + t + 2t + 5| + C = − ln  − 1 +
 + C.

x
x2 x
$

I=



− dt
t2

 

$

=−

  

& '    #

  

$

xm (a + bxn )p dx,



 m, n  p ( '    % 
)   %     *+  %+ ,      
   %  ,   -
. p (     %  / ,   % +%  a + bxn   0
   p        xm  %    
(   % / ,   %     
1 m+1
n
a + bxn = ts ,  s (     p
+ p (   % / ,   %     
 m+1
n
−n
ax + b = ts ,  s (     p
 2   
$ 
3


1+ 4x

dx.
x

 

       



             
$


1/3
x−1/2 1 + x1/4
dx.

I=


1
1
m+1
1
=⇒
= 2 − 
m=− , n= , p=
2
4
3
n

 

1+x

 

1/4

= t3 =⇒ t =


3

.

1 + x1/4 =⇒

−1/2

=
x1/4 = t3 − 1 =⇒ x = (t3 − 1)4 =⇒ x−1/2 = (t3 − 1)4
1
=⇒ dx = 4(t3 − 1)3 3t2 dt = 12(t3 − 1)3 t2 dt
= 3
(t − 1)2

  

$

$
t · 12(t3 − 1)3 t2 dt
=
12
(t3 − 1)2
$
t3

= 12 (t6 − t3 )dt = 12t4
7

I=

t3 (t3 − 1)dt =

1
+ C.
4

           !
 

t=


I = 12(1 +


4

3


x)

   
      

3

1+

1+

4
x


4

x,



1+ 4x 1
+ C.

7
4

  
   

"  #$ %&         %& ' 
 & %& %&         (   !
 '  ) %&    **   
 ( +   ,#$*-. ,#$*#.*
  ' u = u(x; y)       !
       (    ' u = Ref (z) 
f (z) = u(x; y) + iv(x; y)* /%      (      '
v = v(x; y) = Imf (z)    '( f (z)*





      

∂u
=
⇒v =
 1       ∂v
∂y
∂x
 ϕ(x)    x
2       !"  """

# ∂u
∂v
∂u
=
dx + ϕ (x) = −   " #"
∂x
∂x
∂y


∂u
dx + C 
∂y
x
$" % &' ϕ(x)
# ∂u
dx + ϕ(x)
v = Imf (z) =
∂x
ϕ(x) = −

#

x

# ∂u
dx
∂x



# ∂u
dy+ϕ(x)
∂x
ϕ (x)  "

+

 v(x) ( %"

)% '" *&" " % *  
"%(     ! ( %"

 +,   u(x; y) = x3 − 3xy2
 
       f (z)   
    f (z)      f (0) = 0
    - .  / *&  %"   u(x; y) =
 " %( 0"  '" *&" ("
"( %"1 "%(   u(x; y) = x3 − 3xy2 =

= x3 −3xy 2

#
∂v
∂u
=
= 3x2 − 3y 2 ⇒ v(x; y) = 3 (x2 − y 2 )dy + ϕ(x) =
∂y
∂x
∂v
∂u
2
3
= 6xy + ϕ (x) = −
= 6xy ⇒ ϕ (x) = 0 ⇒
= 3x y − y + ϕ(x)
∂x
∂y
⇒ ϕ(x) = C 
" v(x; y) = Imf (z) = 3x2y − y3 + C   f (z) = x3 − 3xy2 + i(3x2y −
− y 3 + C) "" C #  %  f (0) = 0 "
 z = x + iy = 0 ⇒ x = y = 0  f (0) = 0 + iC = 0 ⇒ C = 0
2%"  f (z) = x3 − 3xy2 + i(3x2y − y3 )
= Ref (z) ⇒

 

 

     

" 3    " '  *4 %
%     "% " !  " %!" 
"
. "" " % 1%"  '
"  " &'"  * % 0"
&    "

 

       



             
  
$
$
$
2

ex dx,



sin x
dx,
x

x cos x dx

              
         ! "    

 #$%   

$

I=

sin x cos x dx.

&  '   ( )            
      sin x   cos x      *
$

1
sin x d(sin x) = sin2 x + C,
2
$
1
I = − cos x d(cos x) = − cos2 x + C,
2
$
$
1
1
1
sin 2x dx =
sin 2x d(2x) = − cos 2x + C.
I=
2
4
4
I=

   #$+
       
        
     
       !
1
1 2
sin x, − cos2 x
 − 41 cos 2x
2
2
 "         #  #
,       '              .       "        
'        
)     "                .          
$

−6x2 − 5x + 8
dx
x3 + 2x2 − 1

    ###       '  /0   
1   
$

3x2 + 4x
dx = ln |x3 + 2x2 − 1| + C
x3 + 2x2 − 1









    



  

  
    
   
                 
        
      
        !"#"$
 %       &&   '   (    
        ! )*+  ),- % 
. &/0&$          
.             1  
                   
1    1

         
    
 "2&   
+%

$

3

I=

 3
I = |x − 2 = t6 , dx = 6t5 dt| =


3

x−2
dx.

(x − 2)2 − x − 2

$
t4

t2
6t5 dt =
− t3


1
dt =
=6
t +t +t+1+
t−1

t4 t3 t2
=6
+ + + t + ln |t − 1| + C =
4
3
2



3
3
(x − 2)2
x−2
x−2
+
+
+
=6
4
3
2
$

t4
dt = 6
t−1

$

3

2




+ 6 x − 2 + ln | 6 x − 2 − 1| + C.

   "2&         
             
               
         

              




$ 
$
3

(x − 2)2 − x − 2

I=
dx
=
(x − 2)1/3 −
3
x−2

3
6
−(x − 2)1/6 d(x − 2) = (x − 2)4/3 − (x − 2)7/6 + C.
4
7

   
        
          ax+b
  
cx+d



$ 

     

I=

5 − 3x
dx.
4 + 7x

!  "   # $  5−3x
= t2     
4+7x
     &      

 %
x dx#

5 − 4t2

7t2 + 3
2
2
−8t(7t + 3) − 14t(5 − 4t )
−94t
⇒ dx =
dt =
dt.
2
2
(7t + 3)
(7t2 + 3)2

5 − 3x = t2 (4 + 7x) ⇒ x =

$' 
$

$
−94t
t2 dt
dt
=
−94
=
2
2
(7t + 3)
(7t2 + 3)2
2 $ 2 3 3

$
$
t +7−7
dt
1
dt
1
3
dt
=
−94
·

.
= −94 ·
7
49
7
(t2 + 37 )2
t2 + 37
(t2 + 37 )2

I=

t

$     (   )   *  #
$

I=

dt
7
3 2 =
2
3
(t + 7 )

1
2

$

dt
t
3 +
2
2
t +7
2(t + 37 )



.

+ '  (     ,     ,    
    ( ( 
 



(5 − 3x)(4 + 7x) 47 21
7 5 − 3x

arctg
+ C.
I=
7
147
3 4 + 7x

 -   

$
I=


3

dx
(x − 1)2 (x + 2)

.









        
    


3

(x − 1)2 (x + 2) =

  

    

(x−12 )
(x
(x+2)2



   

  

    

 
2
+ 2)3 = (x + 2) 3 x−1
.
x+2


x − 1
dx
  = 
= t3 ,
I=
x+2
3
x−1 2
(x + 2)
x+2

$
dt
2t3 + 1
9t2 dt 
=
3
x=
,
dx
=
.

3
3
2
1−t
(1 − t )
1 − t3
$

 

1
A
Bt + C
1
=
+
,
=
1 − t3
(1 − t)(t2 + t + 1)
1 − t t2 + t + 1
2
1
 A = B = , C = , 
3
3

1
2t + 1
I = − ln |1 − t| + ln(t2 + t + 1) + 3 arctg √ + C.
2
3

              
1
I = − ln
2





3
3

x+2− 3x−1
23x−1+ 3x+2
√ √
+ C.
+ 3 arctg
3
33x+2

       !  "  #   !
$" %   
!   & !'

 ()'(   

$

I=



!

dx
.
2x2 + 3x + 7

     


1
t − 32
1 
3
2


, dx = dt =
I =  (2x + 3x + 7) = t, 2x + = t, x =
2
2
2
2



$

1
dt
1
47 


=√
= √ ln t + t2 +  + C =
4
2
2 
t2 + 47
4




1


= √ ln 4x + 3 + 2 4x2 + 6x + 14 + C.
2

              



   



$


I=



3x − 7
dx.
5x2 + 8x + 1

 


1
dt 
t−4
2


, dx =
=
I =  (5x + 8x + 1) = t, 5x + 4 = t, x =
2
5
5

$

3
(t − 4) − 7
  5 
dt =
2
8
5 5 t−4
+
(t

4)
+
1
5
5
$
$
2
d(t − 11)
47
dt
3


− √
=
= √
2
2
10 5
t − 11
5 5
t − 11

3 √
47
= √ t2 − 11 − √ ln |t + t2 − 11| + C =
5 5
5 5


3
47
=
5x2 + 8x + 1 − √ ln |5x + 4 + 5(5x2 + 8x + 1)| + C.
5
5 5
$
dx

  
     
(x + d) ax2 + bx + c
   x + d = 1t 
$
dx

.
    I =
x x2 + 3

=









 $


1
− dt/t2
dt 


I = x = , dx = − 2  =
=
t
t
3t2 + 1/t2

$
$
dt
1
d( 3t)
√
=− √
= −√
=
3t2 + 1
3
( 3t)2 + 1

√
 3 √x2 + 3 


1
1


2
+
= − √ ln | 3t + 3t + 1| + C = − √ ln 
 + C.

x
3
3  x



   



$
I=

dx

.
x2 7 − x2









    



  

     
 $

$

dt 
− dt/t2
1
t dt

I = x = , dx = − 2  =
=− √
=
t
t
7t2 − 1/t3
7t2 − 1

$
1 √
1
d(7t2 − 1)
1 7

= − 2 7t2 − 1 + C = −
=−
− 1 + C.
14
14
7 x2
7t2 − 1


       
     
$

    
     
dx =

#$

$
I=

I=

  

dx

.
(x2 + 9) x2 + 9

 ! x = 3 tg t" 
3dt
cos2 t

 x2 + 9 = 9(tg2 t + 1) =

1
3 dt/ cos2 t
=
3
27/ cos t
9

$
cos t dt =

9
.
cos2 t

1
sin t + C.
9

%  sin t  x
x
⇒ sin t = tg t · cos t =
3
tg t
x/3
x
=
=
=√
.
2
2
9 + x2
1 + (x/3)
1 + tg t
x
    I = √
+ C.
9 9 + x2
x = 3 tg t ⇒ tg t =

#$



 &   
 '(   
 ''   

  


6
x dx

√ .
3
x( x + 4 x)
$ 
3 − 4x
dx.
I=
9 − 5x
$
dx

.
I=
3
(x + 1)2 (x − 2)4
$

I=

 

   


$





   

I=





   

I=





   

I=





   

I=





   

I=





   

 



dx
.
11 + 5x + 6x2



2x + 5
dx.
7 + 8x − 11x2

$
$
$
$

dx

.
x 2x2 − 1
dx

.
x2 15 + 3x2

dx

.
(x2 − 5) x2 − 5
$ 
I=
x(3 + 4x3 ) dx.

   


          
   

   !   "  #  
$%&'( )" * 
       
+  
     # + ,     + '
,  
    

  

  

%   , [a; b]  
 -," y = f (x)
 
 
&
.
  , [a; b]  )/  n +    % )   01'
 ,  ,    ++ 2  )+% +,
'
  ,
a = x0 < x1 < x2 < . . . < xn = b,
 ++  , Δxi = xi − xi−1 , i = 1, 2, . . . , n.
) + +
λ  ) %3    ! n ++!
 ,.
λ = max Δxi .



i=1,2,··· ,n

   λ    
4 $ ,1  ++ 
  ξi ∈ [xi−1 ; xi ], i = 1, 2, . . . , n



, )




  %& +, ξi 





 
 
  f (ξi )  
 !   !  
     

 

  f (x)       


 
   
f (ξi )Δxi       "  " 

n


#$%&'

f (ξi )Δxi .

i=1

( 
 )   !     )   f (x)
  [a; b] *    )   f (x)
  [a; b]  
   

    !  "  
$ +       !     #$%&'    
   "   ! 
        ! 
"  )   *       
   )
λ → 0

 $%&       
lim

λ→0
(n→+∞)

n


f (ξi )Δxi

i=1

    λ → 0        n → +∞  
            [a; b] 
      !   ξi,    "
    # $ f (x)    [a; b]        
#b
f (x) dx
a

,    

lim

λ→0
(n→+∞)

n

i=1

$b
f (ξi )Δxi =

f (x) dx.

#$%-'

a

. ) f (x)   
 )   ! 
 
[a; b]
    
 /   " )"   
   #$%&' *  
!   )  
   

    

 

   





 


  


   
f (x) 
 [a; b]    
#b
  f (x) dx     !      
a

   "  " 
 $

#b

 

 

   " "   

#

f (x) dx

a

a, b           
f (x)      !"
f (x) dx     
  
# $ " [a; b] $    $"   % &   
#  ' "    f (ξi )Δxi 
' % "  '
  (" ""  '  ' 
$     "$
'   )     " $ " %&  $ 
"

$

' #   '#

   

  



*  $              +
,   
 -          $ $"   ) 
       k = 0 

$b

$b
kf (x) dx = k

a

f (x) dx.
a

.    

$b
kf (x) dx = lim

λ→0


= lim

λ→0

k

a
n

i=1

f (ξi )Δxi

n


kf (ξi )Δxi =

i=1


= k lim

λ→0

n

i=1

$b
f (ξi )Δxi = k

f (x) dx.
a

-  "$  /       $     '
          "" $ $" ! "  $
$"   





 



 

     
   

 

$b
(f (x) ± ϕ(x)) dx.
a

      
    !!"    #  $!  %
    
& '  
   "  
%
  "#      # 

$b

$a
f (x) dx = −

a

()*&+

f (x) dx.
b

,  -          %
#     " ! 
 .#  
 
# $    !  "   ()*&+
Δxi ! 
     .
  
/  #     
 " 
 
$a
$a
f (x) dx = − f (x) dx.
a



a

0 #  $ "   

#  



$ 1-%

$a
f (x) dx = 0.
a

) ' 
[a; c] [c; b]# 

 

$b

$c
f (x) dx =

a

" [a; b]  c !    

$b
f (x) dx +

a

f (x) dx.

()*)+

c

1.   #  c ∈ (a; b)
1   
     ! ! 
 [a; b]      

" %

 

   



              
   c           c = xm    
          
n


f (ξi )Δxi =

m


i=1

f (ξi )Δxi +

i=1

n


f (ξi )Δxi.

i=m+1

   !         λ → 0 (n → +∞)" 
  #  $%&%'
    "  c ∈/ (a; b)"    c > b (  
    "   b           [a; c]
   [a; b] [b; c]

$c

$b
f (x) dx =

a

$c
f (x) dx +

a

$b

$c



$c
f (x) dx −

f (x) dx =
a

f (x) dx,
b

a

b

(     #  $%&)'
$c

f (x) dx.

$b
f (x) dx = −

f (x) dx.
c

b

!  * + ,      [a; b]   # 
$%&%'
             +   
        [a; b]
- .     [a; b]
f (x)  0,
$%&-'

$b

f (x) dx  0.
a

/    "     f (ξi)  0
n

    f (ξi)Δxi  0
i=1

Δxi > 0

  i"   





 

#b

  
         λ → 0   f (x) dx
a
   
           !  f (x) > 0 "
#    $  % [a; b] 
$b
f (x) dx > 0.
a

&        !  f (x)  0  % 
  ' $ d ∈ (a; b) f (x) > 0 (      
       '  % [α; β]  )  d
*%#   % [a; b]  $ α  β (α < d < β)   
 % + 

[a; b]

$b


f (x) dx =

a


f (x) dx +

a

$b
f (x) dx +

α

f (x) dx.
β

,$      $ 
       
              
-      $  
 $      %
[a; b] f (x) 0
.     % [a; b]  !  f (x)  ϕ(x)    /
  f (x)  ϕ(x) 
$b

$b
f (x) dx 

a

ϕ(x) dx.
a

-        $      
0   %  f (x)−ϕ(x)  0      
$b
(f (x) − ϕ(x)) dx  0.

, 

a

$b

$b
f (x) dx −

a

ϕ(x) dx  0
a



 

   



$b

$b
f (x) dx 

a

ϕ(x) dx.
a

  f (x)  
[a; b]      

    [a; b]     
   ξ  

$b
f (x) dx = f (ξ)(b − a).
a

   m  M     
 
   f (x)    [a; b]    !" x ∈ [a; b]
       

m  f (x)  M.
#    $  % 

$b

$b
dx 

m
a

&

#b

$b
f (x) dx  M

a

dx.
a

dx = b − a   f (x) = 1

a
n


f (ξi )Δxi =

n


i=1

1 · Δxi = b − a.

i=1

#'

#b
m
b

f (x) dx

a

b−a

 M.

f (x) dx

(    a b−a = μ  m  μ  M 
) μ  *  * m  M  +  
   
[a; b]  f (x)
  
 *
   *
   m    M    $   
ξ ∈ [a; b]   " f (ξ) = μ 

#b

f (x) dx

a

b−a

= f (ξ)





 

$b
f (x) dx = f (ξ)(b − a).
a

 
        
  
                  
  
           
         [a; b]

 
      
    
                 
     
!      
  
      "
              
  
    

  
        
 
!  f (x) #       [a; b]   $  
  
$b
f (x) dx.
a

%        a &     '   
      &       '     (&
     '       &    x
  b
!       &   ) 
 ' 
    &    t *  &    
  
 '            x+
$x
I(x) =

f (t) dt.
a

1  2 

   

"   

,-./0

 

   



             
               
             
⎞
⎛ x
$
⎝ f (t) dt⎠ = f (x).

 

a


            ! 
   !  "   #   #$  #%
  x  &  Δx ' (
x+Δx
$

I(x + Δx) =

f (t) dt.
a

) 

  &    I(x)  (
x+Δx
$

$x

f (t) dt −

ΔI =
a

 *

f (t) dt.
a

+      [a; x + Δx] "  x    
[a; x] 
[x; x + Δx]
,-      
  .'  '  (
x+Δx
$

$x

f (t) dt =
a

x+Δx
$

f (t) dt +
a

 /

f (t) dt.
x

0'    1  /  2   * 



x+Δx
$

ΔI =

f (t) dt.

 #3

x

,   '     "    #3
 "  '

     

ΔI = f (ξ)Δx, ' ξ ∈ [x; x + Δx].
+   4 "     '      Δx(

ΔI
= f (ξ), ξ ∈ [x; x + Δx].
Δx

 ##



 

 

        Δx → 0   
  
          !    
 "   #$          
          
  

 

%  &           '
$x
I(x) =

f (t) dt
a

  (       ")   '
f (x)
*      (   '    " 
"    "  +    F (x) , " 
(   f (x)  I(x) = F (x) + C 
$x
f (t) dt = F (x) + C.

-

a

   +   x = a     
$a
f (t) dt = 0,



a

 C = −F (a).
  +     C  -  . x = b 
F (a) + C = 0
$b
f (t) dt = F (b) − F (a).

/

a

0   1)  ,2( ' * $    
           
f (x)    [a; b]
%   +    $   "     
 &  (       ")   

 



   



   





$π/2
I=
sin x dx.
0



 I=

π/2
− cos x|0

    

= − cos



π

+ cos 0 = 1.

2



   

            

$b
f (x) dx,  
a

f (x)       !" [a; b] #"$
x "   t  

      

x = ϕ(t).

%  &



ϕ(α) = a,
ϕ(β) = b.
   "   
 '"$
ϕ(t)    !  ϕ (t)      !"
[α; β](
)
! t  α  β ! #"$ ϕ(t)  * 
!     !" a  x  b

+ *      ,- # 
!        

$b


f (x) dx =

a

f (ϕ(t))ϕ(t) dt.

% .&

α

/    F (x)   0 !  #"$
F  (x) = f (x) 1   #  2,340 $

f (x) 

$b
f (x) dx = F (b) − F (a).
a

% 5&





  
  
   



 

 F (x)    x = ϕ(t)    F (ϕ(t))
           

f (ϕ(t))ϕ(t).

               
   
(ϕ (t))t = (F (x))t = Fx · xt = f (x) · ϕ (t) = f (ϕ(t))ϕ(t).

!     "#


$ 

f (ϕ(t))ϕ(t) dt = F (ϕ(β)) − F (ϕ(α)) = F (b) − F (a).

%&'()'*

α

+    ,     %&'()-*  %&'()'*     
     %&'().*(
+     (

 &'(/   

I=

$1
0

dx


2
x + 4x + 20

$1

dx
=
+ 4x + 20
0
 1 2

 (x + 4x + 20) = t,
x + 2 = t, 
=  2
=
α = a + 2 = 2,
β =b+2=3 
$3




dt
8



√ .
= ln t + t2 + 16 |32 = ln 8 − ln(2 + 20) = ln
=
2
t + 16
2 + 20

+  0   

I=



x2

2

 &'(1   

I=

#a √
0

a2 − x2 dx



 x = a sin t,

x=0 ⇒ t=0

+  0    I =  dx = a cos t dt, x = a ⇒ t = π/2  =
$π/2
$π/2
$π/2
a2
a2 − a2 sin2 ta cos t dt = a2
cos2 t dt =
(1 + cos 2t) dt =
=
2
0
0
0

sin 2t π/2 πa2
a2
t+
.
=
 =
2
2
4
0

 

   

 



   

 u(x)  v(x)   
     [a; b]
  

    

       

d(uv) = v du + u dv.

     

    !"  a  b !

$b

$b
duv =

uv|ba

=

a

$b
v du +

a

u dv,

 

a

$b

$b
u dv =

a

uv|ba



v du.

#$%&'(

a

)! #$%&'(   !*      
   !+    ! 
π
 $%$  I = # x sin x dx
0

,
+


0

 


 u = x,
du = dx
I = 
dv = sin x dx, v = − cos x

cos x dx = π + sin x|π0 = π.



 = −x cos x|π0 +






 



 

      

y

A

y=f(x)

B

f(ξi )
ξ

O

x0 =a

i

x n =b
xi-1 x i

   

x

 

 f (x)  0      [a; b] 
Ox    y = f (x)     x = a 
x = b   !"" "
#! $% & !'  !' (
) !  ( 
a = x0 < x1 < x2 < . . . < xn = b

(  [a; b]    *+! , 
[x0 ; x1 ], [x1 ; x2 ], . . . , [xn−1 ; xn ],

λ=

max

i=1,2,··· ,(n−1)

|xi+1 − xi |.

- . % +!   (  " !/
"  ξi
0 1 (!2" 2 %    %
% +!   f (x)    &
 f (ξi)  !  ("    /
 !' +!" !""   
[xi ; xi−1 ]  !' !   %    "
f (ξi ) * 34,
5
n
S ≈ f (ξ1 )Δx1 + f (ξ2 )Δx2 + . . . + f (ξn )Δxn =



i=1

f (ξi )Δxi.

 

   



    

  λ → 0 (n → +∞)

S = lim

λ→0

n


    

   

$b
f (ξi )Δxi,

 

i=1

S=

f (x) dx.

 

a

 

   !      "      #$
#b
     f (x) dx         
a

         y = f (x)  0  Ox
   x = a x = b

 



      

    % "  &  %    !  '
 # # " % % % (")      V = V (t) > 0 *$
  '   "   !"    t = α  t = β 
" "  !   % % %   '   !  $
     (
S = V · t.
 +,
  % #     -  . 
 / .   " [α; β]  Ot    .   $
   " " t0 = α < t1 < t2 < . . . < tn = β   
Δti = ti − ti−1 
+ * "!    " .       
" τi 
0 1   "   '  . . &  &
 !   "!  " !       "$
-'     - (") V (t)
   . " 
2

S ≈ V (τ1 )Δt1 + V (τ2 )Δt2 + . . . + V (τn )Δtn =

n


V (τi )Δti .

 +

i=1

    
       
  $
   +   
'      3  "  $
      "!
 3 %  % "

S = lim

n→+∞

n

i=1


V (τi )Δti ,

 

S=

V (t) dt.
α

 ++





   
    



   





     

    

       



   

 


     V (t) 
           
           




|V (t)| dt.

S=
α

         
!          " # $
    % $&'#  $#   
    !       

"    ! # f (x)       [a; b]  
$     n  " $ "       
   ξi   #     

(  %     )*  $         h
h=

+

 ,

b−a
.
n

x0 = a, x1 = a + h, x2 = f + 2h . . . , xi = a + ih.

- , $. f (x) 

# . #    #   

f (a + h), f (a + 2h), . . . , f (a + nh).

/ ,    0 #    $      h
   $$ #  1 $   "$& $$
Sn = f (a + h) · h + f (a + 2h) · h + . . . + f (a + nh) · h =
n

f (a + ih).
=h
i=1

  %
     

  

#b
a

x dx (a < b, )   

         



                
 [a; b]               
            
     !
"   #    # q (q > 1)  
     
x0 = a, x1 = aq, x2 = aq 2 , . . . , xn = aq n = b.

$     %   qn = ab !
&   '    
Δx1 = x1 − x0 = a(q − 1), Δx2 = x2 − x1 = aq(q − 1), . . .
Δxi = xi − xi−1 = aq i−1 (q − 1).

$  ( f (x) = x     )     
a, aq, aq 2 , . . . , aq n−1 .

* ) +        %     
    '  ,
Sn = a2 (q − 1) + (aq)2 (q − 1) + . . . + (aq n−1 )2 (q − 1) =
= a2 (q − 1)

n−1


q 2i .

i=0

-

  , 
S=

( ab )2 − 1
q 2n − 1
=
q2 − 1
q2 − 1

 q → 1  n → +∞.

+  
$b
a

2

b
−1
a2
= a2
x dx = a2 lim
(q

1)
2−1
q→1
q
n→+∞


q−1
b2
b2 − a2
=
.

1
lim 2
2
q→1 q − 1
a
2

.        #'    ')  ' 
   # )!
/   # %          0  
      %  ,  ( f (x)   





[a; b]

 



      

   

     

    

 

$b
x dx =
a

b
b2 − a2
x2 
.
=

2 a
2

       

       

 !



$1

  I =

"# $

(x − 2)3 dx.

0

%      


(x − 2) 
1
I=
 = 4 − 4 = −3,75.
4
0
4 1





  I =

$3

"# "

1
%      





"# &

dx
.
x2 + 1


√3
π
π π
I = arctg x1 = arctg 3 − arctg 1 = − = .
3
4
12
$1
.
 I = x2dx
−4
0

%      

 1

 =
I = 14 ln  x−2
x+2 0

 ' (    )  
 



#b

f (x) dx

 1

ln 3 − ln 1 = 14 ln 13 = − 14 ln 3.
 x = ϕ(t)   
1
4

  *+  

)  

)

a






 

x'

    ) (



   ) (

x=a



     

"# ,

t = α



t = β

x=b
$9 √
x dx
√ .
I=
x+2 x
1

%      

  

    )

 

x = t2 '



t

1 = t2 ⇒ t = 1, 9 = t2 ⇒ t = 3.



dx = 2t dt

         



 
$3
I=
1

$3
1−

=2
1

2t2 dt
=2
t2 + 2t

2
t+2

$3
1

t dt
=2
t+2

$3
1

t+2−2
dt =
t+2


dt = 2 (t − 2 ln |t + 2|) |31 = 4 1 − ln

     

I=

$10
3

dx

.
(x − 4) x + 6

         x + 6 = t2
    t
 x = 3 t = 3,
 x = 10 t = 4.

$4
I=
3


5
.
3

dx = 2t dt





 t − √10 4
2t dt
1


√  =
= 2 √ ln 
(t2 − 10) t
2 10  t + 10 
3




 
 4 − √10 
 3 − √10 
1




√  − ln 
√  =
=√
ln 



10
4 + 10
3 + 10 



 4 − √10 3 + √10 
1
7 + 2 10
1


√ 
√   = √ ln
= √ ln  
.
3
10  4 + 10 3 − 10 
10

    

I=

#2a √
2ax − x2 dx.
0

          12 (2ax − x2) = t 
a−x = t  x = a−t dx = − dt 2ax−x2 = a2 −t2 x = 0 ⇒ t = a
x = 2a ⇒ t = −a
$a √
  I =
a2 − t2 dt.
−a





 





     

   t = a sin z dt = a cos z dz

= a cos z  t = −a ⇒ z = − π2  t = a ⇒ z =
2

$π/2

I=a

π
2



a2 − t2 =

   

$π/2
cos z dz = a
(1 + cos 2z) dz =
2

2

0

−π/2

2

=a

π/2
πa2
sin 2z 
.
=
z+

2
2
0

          z  
    [− π2 ; π2 ]            
 
        !
     "      "  "
#  
$π/2
I=

$π/2
cos z dz = 2 cos2 z dz.
2

0

−π/2

 
            
       


!

$ "  

#  $

 u = x;
du = dx
I = 
dv = ex dx; v = ex

I=

#1

xex dx.

0

"


$1

 = xex |1 − ex dx = e − ex |1 = 1.
0
0

0



"

#

%
 $

$ "  

I=

#1

x arctg x dx.

0


 u = arctg x; du = 2dx
x +1
I = 
2
dv = x dx; v = x2



=


         
=

1
$1 2
$1

x dx
π 1
1
x2
arctg x −
=

2
2
x2 + 1
8 2
0
0


1−

0

1
x2 + 1


dx =

π 1
π π 1
π 1
= − (x − arctg x)|10 = −
1−
= − .
8 2
8 2
4
4 2



  

   
      
 
   f (x)       [a; b]  
    n           
    ξi     
  

      
 
   y = ex    [a; b]     n 
           ξi   
  




   # x dx     ! 
b

a

   f (x) = x "  [a; b]    n   
  #        ξi   
   




      

I=



$1/2

0






! I =



#3
2


0





ex dx

$1

" I =

dx

1 − x2

dx

x2 + 4

    

$4 √
I=
1

x dx
√ .
1+ x



 

        



y
b
a x

0

 

 


1
b
S=
4
a

$a √

   

a2 − x2 dx.

0

         
1
S = |x = a sin t, x = 0 =⇒ t = 0, x = a =⇒ t = π/2| =
4
$π/2
$π/2
1 + cos 2t
b 2
1
1
πab
π/2
2
= ·a
dt = ab( t + sin 2t)|0 =
.
cos t dt = ab
a
2
2
4
4
0

0

          ! !  " # 
S = πab.

! a = b = R
S = πR2 .

     $ %!   !

  !  %! &  $"  !  !'
 !    ( !)  " &    * * +! ,
-  &  "    $     
a  x  b,
y (x)  y (x).

.     !      !  (  ! 
$b
(y (x) − y (x))dx.

SABCD =
a

+/0,




y



    

y=yb (x)
D

C
B

A
y=yH (x)

0

a

 

 

x

b

     

                
                   

y (x)  y (x)   x ∈ [a; b].
    !  "   #




x = x(t),
y = y(t),
$t2

S=

y(t)x (t) dt.

$%&'

t1

    "   !   $(&)*    
  y = f (x) = y(t), dx = x(t) dt& +"    t1  
    , a, t2 -   , b&
 $%&'          

 

   



x = a(t − sin t),
y = a(1 − cos t)

.    # /,    ,     
!"  t1 = 0  t2 = 2π  & $0&

 

        



y

a
a
t=2π

t=0

  

 

x




$2π

$2π
a(1 − cos t)(a(t − sin t)) dt = a
(1 − cos t)2 dt =


2

0

0


$2π
$2π
1 + cos 2t
= a2 (1 − 2 cos t + cos2 t) dt = a2
1 − 2 cos t +
dt =
2
0
0
2π
3
sin 2t 
2
t − 2 sin t +
= a2
 = 3πa .
2
4
0

              
       r = r(ϕ)   ! "
         OAB #  $$%
A

r
+d

r
α
O

 

r=r(ϕ)


r

B

β

r

         





    

           
 dϕ          
  ! "  dS = 12 r2 dϕ,   
1
S=
2



#$%!&'

r2 dϕ.

α

 $%!&         r = cos 3ϕ

 

π/6

r

 

  

(   )
S =2·

=

1
2

1
2

$π/6
cos2 3ϕ dϕ =
0

$π/6
(1 + cos 6ϕ) dϕ =
0

 
 





 

1
2

ϕ+

π/6
sin 6ϕ 
π
 = 12 .
6
0

         

"      *+ V    ! " 
   ,            

 

        



     Ox.    
  
           x : S = S(x).  
  a  b              
     [a, b]  n    
a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

!     
       Ox.
"
     n     #$   
  % & 
    $    
xi−1  xi  Δvi . ' %
V = Δv1 + Δv2 + · · · + Δvn =

n


Δvi .

i=1

         &
    
$     xi−1  xi . (% #$  &$  #
$  
%         %  [x1 − xi−1    
   

      ξi ∈ [xi−1 , xi]
#$  %     
)  
   * s(ξi )Δxi.
!   #$    &$  *
V ≈

n


+,-,.

s(ξi )Δxi .

i=1

/     #$   
 %   
+,-,.             *
V = lim

λ→0

  

n


+,-0.

s(ξi )Δxi.

i=1

 *
$b
V =

+,-1.

s(x) dx.
a

 ,-,  

2

2

2

  xa2 + yb2 + zc2

= 1.

  2    * 
)     
  
     Ox ($  x = d (d ∈ [−a; a]) ! 

       x = d     

 





z2

y2
+
− d2 )

b2
(a2
a2

   a1 = ab
   

       

c2
(a2 − d2 )
a2

c
b1 = a a2 − d2

a2 − d2 

=1

   

πbc 2
(a − d2 ).
a2
   d = x (−a  x  a)      
S = πa1 b1 =

    !"

S(x) =
# $%&

 !

πbc 2
(a − x2 ).
a2
    '"

$a
V =

$a
S(x) dx = 2π

−a

0

bc
= 2π 2
a

bc 2
(a − x2 ) dx =
a2

a
x3 
4
a x−
= πabc.
3 0 3
2

  ( 
      
    a = b = c = R
     R        
a b  c       
V = 43 πR3 
 

  

) *!    ' *  *  Ox
+*,  -  $./    *0
/ $!  ,   -1 S .*  x  
! * / ! *!

S(x) = πy 2 .
)**  . *    ', 

$b
Vx = π
a

y 2 dx.

 2

 

        



y
y=f(x)

O
a

dS

   

b

x

 

          
     y = (x − 1)2, x = 0, y = 0 
  
  
 
     
x  y y  x
1
$1
π
(x − 1)5 
4
 Vx = π (x − 1) dx = π
 = 5
5
0
0

$1
 Vy = π


( y + 1)2 dy = π

0

  



     

1

y 2 4 3/2
17π
+ y + y  =

2
3
6
0

     

   ! L  "    "  A  "  B   
   #   $ %& '  " A1 , A2 , . . . , An−1 
(
 ! A = A0 ) B = An    !      "     )
* "  + A0 A1 A2 . . . An−1 An 

    ,      L ! 
            "  
       ! #     !  
  $ ! ! #      %
-*  ! ' AB

+ A0 A1 . . . An 



 

       

y
B

A i-1
A1

A n-1
Ai

A

x

 

     

 

       
n


Δli ,

i=1

 Δli     Ai−1Ai      
Δli =

 



(xi − xi−1 )2 + (yi − yi−1 )2 = Δx2i + Δyi2 .

   [xi−1; xi]   
f (xi ) − f (xi−1 ) = f  (ξi )(xi − xi−1 ) 
yi − yi−1 = f  (ξi )(xi − xi−1 )



Δx2i + Δyi2 =



Δyi = f  (ξi )Δxi
Δx2i + f  2 (xi )Δx2i =




1 + f  2 (ξi )Δxi .

    ξi     [xi−1; xi]  
     
             !
"#     $    ""  ξi     
  %  "#&  "  ξi   ' 
 "#  (    

 

        

      
n


Δli =

i=1



n 

1 + f  2 (ξi )Δxi .

            
 [a; b]   

l = lim

1+

n→+∞



i=1

f  2 (ξi )Δxi

$b 
=

1 + f  2 (x)

1 + y  2 dx.

 
 

a

!"# 




1 + y  2 dx.

$%
"&        &  &"' 
 '

* 
(      &    ) &  x=x(t),
y=y(t)
dl =

dl =



dx2 + dy 2 =



x 2 dt2 + y  2 dt2 = x 2 + y  2 dt

  &    ) &  # +"       
$t2 

l=

x 2 (t) + y  2 (t) dt.

t1

( # &    $% 
  


   "    

x = r cos ϕ,
y = r sin ϕ,

  

dx = (r cos ϕ)ϕ dϕ = (r cos ϕ − r sin ϕ) dϕ,
dy = (r sin ϕ)ϕ dϕ = (r sin ϕ + r cos ϕ) dϕ.

 & &  "     " &    $%*  )

dl = r2 + r 2 dϕ,  
   &   "'   ' & 
l=

$β 
α

r2 + r 2 dϕ.

$$





    

    √   y = ln x    
       3.
     

$ 3√
1 + x2
dx.
L=
x

 

 

1

x = tg t =⇒ dx =


$π/3
L=
π/4

=2−

dt
=
sin t cos2 t



$π/3

dt
,
cos2 t

sin2 t + cos2 t
dt =
sin t cos2 t



 t  π/3
1
+ ln tg   =
cos t
2
π/4

π/4

√
π
= 0,92.
2 − ln
3 tg
8

            
     



$2π 
l=a
(t − sin t) 2 + (1 − cos t) 2 dt =
0

$2π 
(1 − cos t)2 + sin2 t dt =
=a
0

$2π 
$2π 
$2π
t
2 t
2(1 − cos t) dt = a
4 sin dt = 2a sin dt =
=a
2
2
0
0
0
2π

t
= −4a cos  = −4a(−1 − 1) = 8a.
2 0

 



      



  
   L     
!" u = f (x; y)   #   $%&   "
L  
  y = y(x)   #'  

 

        

n


f (ξi ; y(ξi ))Δli =

i=1

n





f (ξi ; y(ξi )) 1 + y  2 (ξi )Δxi.



i=1

           
   Δli → 0       n → +∞    
                 u = f (x; y)
             !   
$

$
f (x; y(x))dl =

L

f (x; y(x))dl =

(maxΔli →0)

AB

 ""#    dl =
 

L

  


 

f (ξi ; y(ξi ))Δli,



i=1


1 + y  2 (x) dx

   
 

 

   x = x(t) y = y(t)
x = r cos ϕ y = r sin ϕ    

 !

"! 

$   %%&   !

$

$tB
f (x; y) dl =

AB

tA

$

$ϕB
f (x; y) dl =

#  

  

  '  %! (


f (x(t), y(t)) x 2 (t) + y  2 (t) dt

f (r cos ϕ; r sin ϕ)


r2 (ϕ) + r 2 (ϕ) dϕ,



'

ϕA

AB



n


lim
n→+∞

tA  tB  ϕA  ϕB
A B

   

t

   !



ϕ



 

   $          %
  x = R cos t y = R sin t     A(0; R)     B(R; 0) 
" # f (x; y) = x · y
)  *  

( + %!  

$

$tB
f (x; y) dl =

AB


xy

tA

x 2 (t) + y  2 (t) dt.



 

       

  0 = R cos t 
  tB = π2    R = R cos t

  tA = 0  xt = −R sin t yt = R cos t  
π

$

$2
f (x; y) dl =


R cos t · R sin t R2 sin2 t + R2 cos2 t dt =

0

AB

π

= R3

$2

sin t cos t dt = R3

0


sin2 t  2 R2
.
=
2 0
2

          A  B  
        tA < tB 
           
       AB 
      !
" γ = f (x; y) #     "  f (x; y) 
 P (x; y)  
 $      AB 
 %&   P           " ' 
      () *  %+   !
 Δmi  Ai−1Ai '  ,-)    Δmi ≈ f (xi; yi)Δli

    %+        AB m ≈
n


f (xi; yi )Δli  *    
 !
i=1
       
   ,./     !
   
$
m=
f (x; y) dl.
',.01)
AB

2 f (x; y) = 1   ,.01
     ,.3 
    AB 
 ,.3  
      

y = x2   x ∈ [0; 2]  
     
 γ = 3x
4 $       ,.01    y = 2x  




0

0

$2 √
$2
3 √
2
m = 3x 1 + 4x dx =
1 + 4x2 d(1 + 4x2 ) =
8

 3  2 1
3 2
1 + 4x2 2  = (93/2 − 1) = 6,5.
= ·
8 3
4
0

 

        



               
        
 

   
y

B

dl

y=f(x)
A
O
a

 

dx

b

x

        

      Ox    
   
!   !"      # $    
         % &  '()*
dσ = 2πy dl,  

dx

$b
σ = 2π

y dl = 2π
a

$b 
y 1 + y  2 dx.

&'(+,)

a

 '(+- 
    

      

.     * / ! $ !  %      
  x2 + y2 = R2    Ox. 0    1"   
% '(,        
y 2 = R 2 − x2 .

         
$R
V =π
−R

2

$R

y dx = π
−R

−R

 R  

4
(R2 − x2 )dx = πR3 .
3







 
! 

  

   

x 
y  = − , 1 + (y  )2 =
y

"  #  



      

x2
1+ 2 =
y


x2 + y 2
R
= .
y
y

  $ % 

$R 
$R
R

2
σ = 2π y 1 + y ( )dx = 2π y dx =
y
−R

−R

2
= 2πRx|R
−R = 4πR .

 

  
   
      

&       ! 
 ' (  ( 
) *   + 
    I           
     t I = I(t)          Q
                T  
      
& )   ,  &       [0; T ]    t0 = 0,
t1 , t2 , . . . , tn = T  n #   +   
[t0 ; t1 ], [t1 ; t2 ], . . . , [tn−1 ; tn ].

-.  Δti = ti − ti−1 
/ 0 !    . 
 %    %   τi 
1 2   $     Δti         
 *  3 I(t)     .  %   %   τi $
  I(τi)
4     (     #   $  
)  
   
   
  * 
    $   !  #      
ΔQi ≈ I(τi )Δτi,

   

 
Q≈

n

i=1

I(τi )Δτi .

 

        



     Q
 
      
                 
  
      
n

Q = n→+∞
lim
I(τi )Δτi .
λ→0

i=1

   !  λ "    #$    
%  !  & '()    



$T
Q=

I(t) dt.
0

 *(+     L =   
                
      !" #$   % 
, $   -              
   .
  x /  $    .
 
L − x     (L − x)50
0    #     
 1 
dx #  

dA = −(L − x)50 dx.
-2 #    !  
$L
(L − x)2 L
A = −(L − x)50 dx = 50
 =
2
0
0

= −25L2 = −25 · 1002 = −250000.

   *+ & "     %   
       ' 
 *(3 ("       %" 
 ) V = t2  *"    + %" $ 
,    
,

$





$2
S=
0

2
t3 
t dt =  = 1.
8 0
2







          

        
   



y=2 x

   
 y = 2x   

   

y
y=2x
C 2

A

y=2 x

m

O

B
1

x

  

 



 
      
           !  "
   Ox − OmAB OAB

$b

$1
(y − y )dx =

S=



2 x dx −
0

a

$1
0

   #

1
1 1
4 3/2 

2x dx = x  − x2  = .
3
3
0
0

           !  "
   #
   Oy − OAC
OmAC  $ % &      
  !
 ' (  "   ) " 
    
 (  "   

$2

$2
(x − x )dy =

S=
0

0

y
dy −
2

$2
0

2
2
y2
y3 
1
y2 
dy =  −  = .
4
4 0 12 0 3

         



  



        





x = a cos t,
y = b sin t.

     
           
 
!   "      #  "   

$t2
S=

y(t)x (t) dt.

t1

y
t=π/2 b

-a

O

a
t=0

x

-b

 

  



$  %   "" #&%   ## ' (
 )" "" y = b sin t, dx = d(a cos t) = −a sin t dt t ∈ [ π2 ; 0] #

$0
S = −4ab

sin2 t dt = −2ab

π/2

= −2ab(t −

$0
(1 − cos 2t) dt =

π/2

0

1
sin 2t) = πab.
2
π/2

$   #     *     # ! +
'    "# , "  #,

 -        
! " r = a sin 2ϕ  #









         

            
  α = 0  β = π2    
S=

1
2



ρ2 dϕ =

a2
2

α

 

r = a sin 2ϕ



$π/2
sin2 2ϕ dϕ =
0

π/2
$π/2

1
a2
πa2
a2
.
(1 − cos 4ϕ) dϕ = (ϕ − sin 4ϕ) =
=
4
4
4
8
0
0

r

 

  



          
  y = 2√x  y = 2x    Ox  Oy

      
   !  "    #    $%
 V2  & ' V1 (     )  * OmAB +  V2 (
 ' OAB    Ox
,    ' +

V1

$1
Vx = V1 − V2 = π

4x dx − π
0



$1

2

4x dx = π
0



1
2x2 0

    )    Oy 
  #/% !  x  y  y  x
$b
Vy = π
a

x2 dy.

1 
2
x3 
− 4  = π.
3 0
3

-    .

         

  
$2

Vy = π
0

y2
dy − π
4

$2
0

y4
dy = π
16



  



2
2 

y 5 
y 3 
=
.



12 0 80 0
15

  
     R 
       
              
  x2 +y2 = R2   Ox !"  #  $


x
R 2 − x2 , y  = − ,
y



2
x2 + y 2
R
x
= .
1 + y2 = 1 + 2 =
y
y
y

y=

%$$ #  $   
$b 
S = 2π y 1 + y  2 dx,
a

"

$R
S = 2π

y

−R



R
2
dx = 2πRx|R
−R = 4πR .
y


&       y = ln x (x ∈ [1; 3])
       '    () ) )$
*   + ,-   


$ 3√
l=
1

$π/3
=


 x = tg t
1 + x2
x =√1 ⇒ t =
dx = 
dx = cosdt2 t x = 3 ⇒ t =
x

π/4

$π/3
=
π/4

$π/3

dt
=
sin t cos2 t

sin2 t + cos2 t
dt =
sin t cos2 t

π/4

sin t dt
+
cos2 t

$π/3
π/4

dt
=
sin2 t



 t  π/3
1

+ ln tg   =
cos t
2
π/4

π
4
π
3



=










         



π
1
1
= 2 − 2 − ln 3 − ln tg = 2 − 2 −
2
8
2


1 3( 2 − 1)
≈ 0,91.
= 2 − 2 − ln √
2
2+1

   
   


 

1 − cos π4
ln 3 + ln
1 + cos π4


=

    R   

x = R cos t,
y = R sin t,



 l=

#t2  2
x + y  2 dt =
t1

#2π 
#2π
=
(R cos t) 2 + (R sin t) 2 dt = R dt = 2πR.
0



  



0

  r = 1 − sin ϕ.

 
            
   
  r = − cos ϕ!



r2 + r 2 = (1 − sin ϕ)2 + cos2 ϕ = 2(1 − sin ϕ) =
 
π ϕ
 
π ϕ

+ ϕ = 4 cos2
+
= 2 cos
+
.
= 2 1 + cos
2
4
2
4
2
"   #!

$π/2
l=2
−π/2

2 cos


4

+

 π ϕ π/2
ϕ

dϕ = 8 sin
+
= 8.

2
4
2 −π/2

$ %  &'  ( %     %  '   % ' 
*   + 


)

 ,             
          O
              
         F = −kx  k   
   !   x    "  #   
  "        $    "
 x = a  x = b

         

       
 dx 
  
  



dA

dA = −kx dx.

$b
F (x) dx = −

a

kx dx = −k
a





       

      

$b
A=



  

a  b 

 

k
x2
= (a2 − b2 ).
2
2

  

  !       y = 0

 y = 4 − x
     

y = (x + 2)2

x = R cos3 4t ,

   

y = R sin3 4t .

  "        

r = a(1 + cos ϕ)

  #     

x = 0 y = 0 z = 0 x + y + z = 1
!    x = const 

     
   ! 
     
          
   y2 = x   Ox    x = C 
  $         "
           y = x (y ∈ [0; 1])
  Oy
  %        
          
y = 2x (x ∈ [0; 1])   Ox
  &      y = ax2 (a > 0) 
#       $ x

      



x = R cos3 4t ,
y = R sin3 4t .

  

 





 







   

 I =

$+∞
1

dx





   
$+∞
$b
dx
I=
= lim
x−α dx.
xα b→+∞
1

1

 
     
 α = 1,     !   ln x  b → +∞   "
      #     !
$ α = −1
$b
+∞
1

I = lim
x−α dx = lim
% &'
 .
b→+∞
b→+∞ (1 − α)xα−1 1
1

$ α < 1     #     !
1
#    !
$ α > 1    α−1
  (& ) * +  

y

α=1
y=1/xα

α1

  



,   
     " *     ! 
.
/ 0 / )0*)  %   *)0 ! 
 x > 1 .   . * '



  

&

 I =

$+∞
1

dx

1 + x2

!



 

     

$+∞

I=
1

dx
= lim
1 + x2 b→+∞

$b
1

b
dx

= lim arctg x =
2
b→+∞
1+x
1

= lim (arctg b − arctg 1) =
b→+∞



4

$+∞
I=
4

     
I=

π π
− .
2
4

            

    
$+∞

   

dx
√ = lim
x b→+∞

$b
4

π
.
4

dx
√ .
x



dx
√ = 2 lim x|b4 = 2 lim ( b − 2) = +∞.
b→+∞
b→+∞
x

   !           
"  # $        #% & $ '
 
b
$

$

b

f (x) dx = lim
−∞

(    
 *





f (x) dx.

a→−∞

a

$ 

 #% $   ) '

$+∞
$c
$+∞
f (x) dx =
f (x) dx +
f (x) dx,

−∞

−∞



c

   + ,  )   # 
(    * #          '
 ,
    $ * #  

 

       

$+∞
I=
−∞

     

$0
I=
−∞

arctg x dx
+
1 + x2

$+∞
0

arctg x dx
.
1 + x2

arctg x dx
.
1 + x2

  

 

 
$0
−∞



    

arctg x dx
= lim
a→−∞
1 + x2

$0

0
arctg x dx
1

lim arctg 2 x =
=
2
1+x
2 a→−∞
a

a

=−

1
π2
lim arctg 2 a = − .
2 a→−∞
8

      
$+∞
0

arctg x dx
= lim
b→+∞
1 + x2
=



$b

b
2
arctg x dx
1

lim arctg x =
=
2
1+x
2 b→+∞
0

0

2
1
π2
lim arctg b = .
2 b→+∞
8

I =−

π2 π2
+
= 0.
8
8

               
 !" #   
   

          
 !" $    
$+∞
−∞

t = arctg x =⇒ dt =



'       '(

dx
, x = −∞ =⇒
1 + x2

⇒ t = −π/2, x = +∞ =⇒ t = π/2.
$+∞
−∞

dx
=
1 + x2

 

dx
.
1 + x2

% &  
   ' 
          

)



$π/2
−π/2

π/2

dt = t
= π.
−π/2



 

   

    
    
         
$+∞
+∞

f (x) dx = F (x)
= F (+∞) − F (a),
a

a

  



 

F (+∞) = lim F (x).
x→+∞





  



 f (x)      [a, b)    
b             
$b
f (x) dx
a

   !
" #  $ %  b  % b − ε (ε > 0)   

 f (x)      [a; b − ε]
$b−ε
 & ' %  (
f (x) dx
) *%  +( '

$b

a

(  (  ε → 0,

$b−ε
f (x) dx = lim
f (x) dx
ε→0

a

- ./

a

0   !   (   %

 1   2  (2   ( $
- / &     ( $ -   3
/



4

   I =

$1
0

dx
.
x−1

1
5  6   ,  (  
 x−1
    
x = 1 7 % (   !  (  +
$1
$1−ε
1−ε
dx
dx

= lim
= lim ln |x − 1|
I=
= lim ln ε = −∞.
ε→0
x − 1 ε→0
x − 1 ε→0
0
0

0

  

 



        
         f (x)    (a; b] 
#b
  f (x) dx  
a

$b

$b
f (x) dx = lim

ε→0
a+ε

a

 !

f (x) dx

  " # x = c     # [a; b] 
$b

$c
f (x) dx =

a

$b
f (x) dx +

a

 $

f (x) dx.
c

%    & "   #  ' 
( )    & " 

  $ 

   



$1
−1

dx
.
x2

*  +   ,       #   " x = 0
#0
#1 dx
 .  )  /
,-' ' '     xdx
x
−1
0
 " )    ( 0
2

$1
0

dx
= lim
ε→0
x2

$1

2

dx
1
1
= − lim |1ε = − lim 1 −
ε→0 x
ε→0
x2
ε


= +∞.

ε

    (    

$1
−1

dx

x2

    1         
               


$1

−1

1
dx
1 
=

= −2.
x2
x −1

!  " #             
  $



 

   

             
            
  
 



   
   
   
    
      
     
   

$       [a; +∞) 
       

! 
    
a

   

 

ϕ(x)

+∞
#

    

           
        

           
            
 
     !"  
            #

f (x)

0  ϕ(x)  f (x).
+∞
#

f (x) dx

  "

      

ϕ(x) dx

  "

     

a

ϕ(x) dx

    


+∞
#

+∞
#
a

f (x) dx;

a



%

#          $ I =

$+∞
1

+∞
#
1



&



dx
x2 +1

dx
.
x3 + 1

 ' & 

(   )*         
+∞
# dx
   +     [1; +∞) x31+1  x21+1     
x3 +1

,   

1

  )    f (x)  ϕ(x)     [a; b)
       
0  ϕ(x)  f (x), 
 % x = b  &

  

 


 
#b
a

a

f (x) dx

a

    

 

#b

 

ϕ(x) dx

 
#b

#b

 



 

 

0

ϕ(x) dx

  

f (x) dx



$1


3

I=
0



       

  

dx
.
1 − x5

      
     [0; 1)
           x = 1 ! "  
1

#     [0; 1)  $%       
3
1−x
  x = 1
& ' √
0  1 √  x5  x  1 − x5  1 − x
1
1
(    3 1 − x5  3 1 − x  √
 √

3
3
1−x
1−x5
1
)  * 
  √
  #
3
1−x5
1
[0; 1)   √

3
1−x
$1
dx

+   I =
3
1−x
0

$1−ε

3

I = lim

ε→0
0


 3
dx
3
= − lim ε2/3 − 1 = .
2 ε→0
2
1−x

)   ' *  '

  '

  

  
     
     
+ ,,           '      # '   . * &* /  0 1
  %   .      / 












 



 

  

 

  

u1 + u2 +, · · · , +un + · · · ,

 

  

x = 1, 2, · · · n, · · ·

    f (x)        
  [1; +∞),  
u1 = f (1), u2 = f (2), · · · , un = f (n), · · · .

  

   

$+∞
I=
f (x)dx.

 

1

        
!"   
    #
$%& '    ()*%*+  '  ()*%,+%
-%&  '    ()*%*+   '  ()*%,+%
    .  '     /
  
1
1
1
1
+ α + α + ··· α + ··· ,
α
1
2
3
n
$+∞
dx
         I =
.


  

1

  α > 1    α  1.
           α > 1   
α  1.

         
 

 
 !  " #  $! !   %
   $
&     '( # '  !
!

 



0    
I=

$+∞
e−αx dx.
0

           



     

$+∞
$b
−αx
e−αx dx =
I=
e
dx = lim
b→+∞

0

0



1
= − lim e−bx − 1 =
α b→+∞





1

b→+∞ e

lim e−αb = lim

α > 0

b→+∞

b → +∞.

 α > 0,
 p < 0.

1
,
α

+∞,
= 0,

ebα −→ +∞

 

     α = 0       
                α > 0 
      α1 .  α  0        
 
     
I=

$+∞
cos x dx.
0



  

       
+∞

I = sin x 0 = sin(+∞) − sin 0.

 sin x  x → +∞             
       ! "  #  $  


%

  
$1



dx
.
1 + x2

I=
−∞





I = arctg x 1−∞ = arctg 1 − arctg(−∞) = π/4 + π/2 = 3π/4.

&'   "  "  

lim arctg x = π/2.

x→+∞

! "  #  $  




  
$+∞

I=
−∞



 3π/4.

arctg2 x dx
.
1 + x2









 

  

             
              
$0
I = I1 + I2 =

  
$0

I1 =

arctg 2 x d(arctg x) =

−∞

I2 =

−∞

arctg2 x dx
+
1 + x2

$+∞
0

 



arctg2 x dx
.
1 + x2


1
1
arctg 3 x 0−∞ = (0 − (−π/2)3 ) = π 3 /24,
3
3

$+∞

1
1
arctg 2 x d(arctg x) = arctg 3 x −∞
= ((π/2)3 − 0) = π 3 /24.
0
3
3
0

  
 

                
I = I1 + I2 = π 3 /24 + π 3 /24 = π 3 /12.

!                 
          "       #
           
 $%&     

$+∞

I=
0

dx
.
1 + x3

     
!  '" [1; +∞)     (")  
     "   *
    $%+
1
1

.
3
1+x
1 + x2

, - "        .   " 
             "/
 $%0     

I=

$+∞
2
e−x dx.
0

#



          



      
          
    
       
(x − 1)2  0 =⇒ x2 − 2x + 1  0 =⇒ −x2  −2x + 1.

  ! ex    " 
e−x  e−2x+1   e−x  e · e−2x .
  #$%  " & 
2

2

I=

$+∞
e−2x dx
0

         '  
(       '" )      
   !
 #$*     

$+∞
I=
1

arctg x dx
.
x

     
   '  
$+∞
I1 =
1

dx
.
x

 +" &   
$+∞
I1 =
1


dx
= ln x +∞
= ln(+∞) = +∞.
1
x

x
  &      &  a arctg
> x1 ,    
x
    '   
  &, &"  -,     
 
 #$.          m  

                F

=

m
x2











 

  

 

   M          Ox
    x      
    A          
    M          x = a
     
             
       
     
$+∞
mdx
m
m
A=
− 2 = +∞
=− .
x
x a
a
a

 !    "  !   ##$ % 
 &''     
$1
I=
0

dx
√ .
x

      (  x → 0 #"   %  √1x
"     )      #     [; 1].
      " "     ##$ % 
!!
$1

I = lim
→0

√ 

dx
√ = 2 lim x 1 = 2(1 − lim ) = 2.
→0
→0
x

*   "  $    !
 &'+,     
$2
I=
0

dx
.
x−1

      (          "  
-! ! "   
$1
I = I1 + I2 =
0

dx
+
x−1

$2
1

dx
.
x−1

           



              
       
    I1 :
$1−

I1 = lim
→0

0


dx
= lim ln |x − 1| 1−
= lim ln  = −∞.
0
→0
→0
x−1

    I1               
  I2   !     
+∞


 "#$$ 

1
√  
    
n n
n=1

        
%  &   ' (   "#"  Un = f (n) = n√1 n  
      )*    !  
$+∞

I=
1

dx
√ =
x x

,"#-.  

$+∞
1

$+∞
1

   

   α = 3/2  +    

dx
x3/2
dx
x2

      

 /&    



0!     !   

 "#$-
 "#$1

+∞
#

sin xdx.

0

$+∞
0

 "#$"

$+∞
0

+∞

n=1

    

1
√ .
n n

  

    

 "#$2

$2

0

dx
.
2−x

dx
.
a2 + b2 x2
xdx
.
c2 + x2



 "#$3

$2
1

dx
.
x ln x



 







$27
−8







$1
0











dx

.
3
x











$+∞



−∞

dx
.
x2 + 2x + 2

arcsin x dx

.
1 − x2

     

$+∞
1



      

x3 + 1
dx.
x4

+∞
# √

xe−x dx.

0







$1

3



0





$1



x2 dx
.
(1 − x2 )5

dx
.
e −1


0

x

      
1
1
1
1
+
+
+ ··· ,+
+ ··· .

2 ln 2 3 ln 3 4 ln 4
n ln n



     
     

     
 !"  #  $!  %&
'  ()   
   *+ 


 



 

,  '  " 

-"  

#b

f (x) dx .  /&

a

! f (x)       0 [a; b]   1  ' "  -   &
'0 F (x)   /  2+ &3 "'! 4 5

$b
f (x) dx = F (b) − F (a).
a

.  1   '0   1  ' "    /! f (x)
0  /)    ' ) 
 )     &
' +  ' 1  /    )      1  '
    ' % "

 

         



           
                
     !"      
       "  !  #   
$        %  &   f (x)
     ' (  
)  &       "      
!        "    
         )     
&  "           

%    " 
f (x)  0   x ∈ [a; b].
*+,-.
/!   [a; b]  n $   
x0 = a < x1 < x2 < . . . < xn = b.

0  h      h = b−a

n
         !    % ! 
     y = f (x)  $ A0, A1, A2 , . . . , Ai−1, Ai, . . . ,
An−1 An 
 

   
y
y=f(x)
h

y0 y1
0

a
x1 x2

 

yn
b x
xn-1 xn

      

1     y = f (x)  "   2  3
           !    n



 



     

   
$b
f (x)dx ≈ y1 h + y2 h + · · · yn h = h

n




yi .

i=1

a

    y = f (x) 
    !

     

$b
f (x)dx ≈ y0 h + y1 h + · · · yn−1 h = h

yi .



i=0

a

"# 

n−1




 #  !



 

 
 
$%
%# %  %  
%    #&
    y = f (x)
 
   '(% )*
        +      [xi−1; xi ]  
(%   +  
   &  Ai−1 Ai   ,
ΔSi =

yi−1 + yi
· Δxi .
2
Ai

y=f(x)
Ai-1

x
xi-1

 
-% (%

 

xi

     
   +  
   
   (%    

A0 A1 A2 · · · An .%  .  

 +

 

    f (x) 



#b
a

f (x) dx

'    %%   (% ! # 
  *
    (%   #&  +  
 #&
 &    )  

 

         



           
              
               
 
!    "    #    $
    #    h
%      
Sn =

y1 + y2
yi−1 + yi
yn−1 + yn
y0 + y1
h+
h+ ...+
h+ ...+
h.
2
2
2
2

 

&  '#


Sn = h


n−1
y0 + yn 
+
yi .
2
i=1

(# & # ## & )'* + #''   
)   


$b
f (x) dx ≈ h
a

y0 + yn 
+
yi
2
i=1
n−1

#'* + #'
 


,

 h = b −n a ,

,-.

  
   

   

  #     )  n = 2m $#)# 
#*  '   '' #     ,,
Mср

y=f(x)
Mп
y=Ax2+Bx+C




yср

yп



x ср

xп

 

   

x



/&      &# x  x 
   " x
'     f (x) #    '*  M  M  M



 

 

     

 
y = Ax2 + Bx + C.

 

$x

     



x − x
Ax2 + Bx + C dx =
(y + 4y + y ).
6

x

                
     !
" # 
Sn = (y0 + 4y1 + y2 )

b−a
b−a
+ (y1 + 4y2 + y3 )
+ ...+
6m
6m

b−a
+(ym−2 + 4y2m−1 + y2m )
=
6m


m−1
m


b−a
=
(y0 + y2m ) + 2
y2i + 4
y2i−1 .
6m
i=1
i=1

$  
$b

h
f (x) dx ≈
3


y0 + y2m + 2

m−1


y2i + 4

i=1

a

 h = b−a
!
2m
)     
 &'!,  
$b
f (x) dx = lim

λ→0
(n→+∞)

a

m



y2i−1

,

%&'!&(

i=1

  *  + !

n


f (ξi )Δxi.

i=1

       
$b
f (x) dx ≈
a

n


f (ξi )Δxi ≈ h

i=1

 h = Δxi = b −n a .

n

i=1

f (ξi ),

%&'!-(

 

         



 
         
            
  ξi .

            
             !" 
  


y

y=f(x)

y0
h

0

 

 

x

      

#    $  "   " " %  
&' ()*    + , , "     
$h
|y − y0 | dx.

δh =
0

-   .    ,       
$           
  /
y = y0 + y  (ξ)x.

-$ 

$h
δh =
0

|y  (ξ|x dx 

M1 h2
,
2

 M 0 * )      y
  [a; b].
1     
1

= f (x)





 

     

n=
 

b−a
,
h



       

n

 

M1 nh2
,
δ  δh · n 
2
 

! 

δ
#

b−a
M1 h.
2

  $  !  

 &

 

%  %  





b−a
M2 h2 ,
12
b−a
M4 h4 .
δ 
180
Mk = max |f (k) (x)|

δ

) *+

 +

, 
&

"





     !
-  - 

 

!.

'
(


[a; b].
   

 

! ! %   %/

  0

 b

$



 f (x) dx − I2n   |I2n − In | .


15



((

a

1 !
  



     -0 *+

2 !       
2      0 ! !
 % - 

 !  /


% 



n



2n

      ! /



#1

 (   

 I = 3x2dx    
0
       !   "# $  % 
 &  h = n1 = 0, 1 '"  &(  #
3



  4 % .    

$  !0    



I=

#1
0



  %

    

3x2 dx = x3 |10 = 1 & 0

! 0  .  

.  5

 

I = 0,3(0,01 +

 

         



+ 0,04 + 0,09 + 0,16 + 0,25 + 0,36 + 0,49 + 0,64 + 0,81 + 1) = 1,155  
I = 0,3(0 + 0,01 + 0,04 + 0,09 + 0,16 + 0,25 + 0,36 + 0,49 + 0,64 + 0,81) =
0+1
    I = 0,3(
+ 0,01 + 0,04 + 0,09 +
= 0,855  
2
+ 0,16 + 0,25 + 0,36 + 0,49 + 0,64 + 0,81 + 1) = 1,005   




 

 

  !

 

I = 0,1(0 + 1 + 2(0,04 + 0,16 + 0,36 + 0,64) + 4(0,01 + 0,09 + 0,025 +
+ 0,049 + 0,081)) = 1.
"!

!#  $  % 



f (x) = 3x2 f  (x) = 6x f  (x) = 6 f  (x) = f IV (x) = 0 
   [0,1]  
M1 = 6 M2 = 6 M4 = 0   # 





& '(



 )* !  



  #

 %

   



#+

b−a
1
M1 h = · 6 · 0,1 = 0,3,
2
2
b−a
1
M2 h2 =
· 6 · 0,01 = 0,005,
- δ 
12
12
b−a
M4 h4 = 0
( δ 
180

 &





.

δ



0,155 < 0,3

#

 

)*

0,145 < 0,3



# )*   
#  !# )*
) % 
! #



 #

 %

0 !# 
 





/

  

 

  1 2  





! #

  #  # #



  1


   
    
           !  ! !"!#
!       $ 3      %
 &     ' %   " "

 (     &        #
" ! )*+  "        #
#1
" !    I = cos x dx    ' δ  0,0001?
/

/

0

3  )    + 4   %  # 567(
*) ! $  $+

M1 = M2 = M4 = 1,
# %

!*

# )*   )

10−4

!# !







     

   

 

h  0,0002 =⇒ n 

1
= 5000.
0,0002

   


1
0,0012 =⇒ n  √
≈ 29.
0,0012

h

     

h

 


4

0,0180 =⇒ n  √
4

 

 

1
≈ 2.
0,0180

 

! " #$%   &$"   "% &   
 
 '$  "    (    " )
 "*+     $"     ,   " -
&$"   "%        " '    ./
.  
 "*+   0#

$b 
+∞
a

n=0

 f (n) (a) (x − a)n+1 b
f (n) (a)
(x − a)n dx =
 =
n!
n!
n+1
a
n=0
+∞

=





 δ = 0,005

+∞

f (n) (a)
(b − a)n+1 .
(n
+
1)!
n=0

   



Φ(x) =

#x
0

2

e−x dx

  

1  0   2 ! 3 '   4      5 1'$
"   * ( *   " 6 2

$x

−x2

e
0

$x
dx =
0

(1 − x2 +

x4 x6 x8
x2n

+
+ . . . + (−1)n
+ . . .) dx.
2!
3!
4!
n!

7    $"       &"  -, 
x = 1 .2

           




x4 x6 x8

+
+ · · · dx =
e
dx =
1−x +
2
6
24
0
0

1

1
1 x3 
1
1
x9 
1 1

1 x5 1 x7 
= x  − 0 +
−· · · .
+
 −· · · = 1− + − +
0−




3
10
42 0 216
3 10 42 216
0
$1

$1

−x2

2

0


    
             
           
   !  2161 < 0,005     0,005
I =1−

1
1
1
78
+

=
.
3 10 42
105

           
   
         

 "#$
 "#%
 "#&
 "#'

$
$
$
$

x dx
.
3x2 − 11x + 2

x3 + 5
dx.
x3 − x2 + 4x − 4

 "#" tg5 x dx.
 "#( 


√
1

arcsin x

dx.
x+1


$

$4

3x2 + 1
dx.
+x+8

x3

x

x+1

   

dx.

 "#)       

+∞

n=2

ln n
.
n(1 + ln4 n)











x = −2 y = −x y = x12 .

 



      

    

       
           
R = 10         
  
 
       






 

           
     
$
$
(3x2 + 1)dx
d(x3 + x + 8)
=
=
3
x +x+8
x3 + x + 8
$
= d ln |x3 + x + 8| = ln |x3 + x + 8| + C.





!

 
 "#   #       
  #  $# %&''(


$
1


u = arcsin x, du = √1−x
arcsin x


2 dx



dx = 
=
dx

 dv = x+1 = d(2 x + 1) → v = 2 x + 1 
x+1

$ √

x+1

dx = 2 x + 1 arcsin x−
2
1−x


= 2 x + 1 arcsin x + 4 1 − x + C.


= 2 x + 1 arcsin x − 2
$


−2



dx
1−x



'



 )       #   # *
+    ,-$
 
  ' &.' *
    t = 12 (3x2 − 11x + 2) = 3x − 11
/ +  
2
11
z = 3t = x − 11
/

x
=
z
+
/
dx
=
dz

"/

  
6
6
    ,-$  3x2 − 11x + 2 = 3(x2 − 11
x
+ 23 ) =
3

           

121




= 3 z2 −




97

= 3 (x − 11
  x  z + 116   dx 
)2 + 23 − 36
6
36
dz 

$
$
$
xdx
1
zdz
dz
11



=√
+ √
=
3x2 − 11x + 2
3
z 2 − 97/36 6 3
z 2 − 97/36

11
1  2
z − 97/36 + √ ln |z + z 2 − 97/36| + C =
=√
3
6 3




1
2 11 
11
2 2 
11
11
2
2
=√
ln x −
+ x − x + +  + C.
x − x+ +

3
3
6
6
3
3 3
3

 
                
    !    "#      
           x3 −x2 +4x−4 =
= x2 (x − 1) + 4(x − 1) = (x − 1)(x2 + 4)      $  
 $! % 

$

x3 + 5
dx =
x3 − x2 + 4x − 4

$

1+

x2 − 4x + 9
(x − 1)(x2 + 4)



dx.

x2 − 4x + 9
A
Bx + C
=
+ 2
=
(x − 1)(x2 + 4)
x−1
x +4
=

A(x2 + 4) + (x − 1)(Bx + C)

(x − 1)(x2 + 4)

⇒ A(x2 + 4) + (x − 1)(Bx + C) = x2 − 4x + 9.
        x = 1
 5A = 6 → A = 6/5
 x = 0  4A − C = 9 → C = 4A − 9 = −21/5 & $ !
  $ '(( !   x2

A + B = 1 → B = 1 − A = − 15 

)$  "  $ 
$

3

x +5
dx =
x3 − x2 + 4x − 4
=x+


$

1+

6
1 x + 21

5(x − 1) 5 x2 + 4


dx =

6
1
x
21
ln |x − 1| −
ln(x2 + 4) −
arctg + C.
5
10
10
2

 









     

        
       
      tg x         
dz
 tg x = z! x = arctg z! dx = 1+z
! "
$

$

5

tg xdx =

5

z
dz =
z2 + 1

2


z4 z2
z
dz =
− +
z −z+ 2
z +1
4
2

$

3

tg4 x tg2 x 1
1

+ ln(tg2 x + 1) + C =
+ ln(z 2 + 1) + C =
2
4
2
2
tg4 x tg2 x
=

− ln | cos x| + C,
4
2
 
 #   " ! " ln(tg2 x + 1) = ln cos12 x =
= −2 ln | cos x|

 $%

        
  
    #

   

1
1
1
1
xm (a + bxn )p = x1/2 (x1/2 + 1)− 2 → m = ; n = ; p = − , a = b = 1.
2
2
2

      "   %  
      
  

m+1
n

=

1
+1
2



x + 1 = z 2 → x = z 2 − 1,

dx
√ = 2zdz, xdx = 4xzdz = 4z(z 2 − 1)2 dz.
2 x
&'"      ( x  

   !
$4


√

1

x

x+1


=4 3

"


dx = 4

$3



2

4

2



z − 2z + 1 dz = 4

=3

1/2



√3

z5 2 3
− z + z √ =
5
3
2





√ 4 4
16 3 28 2
9
−2+1 −4 2
− +1 =

=
5
5 3
5
15

√ 

7 2
4
4 3−
≈ 2,903.
=
5
3

 $)



           



                   
         
$+∞
2

$+∞

ln x
dx =
x(1 + ln4 x)

2

1
ln x
d ln x =
4
2
1 + ln x

$+∞
2

d ln2 x
=
1 + ln4 x

+∞


1 π
1
2 
− arctg ln2 2 .
=
= arctg ln x
2
2 2
2
+∞


ln n

      ! "  !    "!
#
n(1 + ln4 n)
n=2
$  ! "
 %&'
         !    ( 
)*+   %, - . ( '/  !  !     #
! ( xB = −1 !  (0  1!
y=1

-x

y=

C

/x 2

y

B
A
-2

-1

$−1
−x −
−2

1
x2


dx =

x

 

 
SABC =

0



−1
x2 1 
4 1
1
+
= − − 1 + + = 1.
2
x −2
2
2 2

 %&

         !   2    
 %' 3  "     !" 0  " !   Δx
  ( x  
 2
 x + y 2 = R2
ΔA = gxΔm = gxρΔV ≈ γxπy Δx =  2
y = R 2 − x2
2



=






-R

0



      

R

y
x
x+ Δ x

x

 

R

 

= πγx(R2 − x2 )Δx.

      

R
x4 

A = πγ(R x − x )dx = πγ R
=
2
4 0
0

πγR4
π
R4 R4

=
= 107   ≈ 7854000 
= πγ
2
4
4
4
        γ = 1 3 = 103 3 
$R

2

3

2x

2

        
          

.
 

           
























 

$16


1

$
$

  

dx
.
3 cos2 x + 4 sin2 x



(x + 1)ex dx.
$



4 − 3x
dx.
2
5x + 6x + 18





$





dx
.
−1

x4
$



sin2 x
dx.
cos4 x

   

dx
√ .
x(1 + 4 x)3







r = 2(1 − sin ϕ).

       

+∞

n
.
3n2
n=1

            

               
      R   H       ! 
    γ  

 
  

 


    S =

ΔSi

n


ΔSi    

i=1

λi   ΔSi  
        
        ΔSi 

       λ  
max λi .
     ΔSi λ = i=1,2,···
,n



! "  # λ → 0   "# λi → 0
$       " % "   
Pi ∈ ΔSi        ξi , ηi &# '( $ # f (Pi ) =
f (ξi ; ηi ) !   " f (ξi ; ηi )ΔSi  ## " #
n

f (ξi ; ηi )ΔSi  "#      ΔSi .
i=1

  f (ξi; ηi)ΔSi   n  
i=1
          z = f (x, y)   
 S
  *        f (x, y) 
  S  
    n  
n

   f (ξi; ηi)ΔSi   !  !  !
i=1
 "  ΔSi    !     λ 
  #

 

n

)

+    

 #,

##

f (x, y)ds     "#

S

##
  ,   #  S    ΔSi  " 
Pi ∈ ΔSi  -    
$$
n

lim
f

;
η
)ΔS
=
f (x, y)ds.
i i
i
n→+∞,
λ→0

i=1


 

&  (

S

##
.#  
 "  #,   "     S /   0
#   " , f (x, y) /     1 ds / 0
    f (x, y)ds /     "  ! "0
n

  " # #",   ,
ΔSi = S   #"  
i=1

lim
n→+∞,
λ→0

n

i=1

$$

ΔSi =

ds = S,
S

& )(





 

   
S
          
  

   
      S
##
  z = f (x, y)       f (x, y)ds   
S

          !   " # z =
= f (x, y) $   
    S 

 

           

% $  &  " # '( z = f (x, y)     
)     z = f (x, y)  0   
S  * !  

σ
! 
)
 
 
z = f (x, y) "        Oxy  S &  +,(
- ! Pi ∈ ΔSi      "  ! Mi ∈ σ   
  Oxy 

z
Mi σ
ζi

ηi
y

0
ξi

Pi S

x

  

       

.  ζi = f (ξi ; ηi ) = Pi Mi       f (ξi ; ηi )ΔSi = ζi ΔSi
   /0  "       ΔSi $   Pi Mi = ζi 
n
n


1  
f (ξi ; ηi )ΔSi =
ζi ΔSi     /0
n=1

n=1

  2 ! 3  Vn     

) "    

 

 

  
lim

n→+∞

n




   
$$

f (ξi ; ηi )ΔSi =

i=1

f (x, y)ds = lim Vn = V,
n→+∞

S

 V   
    
    
        Oz   S   
  σ   ! "#$      
  %$       f (x, y)  0  S 
  

  

 

&$      !! '   $  #
$"   (          
)        #    ('  &   )
!  
• &$'    '  !   
  *
$$

$$

kf (x, y)ds = k

f (x, y)ds,

S



S

+      '  !%
      !% *

$$

$$

(f (x, y) + ϕ(x, y))ds =
S



 

  '

$$

f (x, y)ds +
S

• ,
##   )  
f (x, y)ds  0


k = 0.

ϕ(x, y)ds.
S

 $ f (x, y)  0  

S

,   )    $ m  M $ $"$ 
  -  ) - ###$   !%
f (x, y)  m  f (x, y)  M   mS 
f (x, y)ds  MS 
S
.   (  %! m    

,  )    $ S = Sj  
j=1

$$
f (x, y)ds =
S

m $$

j=1 S
i

f (x, y)ds.







 

       f (x, y) 
  
  S     S         
  ##
 P (ξ; η)       
f (ξ, η) = S1
f (x, y)ds        
S
        f (x; y; z)   S.

 

 

       

    

            
  !   "!    #  
!
               
    f (x, y)  0 !      
       $     f (x, y)  0  S  
      % 
 %    
      S      
y = y (x)  ! & y = y (x)         

 x = a  x = b '  ()*   %
 x = const  
   Oy    a < x < b     !
  
   "  $      y = y (x) 
  !   
   "   !    
y = y (x) +     () ,     $
-./    -0/
y

x=const
y=yB (x)
K
B

A

S
D

C

E
a

b

  

  

y=yH(x)
x

  



Oy

 1)2  S      
 a < x < b     y y = y (x)  y = y(x) 
       OY  x = const    ! !"
         Oy

 

 



 A  D    B  C     
        y = y (x)  y = y(x)
       f (x, y)  0   S  
    f (x, y)   S      !  "
           S     σ
 #$ 
z

z=f(x,y)
σ A’
K’

D’
E’
C’

B’

D

a

y

A
K

E
S

b

C

x

B

    

 

 x = 

%   &    ' x = ()*+,    "
   EE K K  -.   #$  - 
    #/
y #(x)
01 &      Q(x) =
f (x, y)dy   & x
y (x)
    2 !   ABCDAB C D  - "
1'               34# 5
$b
V =

$b
Q(x) dx =

a

a





y$ (x)




f (x, y)dy ⎠ dx.

y (x)





 

z
z=f(x,y)
E’

K’
y=yB (x)

Q(x)
y=yH (x)
0

E

y

K

   x = 

 

       
$b

y$ (x)

dx

V =

f (x, y)dy.

y (x)

a

        f (x, y)  0 :
$$

f (x, y)ds.

V =

  

S

    V     

  
         
       y    x
$$

$b
f (x, y)ds =

y$ (x)

dx
a

S

f (x, y)dy.



 !

y (x)

" #    $        
    #   $  % &    '(
 $   x = )*+,-  y = )*+,-    &   S
    &  $   ./!
" 0  1   ! 2   
$$

$b
f (x, y)ds =

S

$d
dx

a

f (x, y)dy.
c

/!

 

 



y

d
S
c

0

a

    



  dxdy
  



= ds

x

b

        

        
          

  
         f (x, y) 
(x,y)
x = const      F (x, y)      ∂F∂y
= f (x, y)
          y   
    x   
!    
"#

$b

$(x) (x)
$b
y

dx
f (x, y)dy = F (x, y) dx =
y

y (x)

a

a

y

  "

$b
(F (x, y (x)) − F (x, y (x))) dx.

=
a

$    %      &          '
(
       
 x     &     )  
  %   
     )     S     !(
      ) !  
  S
)  (
%    %   Oy    %
 
!
Si      )     )          

  *     %   
   +
 S '      a  x  c      
  y = y2 (x)

  y = y1 (x)  c  x  b  





 

y
y=yB (x)

y=yB (x)
2

1

S1 S2

S3
y=yH (x)
y=yH (x)
2

1

a

0

c d

b

x

            

  
   a  x  d  y = y 1 (x) 
d  x  b  y = y 2 (x)            S  
S1 , S2 , S3 
  

$$

$$
f (x, y)ds =

S

$$
f (x, y)ds +

S1

$c

y$1 (x)

dx

=
a

y1 (x)

$$
f (x, y)ds +

f (x, y)ds =

S2

$d

f (x, y)dy +

S3

y$1 (x)

dx
c

  

y2 (x)

$b

f (x, y)dy +

y$2 (x)

dx

f (x, y)dy.

y2 (x)

d

##

 
S
      O(0; 0) A(1; 1) B(1; 0)

(x + y)ds

 S

       
 
      
 !
" y = 0 x = 1 y = x #     x = const 0 < x < 1
$  %   &
   
       '% ()*
 %  + y = y (x) = 0 
   
 '% (,*  % !
 + y = y (x) = x -
    S   '  ' 
x  " .  /  001

              
y



A(1;1)

x=const

y=x

O(0;0)

y=0

B(1;0) x

 

 

  
$$

$1
(x + y)ds =
0

S

$1
=
0

$x
dx
0

3
(x + x /2)dx =
2
2

2

$1
(x + y)dy =

x

(xy + y 2 /2) dx =
0

0

$1

x2 dx =

0

1
3 x3 
1
= .

2 3 0 2

           
  

         
            
 

   # dx # (x2 + 3y2)dy.
2

0

1

0

    ! "#        
#1
  (x2 + 3y2)dy   x    
0
 y    $    % & '%  x   





 





 

 

    


$2

$1
dx

0

(x2 + 3y 2 )dy =

0

$2
=



1

(x2 y + y 3 ) dx =
0

0

2

14
x3
8
+ x  = + 2 = .
3
3
3
0

(x2 + 1)dx =

0



$2

 

$2

$x
dx

1

x2 dy
.
y2

1/x

                
   !  x = "#$%& x2  '  ' (  (
     (  ! !  !  ' 
     
$2

x2 dx

1

$x

dy
=
y2

1/x

$2
=

$2

x2 −

1

(x3 − x)dx =

1

x

$2
1 
1
2
dx =
dx
=
x
x

y 1/x
x
1

2
9
x4 x2 
1 1

=4−2− + = .
4
2 1
4 2
4

    '  )  *   '    
       ! S  ('   +
  



 )



#3
1

dx

x+9
#

f (x, y)dy.

x2

       ,   

x+9
#
x2

f (x, y)dy  ! 

! x = const   -#. ! /    y = x2 
01     ! S (   +
! -2.  ! y = x + 9 01    S  3+
4'     ! S  x  !0 ! !' x = 1 
x = 3 5      !  !

              
x=1

y

10



y=x+9

B
C

x=const

A

2

1

D

0

1

 

x=3

y=x

x

3

 

y = x2 y = x + 9 x = 1  x = 3
  S   



   

y = x+9 





   

x=1



x=3

  ! "#  $%! &# '   

y
y= 25-x

2

y=- 25-x

 



+ ,



#3
−4



dx

25−x
# 2


− 25−x2

x

x=3

x=-4

x=const

( ! #  )%!*#

 
f (x; y)dy.

2



  

 





y = x2









 

 

    


25−x
# 2

           √
f (x; y)dy    
− 25−x
  x = const √
             
    y = − 25 − x2 → x2 + y2 = 25!     
x    "        
√S #!    $
 %     &      y = 25 − x2 → x2 + y2 = 25!
  "    S  ' ( )*        
S  x     * x = −4  x = 3' + ! $
              x2 +y2 = 25   *$
 x = −4  x = 3' ,    # #        
S  ' -.
/       x2 + y2 = 25   * x = −4 
x = 3    * A(−4; 3), B(3; 4), C(3; −4)  D(−4; −3)'
2


$4

 01'0 

$y
dy

   

2

 01'- 
   

0

$4

$2
dx

3

 01'2 

  

$2

1

x2

y3
dx 
+ y2

dy
(x + y)2

$2x
dx (2x−y)dy

   

    
    

   
    301'.4  301'54       *! 
 "          # #  &    '
1

 01'.
 01'5



$2

$ 4x
dx

0

$1
0

x


2x−x2

f (x, y)dy 


2
$3−y
dy
f (x, y)dx
y/2

$

 

      

 



      


 
    
         
       
    
       
 
       
       



    
 
     "     # $
##
 %&' 
  (x + y)ds   S 
S
      O(0; 0), A(1; 1), B(0; 2)



!

y B(0;2)

x=const
y=2-x
A(1;1)

y=x
x

O(0;0)

 

 

(  )    * +$     , 
 x = 0, y = x, y = 2 − x  -.
!    "   /  )  %'' 
2−x
##
#1
#
#1
  # $"   (x+y)ds = dx (x+y)dy = (xy+
+y

2

/2)|2−x
x dx

− x2 −

x2
)dx
2

=

#1
0

0

S

2
2
(x(2−x)+ (2−x)
−x2 − x2 )dx
2

#1
= 2 (1 − x2 )dx = 2(x −
0

x3 1
)|
3 0

#1

0

x

2

2

= (2x−x +2−2x+ x2 −
0

= 2(1 − 13 ) = 43 .







  

##

 

 
S
      O(0; 0) A(1; 1) B(2; 0)


(x + y)ds

 S


          
 x = 0 y = x y = 2 − x   

y
x=const x=const

A(1;1)
y=2-x
y=x
O(0;0)

C(1;0)

B(2;0)

x

 

 

             
             
             
  
  OY     ##  OAC 
ACB !       
(x + y)ds =
=

##

(x + y)ds +

##

S

(x + y)ds

"               
 OAC  ACB     #$      
2−x
##
#1 #x
#2
#
   (x + y)ds = dx (x + y)dy + dx (x + y)dy =
OAC

= (xy +
0

=

0

S

#1

+

ACB

y2 x
)| dx
2 0

#1

#2

+ (xy +
1

(2−x)2
)dx
2

=

1
2

−2+

+4−

4
3

3
2

0

2

#2

y 2 2−x
)| dx
2 0

x dx + (2 −
1
6

= 43 .

1

x2
)dx
2

0

#1

1

2

= (x +
0

=

3 x3 1
|
2 3 0

x2
)dx
2

#2

0

+ (x(2 − x) +

+ (2x −

1

x3 2
)|
6 1

=

 

      

  



 



   S       x = x (y)  
 x = x(y)    y = c   y = d  
y
A

d

B

x=x (y)

x=xnp(y)
y=const

c

D

C
x

  

  

  



Ox



   y = const       Ox   
 !    ! 
   " 
   #
 x = x (y)  !   $ ! 

  "      # x = x(y) %  
  &    $ '  ()*    (+*
 ,-  S         
 c < y < d    x (x = x(y)  x = x(y))  
      OX    y = const    
      Ox
.  A  B   ' D  C      !       
 $ x = x (y)  x = x(y)
/  $               
x  '   0   
 0   ,1   
   !$!2 # !          3
    y4
c < x < d

$$

$d
f (x, y)ds =

S

x$ (y)

dy
c

f (x, y)dx.
x (y)

,-





   

   

      

$$

$d
f (x, y)ds =

$b
dy

c

S

f (x, y)dx.



a

  !    !" " !  #
  $" %    &   '   (
f (x, y) = ϕ(x)ψ(y)  !      & !
! )
!*")  +
$$

$b
f (x, y)dxdy =

$d
ϕ(x)dx

a

S

ψ(y)dy.

,

c

' " !  & ! f (x, y)  y = -./01 
y)
= f (x, y)  (
 $2 Φ(x, y) !  ∂Φ(x,
∂x
       x    !  #
 %+
$d

x$ (y)

dy
c

$d

f (x, y)dx =
x (y)

c

x

Φ(x, y)

 (y)

x (y)

dy =

$d
(Φ(x (y), y) − Φ(x(y), y)) dy,

=
c

!   ! 3 !      !*#
       y
 , 
        
     
4  3   + 5 !    y = -./01 0 < y < 1 
    2        6.7 #
 x = x(y) = y    2    687 
x = x  (y) = 1 9 &  )  S   &   y
 " : %   ;

 

      



y

A(1;1)
x=y
y=const

B(1;0) x

O(0;0)

 

 

$$

$1

(x + y)ds =

$1
dy

0

S

$1
=
0

 
$1

(x + y)dx =
0

y



1
3
+ y − y 2 dy =
2
2

  
     

y y2 y3
+

2
2
2


x2
1
+ yx  dy =
2
y

1
1 1 1 1
 = + − = .
2 2 2
2
0

        

         y =  0 < y < 1 !
"# $ %  &  '  () x = x (y) = 0  #
&# # &  0 < y < 1 ' *+ &  ' 
&  x = x(y) = y   1 < y < 2 , x = x(y) = 2 − y
& S & -
  '
# OAC
##
##  CAB .& /01
##
2# - (x + y)ds = (x + y)ds + (x + y)ds.
S
OAC
CAB
&& 3  '    '$  ' 4
# OAC  CAB  && & & /0   -  '4
  "
$$

$1
(x + y)ds =

S

$y
dy

0

$2
(x + y)dx +

0

1

$2−y
4
dy (x + y)dx = .
3
0





   

y B(0;2)
x=2-y
y=const
A(1;1)

C(0;1)

y=const
x=y
x

O(0;0)

 

 

   
        
        
 
    

##
S

          
2−y
#1
#
(x + y)ds = dy (x + y)dx = 43 .
0

y

y

A(1;1)
y=const
x=2-y

x=y
O(0;0)

C(1;0)

 

B(2;0)

x

  

   !! "  #  $  
$%  $  $      &'
% $%   $      $%    
$(    $ %   $% $%   $(
   $   $% 

 

      



 
           
            

   
     f (x, y)   
 S            
a  x  b, c  y  d   !"# $     
   S      x = %&'() y = %&'()  *
      +   [a; b]
k
m


   k   [c; d]  m ,   b − a = Δxl  c − d = Δyj 
j=1
l=1
  Δxl = xl − xl−1 Δyj = yj − yj−1
y
ym =d
yj
yj-1
y0 =c
x0=a

xl-1 xl

x k =b x

   
    
       

 

+              
         n    -   
   
  S = (b − a)(c − d) n = km 
ΔSi = Δxl · Δyj  
   f (x, y)    (ξl; ηj )
    .     !"     
    f (ξl; ηj )ΔxlΔyj .
+    /      j       0 *
1       !"#   m−   
m

j=1

f (ξl ; ηl )Δxl Δyj ,





  

 
  

 y 
 

 
    
 

l
   
0  Δyj → 0
  Δxl → 

lim

k


Δxl →0
Δyj →0

=

#b #d
a

l=1

m


f (ξl ; ηj )Δxl Δyj

j=1

= lim

Δxl →0
Δyj →0

k


m


l=1

j=1

f (ξl ; ηj )Δyj

 x  
 



Δxl =


##
#b #d
f (x, y)dy dx = dx f (x, y)dy =
f (x, y)ds.

c

a

c

S

           ABCD 

    oy  !   " #

y



y=yB (x)
A

B

D

y=y H (x) C

yj
yj-1

0

x0=a

x k =b x

xl-1 xl

            Oy  
         

$

 % 

& 

 





   
     
 
 ,  - %   y = y (x)
 y = y (x) $ 
   Δxl  Δyj  , & 
% ,           , x = '()*+ 
 
 ,
 #     . 
  /(0  .  /10
y    y = y (x)  y = y (x)
% 2  

 
% 
          
 
l   Δxl  ,  3 
 
  
4!5# 6  
 
 
  3  47!#   
  
    Ox  "!#

x = '()*+  y = '()*+   %    

                

            
   



   
         
             
                
         !  "
 #  
      
$3
1

$x+9
dx
f (x, y)dy.
x2

$ %  & '(             !
(     )* **          +
(        ,     
 
          
    x    (  (     
     y = 9 y = 10 -     ./
01 (     **       2 3  (,
456./7.01/7081
$$
$$
$$
$$
f (x, y)ds =
S

f (x, y)ds +
DEC

f (x, y)ds +

EAKC

f (x, y)ds.

ABK

$         &
2 '(  6./      x = 1,  x = √y,
           x, 
9 -  **2
:  ,    ;(  y = ? 0 
∂x
∂y
%

    δ  !
"  δ   
   

P dx + Qdy =

C
∂Q
 ∂x

   

##  ∂Q
∂x

δ



∂P
∂y

##  ∂Q
δ



∂P
∂y

∂x

> 0  

dδ > 0  



∂P
∂y



%



dδ  " C #

    δ

P dx + Qdy > 0

C

$     %        
"         "    
         
    D      
∂P
∂Q
=
.
∂y
∂x

 &'(   
       
$

ydx + xdy
AB

)  *    + ,  " 

        


#

$
ydx − xdy.
AB

ydx+xdy :

P = y  Q = x

AB

∂P
∂y

= 1

     "         "
 
 %            %  
    
&'-  &'.
#
/  " 
ydx − xdy +
P = y  Q = −x ∂P
= 1 ∂Q
= −1
∂y
∂x
∂Q
∂x

=1⇒

∂P
∂y

=

∂Q
∂x

AB

∂Q
∂P
=
     "    

∂y
∂x

   "  
          %      
&'-  &'.

  
      
   
         P dx + Qdy    
  P = P (x; y)  Q = Q(x; y)       
               D 0 
 
  $         
       U = U (x; y)    %   



&'1        

!

" 

 

       



P dx + Qdy    
D      

   U = U (x; y)    
  
  

D    
∂P
∂Q
=
.
∂y
∂x

        P dx+Qdy    
    U = U (x; y) 
∂U
∂U
dx +
dy = P dx + Qdy.
dU =

∂x
∂y
! "  ∂U
= P  ∂U
= Q # "" " 
∂x
∂y
∂ U
$   y  "  x  % ∂x∂y
= ∂P
& ∂ U = ∂Q
 ' 
∂y ∂y∂x
∂x
∂Q
∂P
 ∂x "  "  (" ()(  $  *
∂y
"    U (x; y)   "    "  '  *
*  % ∂P
= ∂Q

∂y
∂x
 + !  U = U (x; y)    
2

2

     
"  # $ P dx + Qdy    
        % &  # 
#
,    % P dx+Qdy  *"  " "  (

)- % A  B   *" $    % A  B  
(x;y)
(x;y)
#
#
  * % x0 y0  x y '.
dU (x; y) =
P (ξ; η)dξ +
(x ;y )
(x ;y )
+ Q(ξ; η)dη   "

AB

0

0

0

0

(x;y)
$

U (x; y) =

P (ξ; η)dξ + Q(ξ; η)dη + C.
(x0 ;y0 )

/0

1  ( . %      x  y *" 
%     ." (   * %     
" ξ  η 2%"  %  ( U (x; y)  ((  %  )
    C = U (x0; y0)
3 ."  "   /0   " " )
    ()- % A(x0; y0)  B(x; y) 4    
 *      ." ( ")-   
  ABC   *" ( AB  CD (" ()-(   





   

 η = y0 =   ξ = x = 
dη = 0  dξ = 0  
$x
U (x; y) =



 

$y
P (ξ; y0 )dξ +

x0

Q(x; η)dη + C.



y0

y
y

B

y0

C

A
x0

 

x

 

x

     U = U (x; y)

  P (x; y)  Q(x; y)      ! 
"#   !  $ % &' x0 = y0 = 0
$x
U (x; y) =

$y
P (ξ; 0)dξ +

0

Q(x; η)dη + C.

(

0

  º         
  ydx + xdy   
    
           
             
!    "  ydx + xdy    ##$   
  %  &    &      #   ' ()*  
    %$  %  y   "    

$x
U (x; y) =

$y
0dξ +

0

xdη = xy + C.
0

+    dU  ,   dU = d(xy+C) = ydx+xdy 

               





 


  


1
x



   y 
  
dx + y2 − yx2 dy      
+
1
y

   
      P = x1 + y1 Q = y2 − yx2 
1 ∂Q
1
∂P
    ∂P



=

=

= ∂Q
∂y
y 2 ∂x
y2
∂y
∂x
      !"# $#   %    &'
   %  (   )   **#    *+# $ $$
 x = 0 y = 0 )$, P (x; y) Q(x; y)     
 )   ** x0 = y0 = 1


$x
$y
1
2
x
+ 1 dξ +
− 2 dη =
U (x; y) =
ξ
η η
1
1
y
x 
=
= (ln ξ + ξ)|x1 + 2 ln η +
η 1
x
x
= ln x + x − ln 1 − 1 + 2 ln y + − 2 ln 1 − x = ln x + 2 ln y + + C.
y
y
1 1
2
x
∂U
∂U
= + ./0#1
= − 2 = Q(x, y)
 $ -
∂x
x y
∂y
y y

         
     

 '      %   !' $
 -' '   ! %3   -

#



" ! 
AB



*     
2xydx − x2 dy   O(0; 0)  A(2; 1)    !

O

 A #  $$%&'

•   - OaA

2

 

1
      4    - OaA  y = x ⇒
2
1
dy = dx
2
2

$
$2
1
4
1 
2
2xydx − x dy =
x2 − x2 dx = x3  = .
2
6 0 3
OaA

0









     

     

y
A(2;1)

C(0;1)
c

y=Const

a
b
O(0;0)

 

 

•    ObA 




   

  Oy

          
x
dy = dx 
2

$

2xydx − x2 dy =

$2
0

ObA

x

B(2;0)

x 3 x3

2
2

•    OcA  Ox 


ObA  y =

x2

4


dx = 0.



          

   

   


OcA  y =

x

2

dx
dy = √ 
2 2x
$

2

$2

2xydx − x dy =
OcA

0

√ $2


1 √
3 2
x 2x − x 2x dx =
x3/2 dx =
4
4
0

2

12
3 2 2 5/2 
· x  = .
=

4
5
5
0

•    OBA
        OBA        
OB  BA  OB − y = 0 ⇒ dy = 0  BA − x = 2dx = 0

               






$

$1

2

2xydx − x dy = 0 +

(−4)dy = −4.
0

OBA

•       OCA
         OCA      
OC  CA  OC − x = 0 ⇒ dx = 0  CA − y = 1 ⇒ dy = 0




$

$2

2

2xydx − x dy =
OCA





  

 

#

2
2xdx + 0 = x2 0 = 4.

0

 

2xydx + x2 dy

OA

 

• 

!  OaA
     

$

2

$2

2xydx + x dy =
0

OaA

2

$2
1 2
x3 
3
2
= 4.
x dx =
x + x dx =
2
2
2 0
2

0

• 

" ObA
     

$

2

$2

2xdx + x dy =
0

ObA

x3 x3
+
2
2



$2
dx =
0

2
x4 
x dx =
= 4.
4 0
3

• 

" OcA
     

$

2

$2

2xdx + x dy =
0

OcA

=



1 √
x 2x + x 2x dx =
4

√ $2

5 2
5 2 2 5/2
· x = 4.
x3/2 dx =
4
4
5
0











   
 
$

     

OBA

2xdx + x2 dy = 0 +

   
 
$

$1
4dy = 4.
0

OBA



     

OCA

2xdx + x2 dy =

$2

2
2xdx + 0 = x2 0 = 4.

0

OCA

                
         
              
  !            
       L            
   
•  L "     OBAaO
     P = 2xy Q = −x2
#  
∂Q ∂P

= −2x − 2x = −4x,
∂x
∂y


&

2xydx − x dy = −4
L

$1
= −4
0

$1

$$

2

xdS = −4
S

2
$1
x2 
dy = −2 (4 − 4y 2 )dy = 8
2 2y
0

$2
dy

0

xdx =
2y

1

y3
16
− y  = − .
3
3
0

$ %          &
%    x    y = '()*+  %  
y = 2x   x = 2









     

     

      
    P = 2xy Q = x2 ⇒
= 2x              
2xydx + x2 dy             
L
!  "  # $    "    %
    "& $ L   "# O(0; 0) A(2; 1)   #  
  '
 (        
∂Q
#∂x



∂P
∂y

 2xydx + x2dy

         )    #   "  !%
   
**+   , )  #
# #         # #  ! $ -  ,%
        ,      *  $
. 
$y

U (x; y) = 0 +

x2 dη = x2 y + C.

o

/ #   $ 0

∂U
∂U
= 2xy 1
= x2 .
∂x
∂y



#

  


       
2
2
(x − 2xy)dx + (2xy + y )dy 

 AB    y = x2 

  A(1; 1)    B(2; 4)
#         
(2a − y)dx + xdy   C      
C
x = a(t − sin t) y = a(1 − cos t) 0  t  2π 
2 !"   " #  
% 
2(x2 + y 2 )dx + (x + y)2 dy 
C
 C  "           
$ "  % A(1; 1) B(2; 2)  C(1; 3) &    
 "   "   
 "      
  "  "   ABCA
 .3   '      
x = a cos3 t y = a sin3 t
AB

 

       



        
        
     
(3x2 − 2xy + y 2 )dx − (x2 − 2xy + 3y 2 )dy 
ex−y ((1 + x + y)dx + (1 − x − y)dy)
dy
dx
+

x+y x+y

 

       

 
 
            
           
!     
 " #  $ %      &  #
   '  ( (      # 
 
 
   )! !         !   
 &   

   *      ( 
          ! " #    

 #
  
  +

  
    

 
        
       

 ,# (    D        Oxyz
#
  F    !  Fx = P = P (x; y; z)- Fy = Q = Q(x; y; z)
 Fz = R = R(x; y; z)-  !.    #  x, y, z 

   

 

    D   !  

/

F = F (x; y; z) = P (x; y; z)i + Q(x; y; z)j + R(x; y; z)k

0 /1

" # $  %   
    /2 & L   !  
        F = (P ; Q; R)
 ' ! "  


#

 

  #    !  ! C 

    /3 (       
) !" "  C  "    "
  





z

   

Δσi

ni
Pi
σ
ζi
ηi

x

 

y

ξi



      

  σ      
    n D

 n   σ = Δσi   Pi      ξi ηi ζi
i=1
         ! Δσi "    
  #  ni = n(ξi; ηiζi)   #  σ
$    n     σ # 
 %!  # &  % Oz '&     # 
    &   $#   Fi = F (ξi; ηi; ζi)  
    ni Fi #     Δσi  #
      Pi (     n    Fi · ni · Δσi
  n)% & %  *n =  Fi · ni · Δσi


+,-  n
n

i=1

    

n = Fi ·ni ·Δσi    
 Δσi      
i=1
  n → +∞        F    
σ    
$$
$$
σ = F · ndσ = F (x; y; z) · n(x; y; z)dσ.
+,.
σ

σ

/         n #  
0      %  σ

 

       

 
σ

$$
=
F · ndσ.




σ

         
   !" #"    $ D    %
$&"   $      W = W (x; y; z)     
D "  '  $    #  #"     
F = W (x; y; z)
()# # #   )   "  #  #  %
* +"  &
    " #"    )  "
'        , "  #  #  %
       &  "    # 
 +  "   '   #    #  %
#     - '       '
  &  #     #  #
(  
  ) #       )   
  $ σ  # # +  "    *  #%
          $& γ    
-  )  # # "  )   $ W     
 ##      "    $&    %
  * Δσ   ./0

W

Δσ1

n
h

ϕ
Δσ

 

  

       Δσ

1 + #  +  "       %
* Δσ " #     * Δσ1     W
   "   )  2     ΔQ"    







   

  Δσ 
           
     Δσ   W    
 
  γ        h   ΔQ = γhΔσ 
 n !        Δσ  ϕ ! "  
 W   ΔQ = γW cos ϕ · Δσ = γ(W n)Δσ 
#        $ %&'()   
 *       *  σ
$$

W (x; y; z) · n(x; y; z)dσ.

Q=γ

%&'+)

σ

        
     

 &'&     

 F

= (P (x; y; z); Q(x; y; z); R(x; y; z))  M(x; y; z) ∈ ΔV


      
  F      σ    
   ΔV          M  
   ΔV → 0



      div    
$$
1
F ndσ
ΔV →0 ΔV

div F = lim



σ

      
∂Q ∂R
∂P
+
+

∂x
∂y
∂z
$$
$$$
=
F · ndσ =
div F dV.

div F =



σ

!
#

V

         $ %    &'  
(   )*)  +  )*)   
  #
              
! "#  $$$%%  & '  (     

 





div F = 0


##


##



 

F ndσ +

σ1



   

 

  

σ1



σ2

F ndσ = 0.

σ2

n
σ2
F
n1
F
n

σ1

   
     

n1 = −n

  

 

##





 

F n1 dσ =

σ1
 

 



  





##

n

 

σ



F ndσ 

  












σ2

div F = 0




     



     



 

!"
      
         

div F = 0

  
       
        
      
          
#  

B

%





L

$ 

D #



n

 

A  

  

$ 

   



 


  

n


F (ξi ; ηi ; ζi )Δli =

i=1

=

n


P (ξi ; ηi ; ζi )Δxi + Q(ξi ; ηi ; ζi )Δyi + R(ξi ; ηi ; ζi )Δzi .

i=1
#



  

n

   



i=1



"& 

    n 
F (ξi ; ηi ; ζi )Δli     
  !
!!

 

       



    
     AB
  
n → +∞           

  

$

$

F (x; y; z)dl =
L





P (x; y; z)dx + Q(x; y; z)dy + R(x; y; z)dz
L

$

$
F (x; y; z)dl =

AB

P (x; y; z)dx + Q(x; y; z)dy + R(x; y; z)dz.
AB





z = z(t)



L

 

    

$

 

  



x = x(t) y = y(t)

  
 

P dx + Qdy + Rdz =
AB

$tB
=

(P (x(t); y(t); z(t))x(t) + Q(x(t); y(t); z(t))y (t)+

tA

+R(x(t); y(t); z(t))z (t)) dt,
 tA
#

tB

!     

  

 "


A

B

%&%

 

F = F (x; y; z) = (Fx(x; y; z); Fy (x; y; z); Fz (x; y; z)) 

(   )* 

A

t

     $

 

$

B

 -



 +

$

F (x; y; z)dl =

A=
AB

 '

( (, 



'

 
 

L
Fx (x; y; z)dx + Fy (x; y; z)dy + Fz (x; y; z)dz.

AB





    
   !  
  L    " "    F  
  L    

&

&

F dl =

P (x; y; z)dx + Q(x; y; z)dy + R(x; y; z)dz.
L

L

/ 0  




L

 1

. ("   "    1%

  ) 

 "- "
1

.

-    3

   

 (  (& 

 4&%

 

 % 

'

(" 2 '
  (" 







  





   

      

      

 

F = P (x; y; z)i + Q(x; y; z)j + R(x; y; z)k   
 
 rot F   



∂R ∂Q
∂P
∂Q ∂P
∂R



rot F =
i+
j+
k = 
∂y
∂z
∂z
∂x
∂x
∂y


 i j k 
 ∂ ∂ ∂ 
=  ∂x ∂y ∂z  .
 P Q R 

         ! " #
 $"  %  &    rot F  '   !
 $% ! (    !  (   
  
 !   (   $"  ∂x∂ ) ∂y∂ ) ∂z∂  & P * Q* R
  +        $  ∂P
) ∂P ) ∂P ) ∂Q 
∂x ∂y ∂z ∂x 
*  %   !  & rot F = ∂R
− ∂Q
; ∂P − ∂R
; ∂Q − ∂P
∂y
∂z ∂z
∂x ∂x
∂y
%
,"$! rot F & "& F dl  " "   
L
 *    #$ $ ! 
  -          P = P (x; y; z)!
Q = Q(x; y; z)! R = R(x; y; z)!  "#   
 F =
F (x; y; z)!       $         σ !
     L!      F 
 L      %       & σ'
&

$$

F dl =
L

n rot F dσ.

.

σ

/  . $"   ! $      
    " '      % % * 
& "&"        $     L  " "
%    & %   (    *    
 .     rot V  $  + !*   
L 0  "    $"   *    + !
  

    

 

       



             
      !  "
  P= P (x; y)# Q = Q(x; y)
k  &   $
 R = 0  $ % rot F = ∂Q
− ∂P
∂x
∂y
  L  ' " σ (  (  Oxy  n = k  )
 *  +  rot F  n   (  
 
       
 
  
 
 



    



F = (P (x; y; z); Q(x; y; z); R(x; y; z))

           rot F = 0
 ,  U = U (x; y; z)   
   F = =F (x; y; z) 
   
       F = F (x; y; z)

-   . /0
  % !       F = F (x; y; z) =

      
             "
          

P (x; y; z)i+Q(x; y; z)j +R(x; y; z)k

rot F =

∂R ∂Q ∂P
∂R ∂Q ∂P

;

;

∂y
∂z ∂z
∂x ∂x
∂y



= 0.



#        $    $   
     $   
∂R ∂Q

= 0;
∂y
∂z

∂P
∂R

= 0;
∂z
∂x

∂Q ∂P

= 0.
∂x
∂y



 " '1. "  " ( F = F (x; y; z) )
 ( 2 U = U (x; y; z)  . " $ ( ./
,   / $ .  %3
F = grad U =

  .
P =

∂U
,
∂x

∂U
∂U
∂U
i+
j+
k
∂x
∂y
∂z

Q=

∂U
,
∂y

R=

∂U
.
∂z



 

       



     
     ξ  η  ζ  
    

 (x; y; z) C = U (x0 ; y0 ; z0 )

z

  



B(x;y;z)
A(x 0;y0 ;z 0)

C(x;y0 ;z0)

D(x;y;z 0)
y

x

            L    
       
           
   

        ACDB    AC  CD
DB    
       
  !""#  
 
   
η = y0  ζ = z0 $ ξ = x ζ = z0 $ ξ = x η = y dη = dζ = 0$ dξ = dζ = 0$
dξ = dη = 0 %   &    '  ()!*#   

$x
U (x; y; z) =

$y
P (ξ; y0 ; z0 )dξ +

x0

$z
Q(x; η; z0 )dη +

y0

R(x; y; ζ)dζ + C.
z0

()"+#

     x0 =
 ()!  P  Q R  
        


y0 = z0 = 0
O(0; 0; 0)

 ()"    ! "   #   $
 # %& &' "' U = U (x; y)     $
#   ( "    # %& )' "' U =
= U (x; y; z)   *
 "  + +  $
# "        #     
   & ,  #  -       #









   

 

         
             


       F = kr = kxi +
     R        
            

+kyj + kzk

 
    x2 + y 2 + z 2 = R2     
       n = R1 R      
  F = kR        F n = kR · R1 R = Rk R2 = kR
      F = kr   

x2 + y 2 + z 2 = R2      
$$
$$
σ =
F ndσ = kR
dσ = kR4πR2 = 4πkR3 .
σ

σ

  !   "    # " " 
   P = kx$ Q = ky $ R = kz   % &
 div F = ∂P
+ ∂Q
+ ∂R
= ∂kx
+ ∂ky
+ ∂kz
= 3k  # 
∂x
∂y
∂z
∂x
∂y
∂z
'  "&(  ) 
σ =

$$$

$$$

div F dV = 3k
V

4
dV = 3k · πR3 = 4πkR3 .
3

V

 *  

  



F = (2x + z)i + (y + 2z)j + (z − y)k       
   x = 0 y = 0 z = 0  x − 2y + 2z − 6 = 0  

       

   

+  ,   - . /        " 
01    2*3 '  ! "    F 
# " "  ,  P = 2x+z $ Q = y +2z $ R = z −y   
div F =

∂(2x + z) ∂(y + 2z) ∂(z − y)
+
+
=2+1+1=4
∂x
∂y
∂z

      )
σ =

$$$

$$$

div F dV = 4
V

dV =
V

= 4 · 61 OA · BO · OC = 4 16 · 6 · 3 · 3 = 36.





z
3



    

y
0

C

A
6 x
y=const
x=6+2y

x=6-2z

z=const

0

 

A
6 x
  
   y = 0


3B




  z = 0

 

  ABC : x − 2y + 2z − 6 = 0    
 
N = Ai + Bj + Ck = i − 2j + 2k ⇒ n =

N
=
N

i − 2j + 2k
2
2
1
=√
= i − j + k.
3
3
3
1+4+4

            F n 
 F n = 13 (2x + z − 2y − 4z + 2z − 2y)      

z = 3 − x2 + y 
F n = 56 x − 52 y − 1     

  !  "#$%& dσ = 1 + z 2x + z2y dxdy =

= 1 + 14 + 1dxdy = 32 dxdy  
'ABC = 23

$$


5
5
x − y − 1 dxdy =
6
3

AOB

3
=
2
3
=
2
=

3
2

$0
−3

#0 
−3

$0

6+2y
$

dy
−3

0


5
5
x − y − 1 dx =
6
3


5
5
2
(6 + 2y) − (6 + 2y) − (6 + 2y) dy =
12
3


9 − 2y − 53 y 2 dy =

3
2



0
9y − y 2 − 53 y 3 −3 = 31,5.

          




        
    OABC σ = BOC + AOC + AOB +
+ ABC = −4,5 + 18 − 9 + 31,5 = 36.
   
           
  ! "    " #
$    
    
      
    "     
    % & '()#
 *+#,     


       z = x2 + y2 
      x2 + y2 = 4   !"

F = xy 2 i +

yz
j
2

+ x2 zk

$  -    .
/    -       
z = f (x; y)    0  %'(#1() 
−fx (x; y)i − fy (x; y)j + k
−2xi − 2yj + k
n= 
.
=
1 + 4x2 + 4y 2
1 + f  2x (x; y) + f  2y (x; y)

/     n   Ox
    #
−2x2 y 2 − y 2 z + x2 z
  F n = 
#
1 + 4x2 + 4y 2
2  "   
  
=

$$
σ

3

2 2

2



2

−2x y − y z + x z

dσ.
1 + 4x2 + 4y 2

    0   %,4#55)


dσ =

1 + f  2x + f  2y ds =



1 + 4x2 + 4y 2 ds.

/    z = x2 + y2 0    
=

$$

(−2x2 y 2 + (x2 + y 2 )(x2 − y 2 ))dσ,

σxy



σxy 6   R
 #

= 2

    Oxy  &   





 
=

$$





   

 

        
(−2r4 cos2 ϕ sin2 ϕ + r4 (cos2 ϕ − sin2 ϕ))rdrdϕ =

σxy

 $2
sin2 2ϕ
=
+ cos 2ϕ dϕ r5 dr =

2
0
0
2π 6 2
2
ϕ sin 2ϕ sin 2ϕ  r 
16π
=
+
+
 6  = − 3 .
4
16
2
0
$2π

0

            
          F  
 ACBA              

      !     P = 2x + z" Q = y + 2z" R = z − y
"    "  # $ %&'(

∂R ∂Q

i+
∂y
∂z

rot F =

∂P
∂R

∂z
∂x



j+

∂Q ∂P

∂x
∂y



k=

= (−1 − 2)i + (1 − 0)j + (0 − 0)k = −3i + j.

  n  

 ) *

$$

$$

n rot F dσ =
σ

5
2
(−1 − )dσ = −
3
3

ACB

=−

 rot F    ABC

5 SABC
5
=−
3 cos γ
3

$$

5
dσ = − dσACB =
3

ACB
1
OA
2

· OB
536·3
=−
= −22,5.
2/3
32 2

+ , "   # $   %&( -$-  
  $$ ACBA
&

$$

n rot F dσ = −22,5.

F dl =
ACBA

ACB

%

.      -$-
F dl   /
ACBA
    P dx + Qdy + Rdz  , AC 0 CB  BA

          



•   AC  y = 0 #z = 3 − x2 
 dy = 0  dz = − 12 dx
    (2x + y)dx + (y + 2z)dy + (z − y)dz =
#0  7
6

4

x+


3
2

dx =

7
8

AB

0
x2 + 32 x 6 = −40,5.

 dx = 0  dz = dy 
•   CB  x = 0 # z = 3 + y 
    (2x + y)dx + (y + 2z)dy + (z − y)dz =
−3
#

CB



(9 + 3y) dy = 9y +

0

3y 2
2

−3

 = −13,5.
0

 dz = 0  dx = 2dy 
•   BA z = 0 # x = 6 + 2y 
    (2x + y)dx + (y + 2z)dy + (z − y)dz =
BA



2 0
(24 + 9y) dy = 24y + 9y2  = 31,5.
−3
−3
%
  
F dl = −40,5 − 13,5 + 31,5 = −22,5
#0

ACBA

               
           

    

F = (2xy + z 2 )i + (x2 + z)j + (y + 2xz)k

   

 
     

 !   
"     P = 2xy + z 2 # Q = x2 + z # R = y + 2xz  $ 
    %   &'()
∂R ∂Q
∂P
∂R

= 1 − 1 = 0;

= 2z − 2z = 0;
∂y
∂z
∂z
∂x
∂Q ∂P

= 2x − 2x = 0,
∂x
∂y
  %   rot F = 0        *+  
 ,   &('-.)   / x0 = y0 = z0 = 0   %
  0
   + ,  P (x; y; z)# Q(x; y; z)  R(x; y; z)   
$x
$y
$z
2
u(x; y; z) = 0dx + x dy + (y + 2xz)dz = x2 y + yz + xz 2 + C.
0

0

0

∂u
∂u
∂u
= 2xy + z 2 # Q =
= x2 + z # R =
= y + 2xz.
$   P =
∂x
∂y
∂z









    

  

        F = xi+yj+zk  
            x = −a x = a
y = −a y = a z = −a z = a         
  
       
F = xyi + yzj + xzk   
     
! " x2 + y2 + z2 = 1
  #"       
F = yzi + zxj + xyk  $     

 

      


           
           !"# 
       $            %
& 
     '    &   %
() 
    ) 
    %
   

    

  L      

$" L = AB " %   '   ' *  
    
  '
 +     S 
    Z ,  -./

z

y
zn

B
zi
A

z0

z i-1 ζ
i
S
x

 

 



    

 

      



               
 n                !
         "          !
"   "  L#     # zA = z0  zB = zn $!
%  L   " #   &"      '   
(   ") zi−1 zi  * " ξi      n
f (ξi )(zi − zi−1 ) = f (ξi )Δzi 
 "  ) " ""  f (ξi)Δzi
L

i=1

 +,     f (z)   
 n   z    L      
  f (ξi)Δzi            
i=1
            
   !     "      
 L           "      
ξi #     
$

f (z)dz = lim

n→+∞

L

n


+,

f (ξi )Δzi .

i=1

$  %    &       ) 
+, "       )      L  " !
      #  "         

     " #    z  
 * -" f (z)  ./  
       
  #  z = x + iy# f (z) = u + iv# ) u = u(x; y)# v = v(x; y) 0 !
  (    z  f (z)   )  # "  #  i2 = −1#
$" $
$
$
f (z)dz = (u + iv)(dx + idy) = udx − vdy + i vdx + udy. +/
L

L

L

#

L

#

1    #    Re f (z)dz = u(x; y)dx−v(x; y)dy
L
L
#
#
  Im f (z)dz = v(x; y)dx + u(x; y)dy     )   
L
L
 L       )       !
 2          3  )  # "
    2         )  
       L













 



   

    

#



    
       z = 1 + 2i   
Imzdz

L

y
z

2

z

1

ϕ

Β

x

1

1

 

0

Α
1

 

 

 

   

   y = 2x dy = 2dx 
Imz = Im(x + iy) = y   

$

$1

$
Imzdz =

0z

y(dx + idy) =
0z

$1
2xdx + i

0

4xdx =
0

1
1
= x2 0 + i · 2x2 0 = 1 + 2i.





  # |z|dz



L

 

 

L

       

  

   

     
           
z = cos ϕ y = sin ϕ (0  ϕ  π)
  z = cos ϕ + i sin ϕ dz = (− sin ϕ + i cos ϕ)dϕ
|z| =



x2 + y 2 + cos2 ϕ + sin2 ϕ = 1.

 
$

      

  


(− sin ϕ + i cos ϕ)dϕ = cos ϕ|π0 + i sin ϕ|π0 = −1 − 1 = −2.

|z|dz =
AB



0

          
         
          
          
         !" #$%

 #& '   



&

dz
z

  

L

y

z

1

|z|=1

0

 

1

x

 

(  )    * +  z     , z = |z|eiϕ = eiϕ
  !" ''% dz = ieiϕ dϕ (0  ϕ  2π) -  
&

dz
=
z

|z|=1

 



$2π
0

ieiϕ dϕ
= iϕ|2π
0 = 2πi.
eiϕ

   

 #& .          
 ! "# f (z) = u(x; y) + iv(x; y)%    "  $
    S %     f (z)dz & '!  " !!
L







    

$

  

          

     
  
Re

#

  L          
     zA zB 

    #  

f (z)dz =

L

L

f (z)dz 
LAB



 

 #   #     
f (z)dz = vdx + udy    

udx − vdy  Im

L

L

   ! "#$   $ !

$

P dx + Qdy



LAB

    % !  L      % 
 #$    & #'   " "#$ $%  
∂P
=
    () ∂Q

∂x
∂y
! 
$

udx − vdy : P = u, Q = −v →

∂v ∂P
∂u
∂Q
=− ;
=
,
∂x
∂x ∂y
∂y

L

 ! 
$

vdx + udy : P = v, Q = u →

∂u ∂P
∂v
∂Q
=
;
=
.
∂x
∂x ∂y
∂y

L

*   & $ + f (z) = u+iv  "    
∂v ∂u
∂v
=
, $%  &    -. /0 ∂u
1 = − ∂x
∂x
∂y ∂y
       () $%# $ 2 #   
    "  !  f (z)dz      % 
L
!    % 
   $  & 3   
#
   ! f (z)dz #  4     "  
L
    
&
f (z)dz = 0.
5
L

* %   &   !    
"  + ! $' #   '  + 5  %
    #    % %  n 
#  

 

 

      




 

 n


 

n











   

 



 

     





 f (z)      3x   
 S            L0  L1  L2
 !"!#
y

Z

L2

B

L1
B
B
H

A

B

C

B
H

H

D
H

L0

S

x

   

  

$%     A ∈ L0 %   B ∈ L1     C ∈ L1
%   D ∈ L2  & %  '     '
&  

L = A Lo A B L1 C D L2 D C L1 B A ,
  
 f (z)    ()  %  * +  *+ 
    ,       $
  
&
$
$
$
$
$
f (z)dz =
+
+
+
+
+
L

A L0 A

A B

$

B L1 C

$

+

+

D C

C D

D L2 D

$
+

C L1 B

= 0.

B A


# 
#
#  # #
#
%


= −
= −
+
= − f (z)dz - &
A B
B A C#D
L1
% D C B L1 #C C L%1 B
  
= f (z)dz 
= f (z)dz 
D L2 D

L2

A L0 A

L0







    

           
 
&
&
&
f (z)dz =

 

L0

n

f (z)dz +
L1

L2

   
&

f (z)dz =

n &

k=1 L

L0

f (z)dz.

 
 !

f (z)dz

k

    "#"   
 $  
       
  f (z)              S 
        L0     
     Lk          
   
%     &'  "(     )
 *  +         
     &    
%
    !"  #  (z − a)mdz   L $  
L
"    m $     
, -   . %  a     L   &(
'( (z − a)%m (( (    L  " m 
   (z − a)m dz = 0
L

Z

y
|z−a|=δ
a
S

L
x

 


δ





L

 

 

a



 

      



  
a  
   L    
 m ≥ 0      %        
          (z − a)mdz = 0    
L
    m < −1   
a     
  ! 
"  L      #  # δ    
a     
#  L $ %&'(    )  δ
  C : |z − a| = δ z = a + δeiϕ 
 S 
*  (z − a)m        2x + 
     L  C
,           -.'



&
&

m
m
(z − a) dz = (z − a) dz = 

L
C

&
=
(z−a)=δ

dz
=
(z − a)k

$2π
0

m = −1
k = −m > 0
z − a = δeiϕ
dz = iδeiϕ dϕ

iδeiϕ dϕ
= iδ 1−k
δ k eikϕ

$2π
0





=





=
ei(k−1)ϕ



=


e−i(k−1)ϕ 
iδ 1−k

(1 − k)i 0

= 0,

  ez          T = 2πi
  m = −1         $-.&(
&
|z−a|=δ

/ 

dz
=
z−a

$2π
0

iδeiϕ dϕ
= iϕ|2π
0 = 2πi.
δeiϕ

    


&
(z − a) dz =
m

2πi, m = −1,
0, m = −1.

$-.-(

L

 

 f (z)  

   

 a 0   +       
  L

  ! " 









   a 
  

    

  %
f (z)     
1
 2πi
f (z)dz     
L

Resf (z) =

1
2πi

&
 

f (z)dz.
L



  f (z)      a       

f (z) = · · · +

C−1
C−2
C−1
+
+ ··· +
+
(z − a)n
(z − a)2 z − a

+C0 + C1 (z − a) + · · · + Cn (z − a)n + . . .
!"  #$  %   &  0 < |z − a| < R'   %
  %'  (
#%       R    
  a'     $   a !"   L     "
0 < |z−a| < R ! ) (      ( *   
&
&
&
&
+∞
+∞


dz
dz
+
f (z)dz =
C−m
+
C
C
(z − a)k dz.
−1
k
(z − a)m
z − a k=0
m=2
L

L

L

L

+

    &  ) (
% dz    ) # ( 
 (   # '   z−a
= 2πi'  #   '   ,
L
%
  " ' f (z)dz = C−1 2πi'          #
L

  #  
 C−1  
* $  

   $  & $   a       *,
  f (z)        
 -

Resf (a) = C−1 .

.         &#%    f (z)'  ,
)     $  &        $    ,
/$         )  $  ' (   n,) (  0
  )    "    n   '  /  & $   $
0   &       +      ) '  '
  
          
1    a   (   n,) (   f (z)' 

 * $        2


C−n
C−n+1
C−1
+
+
+ ··· +
Ck (z − a)k .
(z − a)n (z − a)n−1
z − a k=0
+∞

f (z) =

 

      

 



      

(z − a)n

 

(z − a) f (z) = C−n + C−n+1 (z − a) + · · · + C−1 (z − a)n−1 +
n

+

    

+∞


Ck (z − a)k+n .

k=0

        n − 1  

n−1



d
((z − a)n f (z)) = C−1 (n − 1)! + C0 n(n − 1) . . .
dz n−1
. . . 2(z − a) + C1 (n + 1)n . . . 3(z − a)2 + . . .
      z → a  

dn−1
((z − a)n f (z)) = C−1 (n − 1)! = (n − 1)!Resf (a).
z→a dz n−1
        
f (z)
 
lim

n



Resf (a) =

dn−1
1
lim n−1 ((z − a)n f (z)) .
(n − 1)! z→a dz



!"#$%

5

 !"#!   

 f (z) = (z +z 1)4 

1
& '   ( ) f (z)
= (z+1)
    z = −1 
z
z
*+       f (z) = (z+1)
   ,  
- *+  #  - *.%#   !"#$%
4

5

5

4


z 5 
d3
1
lim
=
Res
(z + 1)4 z=−1 3! z→−1 dz 3
=

(z + 1)4

z5
(z + 1)4



=

1
1
5·4·3
lim (z 5 )III =
lim 5 · 4 · 3z 2 =
= 10.
z→−1
z→−1
3!
3!
1·2·3

/     a           
    0    0! = 1  f 0 (z) = f (z)  !"#$% 
n = 1  
Resf (a) = lim (z − a)f (z).
!"#"%
z→a

 !"#1       

z2
= 2

z −1

 f (z) =





   

1
      f (z)
 
 
= z z−1 = (z−1)(z+1)
z
a1 = 1 a2 = −1    f (z) = z z−1  
               !!"
2

2

2

2

2


z2
1
z 2 
z2
= lim
= ,
= lim(z − 1) 2

2
z − 1 z=1 z→1
z − 1 z→1 z + 1
2

z2
z 2 
1
z2
Res 2
= lim
=− .
= lim (z + 1) 2

z→−1
z −1
z − 1 z→−1 z − 1
2
Res

z=−1

ϕ(z)
#  f (z)   f (z) = ψ(z)
 $ ϕ(z)  ψ(z)  %
    a & ϕ(a) = 0   a  
 &  '   ψ(z)  ψ(a) = 0  ψ (a) = 0 
'    !("

Resf (a) = lim (z − a)
z→a

ϕ(z)
= ϕ(a) lim
z→a
ψ(z)

)  * '     
ϕ(a) = 0 ψ(a) = 0 ψ  (a) = 0

Res

1
ψ(z)−ψ(a)
z−a

a


ϕ(z) 
ϕ(a)
.
=
ψ(z) z=a ψ  (a)

 !-    

  

=

ϕ(a)
.
ψ  (a)

 f (z) =

 

ϕ(z)
ψ(z)



 !+,"

     

      f (z) = z z−1  
  a1 = 1
 a2 = −1 .  ϕ(z) = z2      * /   .
 !+,"   
2

2

Res





z 2 
z 2 
z 2 
1
z 2 
1
;
Res
=
=
=
=− .




2
2
z − 1 z=1
2z z=1 2
z − 1 z=−1
2z z=−1
2

#  a           f (z)
   
        f (z)
         
 C−1 

 !(     f (z) = e1/z   

z = 0

      )  z = 0   /  0  * 0   0
 f (z) = e1/z   1    &
  234
e1/z = 1 +

1
1
1
+
+ ··· +
+...
z 2!z 2
n!z n

 

      

 
 
 

C−1 = 1




Res e1/z z=0 = 1


 
 
     



            f (z)
         S    
         L     !
         ak ∈ S k = 1, 2 . . . , n 
    L  "# $ "       
f (z)  %      #   2πi
&
f (z)dz = 2πi

n


Resf (ak ).

 

k=1

L

                   ak
 ! γk  "    ! # $ %$  
 &"  ! #  #   
y

z

a2
a1

an

γ2

γ1

γn

S
L
x

 

       

'  #! (  #  (   L γ1 γ2 . . . γn
) * ! f (z)     (   &   +
&

f (z)dz =

 &  ,

L

n &

k=1 γ

f (z)dz,

k

&
f (z)dz = 2πiResf (ak ),
γk





   
 

    

            

&

  

z4
|z|=3/2

ez dz
+ 3z 2 − 4
z



e dz
     ! f (z) = z4 +3z
  " 
2 −4 
4
2
  $    z + 3z − 4 = 0  % z 4 + 3z 2 − 4
 %  z 4 + 3z 2 − 4 = (z − 1)(z + 1)(z − 2i)(z + 2i) $ 
 # a1 = 1 a2 = −1 a3 = 2i a4 = −2i    !!&! '
' &  (   %  |z| = 3/2 $ !!  
a1  a2   a3  a4  %  )  *

# 
= 0 
 "
 
 $

y
Z

2
|z|=1

|z|=3/2
1

-1

1

0

2 x

-2

 
+

" 
&
|z|=3/2



 



ez
 +
Res 4
z + 3z 2 − 4 z=1



ez

.
+ Res 4
z + 3z 2 − 4 z=−1

ez dz
= 2πi
z 4 + 3z 2 − 4

         z = 1
     ! !
Res

z4


ez
ea

,
= 3

2
+ 3z − 4 z=a 4a + 6a

z = −1 



 

      

   



e

Res 4
z + 3z 2 − 4 

a=1

z

z=1

e
;
10

a = −1 




e

Res 4
z + 3z 2 − 4 
z

=−

z=−1

    
&
|z|=3/2



ez dz
= 2πi
4
z + 3z 2 − 4

e
1

10 10e


=

e−1
1
=−
.
10
10e

πi 2
(e − 1).
5e

      


 

      
  
    


 
  
 
 
               
      


 !" #$   

$2π
0


(a > 1)
a + cos ϕ

%  &   ' (
  e = z  dz = ieiϕ dϕ = izdϕ cos ϕ =
z 2 +1
= 2z )
ϕ  
 0  2π   z     
=
         |z| = 1 *   


eiϕ +e−iϕ
2

$2π
0


=
a + cos ϕ





= 



&
|z|=1

dz
2
=
z 2 +1
i
iz(a + 2z )

&

dz
=
z 2 + 2az + 1

|z|=1

z 2 + 2az + 1√= 0,

1
 =
z1,2 = −a ± a2 − 1 , Res z2 +2az+1
z1
z1 ∈ |z| < 1,
z2 ∈ |z| > 1,
= 2√a12 −1



1 
2z+2a z1





=




2
1

= 2πi · √
=√
.
i 2 a2 − 1
a2 − 1
+     & ,   
   
 
           
 -  
          
   
    ,         
N .
#/!0       N → +∞





   

y

z

N

aj
a2
a1
N

x1

an-1

an
0 xk xm-1 x m N x

x2

    



           

                 
 
     f (z)      

   

       aj 
  f (z)    
     
  
 

Imz ≥ 0
j = 1, 2, . . . n Imaj > 0 

 


$+∞
n

f (x)dx = 2πi
Resf (aj ).
−∞

    !



j=1

$+∞
−∞

x2 + 1
dx"
x4 + 1

         !" f (z) = zz +1
#! $ %  
+1
 & '(  ! )  *   !     
 +    ,,- !" ,,
2
4



a1,2 =


a21,2 + 1
z 2 + 1 
2
(i ± 1); Res 4
=
=

2
z + 1 a1,2
4a31,2

1 2
(i ± 2i + 1) + 1
2
4
√ (i3 ± 3i2 + 3i ± 1)
2 2




21±i i±1
2(i ± i2 ± 1 + i)
2i
±i + 1
= 4
·
=
=−
.
=
2
√ (i ∓ 1)
4 i∓1 i±1
4(i − 1)
4
2

=

 

      

  
$+∞

−∞

 



 

 √
 √ 
√ 

x2 + 1
2
2
2
dx = 2πi −
i−
i = 2πi −
i = π 2.
4
x +1
4
4
2

         !"
 # $  % & '#%  (
     f (z) = g(z)eiαz  α > 0 g(z) → 0



|z| → +∞      
Imz ≥ 0     aj j = 1, 2, . . . , n (Imaj > 0) 
  xk k = 1, . . . , m    x  !"#

   

 n

$+∞
m

1
f (x)dx = 2πi
Resf (aj ) +
Resf (xk ) .
2 k=1
j=1

)

−∞

$+∞

   $

−∞

sin x
dx
x

$+∞



−∞

cos x
dx
x

*  +   , -      .  #/  (
  ' 0) 1     & - )))
ix

e = cos x + i sin x



$+∞

−∞

eix
dx =
x

$+∞

−∞

cos x
dx + i
x

$+∞

−∞

sin x
dx.
x

2 '#
  #    #  
→ 0  |z| → +∞ 4
# 3 α =
     
e 
 5 z = 0      Res z z=0 = e1 z=0 = e0 = 1
  
iz
f (z) = ez
1 g(z) = 1z

iz

$+∞

−∞

cos x
dx + i
x

$+∞

−∞


sin x
1
eiz 
dx = 2πi Res 
= πi.
x
2
z z=0

4    # 
$+∞

−∞

iz

      5  5

cos x
dx = 0,
x

6

$+∞

−∞

sin x
dx = π.
x









 

$+∞
−∞

sin x
dx
x4 − 1

   



$+∞
−∞

cos x
dx.
x4 − 1



       
$+∞ ix
$+∞
$+∞
e
cos x
sin x
dx =
dx + i
dx.
x4 − 1
x4 − 1
x4 − 1
−∞

−∞

−∞

iz

   f (z) = ze4 −1       !"
 # α = 1" g(z) = z41−1 → 0  z → +∞   "  z 4 − 1 =
= (z − 1)(z + 1)(z 2 + 1)   $ %
 x : a1 = 1"
a2 = −1 &#  ' % a3 = i  $ '  
( $   $  )* + ,!

cos 1 + i sin 1
eiaj
ei
eiz 
;
Res 4
= 3 ; Resf (1) = =

z −1
4a
4
4
z=aj

j

− cos 1 + i sin 1
e−1
i
e−i
=
; Resf (i) =
= .
Resf (−1) = −
4
4
−4i
4e
-  + ,! 
$+∞
$+∞
cos x
sin x
dx + i
dx =
x4 − 1
x4 − 1
−∞
−∞

1
= 2πi Resf (i) + (Resf (1) + Resf (−1)) =
2

i
cos 1 + i sin 1 − cos 1 + i sin 1
π
= 2πi
+
= − − 2π sin 1.
4e
2
2e
.
 $+∞
$+∞
1
cos x
sin x
dx = −π
+ 2 sin 1 ,
dx = 0.
x4 − 1
2e
x4 − 1
−∞

−∞

           

           
   



            
              


  

 

$1

$3−x
dx

0



2y(x+2y 2 )dy 

1−x2

               
            
  z = x2 x = y2  x = 1 z = 0

   

&

(3xy + x2 )dx + 8x2 dy 

   

ABCA

A(0; 1)! B(2; 2)! C(0; 3) 

" #       
      $"   % 
 !         
F = (x + y; x + y + z; 2z − y)     &   #
 O(0; 0; 0)! A(−3; 0; 0)! B(0; 2; 0)! C(0; 0; 3)      
  $"   '    %
  (      
F = (ex sin y; ex cos y; 1)             


 

 

 

      

 "   # $ 
$1

$3−x
dx

1−x2

0

$1
=
0



2

$1

2y(x + 2y )dy =

3−x
(y 2 x + y 4 )√1−x2 dx =

0


(3 − x)2 x + (3 − x)4 − x(1 − x2 ) − (1 − x2 )2 dx =





$1
=







     


(9 − 6x + x2 )(9 − 5x + x2 ) − x + x3 − 1 + 2x2 − x4 dx =

0

$1
=

(81 − 54x + 9x2 − 45x + 30x2 − 5x3 + 9x2 − 6x3 + x4 − x + x3 − 1+

0
2

4

$1

+2x − x )dx =

(80 − 100x + 50x2 − 10x3 )dx =

0

=

80x − 50x2 +

1
265
50 4 10 4 
50 5
x − x  = 30 +
− =
.
3
4
3
2
6
0

                 
                  
      x = 0 x = 1 y = 3 − x    
y 2 = 1 − x2  !       ABCE
    "#$
y
3
2
1

C
x=3-y
K
E

B

D

A
0
1
x= 1-y 2

 

2

 

3

x

           



   
            
     ADE  EDKB  KBC     

ABCE

$1

$3−x
dx


0

$2
+

2y(x + 2y )dy =
$1

2y(x + 2y 2 )dx +

0

$3
=

+



0

$1

$1

2y(x + 2y 2 )dx =

dy


0

1−y 2

 2
3−y
yx + 4y 3 x 0 dy +

$2

2

$1

$3−y
dy
2y(x + 2y 2 )dx+

2

1−x2

dy
1

$3

2



1
yx2 + 4y 3 x 0 dy+

1

1
yx2 + 4y 3 x √1−y2 =

$3




y(9 − 6y + y 2 ) + 4y 3 (3 − y) dy+

2

0

$2
+

(y + 4y 3 )dy +

1

$1

(y + 4y 3 − y(1 − y 2 ) − 4y 3


1 − y 2 )dy =

0

$3

2

3

4

$2

(9y − 6y + 13y − 4y )dy +

=
2

(y + 4y 3 )dy+

1

3
9y 2
13y 4 4y 5 
− 2y 3 +

+
2
4
5 2
1


2 

5 4 4 (1 − y 2 )5 4 (1 − y 2 )3 
y2
4 
+y  +
y −
+
 =

2
4
5
3
1

$1 


5y 3 − 4y 3 1 − y 2 dy =
+
0

+

0

1053 972
81
− 54 +

− 18 + 16 − 52+
=
2
4
5
128
1
5 4 4
265
+
+ 2 + 16 − − 1 + + − =
.
5
2
4 5 3
6











     





 
 
    OABCD   
         OCD  z = x2 OAD OBC 
x = y 2   x = 1 z = 0
 !"#$%

z

y

b)

D(1;1;−1)

x=Const

a)
C(1;1;1)

y= x
B

OX

1
y
A(1;−1;0)

0

x
S A

B(1;1;0)

y=− x

x

 

 

& ' (  ) *+ 
' 
 !"#.%

$$

$$

V =

zds =
S

x2 dxdy = 2

$1

 , (


$x
$1
√x
x2 dx dy = 2 x2 y 0 dx =

0

S

$1
=2
0

0

0

1


2
4
x2 xdx = 2 · x7/2  = .
7
7
0

/   y = 0 0 )  , x  1 2
 3!"%

x =

7
4

$$$
xdv =
V

7
4

   -



$1

$x
xdx

0

$x2
dy

dz =


− x

0

0

− x

7
4

$1
0

3!%

 x2

$ x 

xdx
z  dy =


− x 
0

√ x

$1
$x
$1
$1


7
7
7
=
x3 dx
dy =
x3 y 
dx =
2x3 xdx =
4
4
4
 √



0

− x

0

z 

           
1
7 2 9 
7
· x2  = ;
2 9
9
0

=

z =

7
4

$$$

7
4

zdv =
V

=

7
8

$1



$1

$x
dx



x4 dx

$x
dy =


− x

0

=









$$
=

$x2
dy


− x

0



7
8

$1
0

zdz =
0

7
4

$x
dx

− x

0

√x
7
x4 y −√x dx =
4

$1

x 2
z 2 
dy =
2 0


x4 xdx =

0

1
7
7 2 11 
x2 = .
4 11
22
0



&
    

∂Q ∂P

∂x
∂y



$1



P dx + Qdy =
L

dxdy 

y
3

C

x=Const

S

z
y=3-

2 S

B

1A

y=1+
2
 

3

1
x
2

C

n
A
-3

1
x
2

B
2

0
x

 

y

x
 

 





   P = 3xy + x2
  
&

2



      

Q = 8x2

∂Q
∂x



ABCA

13xdxdy = 13

0

3− 12 x

$

xdx
0

S

= 13

= 16x − 3x = 13x

$2

$$

2

(3xy + x )dx + 8x dy =
$2

∂P
∂y

dy =

1+ 12 x

$2

x
x
dx = 13 (2x − x2 )dx =
x 3− −1−
2
2
0

2

52
x 
8
= .
x2 −
=
13
4

3 0
3
3
3

= 13

   

   AB : y = 1 + 12 x dy = 12 dx
 BC : y = 3 −
dy = − 12 dx  CA : x = 0 dx = 0 
     !" #$
1
x
2

&

$2  

x
3x 1 +
+ x2 + 4x2 dx+
(3xy + x )dx + 8x dy =
2
2

2

0

ABCA

$0 
+
2

$0
$2


x
3x 3 −
+ x2 − 4x2 dx + 0dy = (−6x + 11x2 )dx =
2
3

=

0

2

11
52
−3x2 + x3  = .
3
3
0

 %& '

(      ) *#+, - $#.   &

V = 61 OA · OB · OC =

1
6

·2·3·3=3

 /  * 01      0
 F $  - σ



$$
$$$
 div F = ∂(x+y) + ∂(x+y+z) +

∂x
∂y
=  F ndσ =
divF dV =  ∂(2z−y)
 ∂z = 1 + 1 + 2 = 4
σ

V

$$$
dV = 4V = 12.

=4
V




=








     

z

x=const



3 C

z=x+3
A
-3

0 x

   OAC
 



 
n=


N
N



= − √217 ; √317 ; √217 

3
2
1
2
F n = − √ (x + y) + √ (x + y + z) + √ (2z − y) = √ (x − y + 7z) =
17
17
17
17


      ABC 
=
= 

z = 3 + x − 32 y

23
21
1
1
=√
x − y + 21 + 7x − y = √ (8x − y + 21),
2
2
17
17

$$
1
23

8x − y + 21 dσ =
2
17
ABC


=  dS = dxdy = dσ · cos γ =

$2
$0
21
23
4x − y +
dxdy = dy
4
2

$$
=

0

OBA

$2
=

2x2 −


−2

=
0

$2


=
0

3
y−3
2


=


23
21
4x − y +
dx =
4
2

3
y−3
2

0
21 
23
y + x 
dy =
4
2
3
y−3
2

0

$2

√2 dσ
17

2

23
+ y
4


3
21
y−3 −
2
2

3
y−3
2


dy =


69y 2 69
63
63
−9y 2
+ 18y − 18 +
− y− y+
dy =
2
8
4
4
2

           
$2
=
0


33 2
27
y − 15y +
dy =
8
2



2
11 3 15 2 27 
y − y + y  =
8
2
2
0

= 11 − 30 + 27 = 8,
$$
 F ndσ = 2 + 2 + 0 + 8 = 12.
σ








     F = F (x; y; z)    
         rot F = 0  !" #
  $


k 

i
j



∂1 ∂ex cos y 


∂ 


=

i+
rot F =  ∂x
∂y
∂z 
∂y
∂z
 ex sin y ex cos y 1 


∂ex cos y ∂ex sin y 
∂1 ∂ex sin y 
+
j+

k=
+ −
∂x
∂z
∂x
∂y
= 0 · i + 0 · j + (ex cos y − ex cos y)k = 0.
% &      '$   ()" & * + 
,  ,  x0 = y0 = z0 = 0  $
$x
$y
$z
x
V (x; y; z) = 0dξ + e cos ηdη + dζ + C =
0
x

sin η|y0
x

0

ζ|z0

0
x

+
+ C = e sin y + z + C.
=e
∂V
∂(e sin y + z + C)
=
= ex sin y = Fx 
%&*
∂x
∂x
∂V
∂(ex sin y + z + C)
=
= ex cos y = Fy ;
∂y
∂y
∂V
∂(ex sin y + z + C)
=
= 1 = Fz .
∂z
∂z












 



  

$1

1−x
$ 2

dx
−1

     


− 1−x2

xydy

 

       
          
     x2 + y2 = z + 1 z = 3
   % 2xydx + (x2 − 3xy)dy  A(1; 1)
ABCA
B(2; 2) C(3; 1) !  "   ABC       
 #$    %
      F = (2z; x−y+z; 3y+2z)
     &   "  O(0; 0; 0) A(−4/3; 0; 0)
B(0; 2; 0) C(0; 0; 4)        #$    '
%
  (       
F = (2xz + y 2 ; 2xy + z 2 ; 2yz + x2 )      
  







   
  Oxy       
 x + y = 4       Oxy   
    x + y = 3    (x + 1) +
+(y − 1) = 4    (x + 3) + y = 1  
     + y = 1   z  x + 9y + 18y + 9
 z < x + 2x + y /4 − y/2 + 5/5       
 2x − z − 1 > 0 y + 2x + 1 > 0    
  (x + 3) + y = c      
+
=1 
c > 18  ! "
 (x − 1) + (y − 1) = 4   
  ! "  + y = 1  #  ! " 
x − 1 = (y + 1)   #
 ! "  y − 1 = x 
  + z − = 0.
 
     !  #     Oz.  
$  !  #     Oy.     ! 
#     Oy.      ! #    %  
Oz.   & #
 ! #     Ox.
  
  (x + 1) + +
= 1  '( (x − 1) +
+(y + 1) + z = 3    !  #   − + z = 1
   !  #   (y − 1) − + z = 1  $
 !  #   +z − = −1  $  !  
= −1   
#   (x − 1) + y −
  ! #  
+   
+
y =
  ! #   x =

  
  ! #   z = − − (y + 1)    & 
#  ! #   y = −    $  !  
#   + Y − = −1 λ = 3 λ = 6 λ = −2 det A = −36
det D = 216  
  + + = 1 λ = 2 λ = 5
λ = 8 det A = 80 det D = 2560  
  + + = 1
λ = 1 λ = 2 λ = 3 det A = 6 det D = −42.
2

2

2

2

2

2

2

2

x2
4

2

2

2

2

2

2

x2
4

2

y2
4

2

(z−1)2
1/2

y2
1/4

2

x2

2

x2
3

2

2

x2
3
(z+1)2
3

2

z2
3

x2
2

X2
2

y2
2

2



2

∂z
∂x

4

2

x2
2

Z2
3

2

9

z2
3

1

X2
16

2
Y2
32/5

y2
2

(y+1)2
4
2

x2

3
Z2
4

3
1

(y+1)2
c−18

2

2

2

2

x2
9(c−18)
2

2

x2
4

2

1

X2
7

2

(z−1)2
4

2

Y2
7/2

Z2
7/3

3

= 4x − 2y + 3;

∂z
∂y

= −6y − 2x − 5. 

∂z
∂x

=

−3(2x−5y)−2(2y−3x)
;
(2x−5y)2





 ln (



x+1)12
x

12



12

x

12

+ C.  −



(3−4x)(9−5x)
5



+ 2021√5 ln |51 − 40x +

+ C.  √16 ln |12x +
5(3 − 4x)(9 − 5x)| + C.  − 3 x+1
x−2


2

7 + 8x − 11x2 + 1163
·
+5 + 2 6(6x2 + 5x + 11)| + C.  − 11
11
+4



1 15+3x

+ C.   arccos x√1 2 + C.   − 15
+ C.
· arcsin 11x−4
x
93

3
x
1
3+4x
−3
 − 5√x2 −5 + C.   x
.   3x + 4 = t2 .
x

 h

n−1


f (a + ih), h =

i=0
1
2
(a
2

b−a
.
n



heh
eh −1



2


eb − ea , h =


− b2 ) .   π6 .   e3 − e2 .
2
  1 + ln 94 .   π4 .  πa4 . 
 −2.

 ln
π
2

− 1.

b−a
.
n

1+ 5
.
2
π
.
2


2

 323 .√  38π
.  32π
.  16 .   πc2 .  
R2 √
a2



x
2
2
 2π 5.   2 4a x + 1 + 4a1 ln
2ax + 4a2
x2 + 1 .



  6R.  a2 ϕ + 1 + ϕ2 + ln ϕ + 1 + ϕ2 . 

π
.
3
gt2
.
2



     2abπ .         2 2.
         π8 .  π.   
                   
   



2

arctg 2√tg3x + C   xex + C   29
arctg 5x+3

45
9
 1+x  1
1


ln(5x + 6x + 18) + C   − 4 ln 1−x − 2 arctg x + C 
3
  tg3 x + C    187         6π
  12 γπHR4 



3
− 10

1

2 3
2


ln(25/24).   76    y =
2x − x2 ,

2
y = 4x, x = 0, x = 2.  x = y /2, x = 3 − y 2 , y = 0, y = 1.

1− 1−y 2


#1
#
2
 y = 2x − x , y = 4x, x = 0, x = 2, dy
f (x, y) dx +

 √
 14π/3.

+

#1
0

dy
1+

#


1−y 2



f (x, y) dx +


2# 2
1

0

dy

#2
y 2 /4

f (x, y) dx.

y 2 /4

 

x

=

y 2 /2,






1/2

#2x
#
# 2 #1
3 − y 2 , y = 0, y = 1, dx f (x, y) dy +
dx f (x, y) dy +

x =





+

#3



dx

0

3−x
# 2

0

1/2

0

f (x, y) dy.

0

2
π/4
#





1/ #
cos ϕ

0

0

3π/4
#


 

ρf (ρ cos ϕ, ρ sin ϕ) dρ+





1/#
sin ϕ

0

ρf (ρ cos ϕ, ρ sin ϕ) dρ.

0

π/4

1/#
sin ϕ

π/4

π/2
#

ρf (ρ cos ϕ, ρ sin ϕ) dρ. 

4 4 3
π a.
3

2

 π(1−e−a ).





 3(π/4 + 1/2.        17/24.
    x = 5a/6, y = 0.  21
πa4 γ, 49
πa4 γ,
32
32
dx

1−x
#



# 1−x−y

R#2 −x2
#R
#H
f (x, y, z)dz. 
dx
dy f (x, y, z)dz.
0

0
0
0
−R
− R2 −x2




5
8
 15 (31 + 12 2 − 27 3.   4π 2/3.  πa5 (18 3 − 976 ).
  83 R3 (π − 43 ).  π/10.



#1

35
πa4 γ.
16

dy

    z = 4/3, x = y = 0,   x = y = 0, z = 2H/3.
 πH 2 (R24 − R14 )/4.   14 πH 2 (R24 − 3R14 + 2R12 R22 ), 14 πH 2 (3R24 −

−R14 − 2R12 R22 ).

 40 19
 −2πa2  − 43  
30
ex−y (x + y) + C ln |x + y| + C
 24a3 


#1
−1

dx

1−x
# 2

− 1−x2


16

3
πa2
8

 x3 −x2 y−y 3 +C

 u = xyz + C



2
2
#1−y
#1
#1−y
xydy =
dy
xydx + dy
xydx = 0


−1
0

 x = y = 0 z =
= xy 2 + yz 2 + x2 z + C 

#0



5

3

1−y 2

 −4 



16

9

1−y 2

  U (x; y; z) =


 

  
    
       
    
       
     
       
     


," " 
 $"   
," "   $"
  #
," "  "
  ##
," "  "
  #
-("     
%
- .  (  "
( *  .   
-     .
  %#
-   ""
( *
#
-     " 
 $"   
-     " 
 $"   #
-   ) 
  .  
-  
 "    
&
-   
/ .  . %%
/    %
/    *
  
/     
 &

!"  
   #
!"   "
 $   #%
!       
!      &
!    &
!  %
'  &%
'      
'  "   &
' " ( 
 & 
'   
'    )   
&%
'     
  
'     *
  &
'       
'   +""
#




      
  
    
   
      
         !
      
   "#
$ %&   & ' (
  %   !"
$'     
      
   ) *
$%  )   
!!
$+     "
$    
  #
$%        ,$     -.%/+   !.%/+   0) ,,,
.%/+   '  
(  () ,,!
.  % ,
.+     #
1  %(  *
1  %  
1    
      

1% ' ) ,
10    
10     0) ,,
1     )  ,"
1   0) 
1      
  1  0  *
1    *"
1)  %   1    -,
1     #
1    
#!



 

1  )  
,2  )   (
 "
1'    %  
    ,""
1' )     
   
,!,
1' )    3 -
4&     
    $3   #
4     ) 
5           ,
5 )  -
5   "
5 (   
  )    ",
5 (      
5( )     
6 %       
6 7  *,
6 .    27   
6 5   -
6 0  )   
     ,!
6      ,
8  )   ( )
   *
8   !*
9'(   + 
     ,!
9 $3  2 %  ,!"
9 5  ,#,
9    ,#,
:( )    

:(   "
:))    
;    '  2  ) 
##
;    '   &
) #