Ультразвуковая толщинометрия и дефектоскопия [В. А. Лукьянов] (doc) читать постранично, страница - 2

Книга в формате doc! Изображения и текст могут не отображаться!


 [Настройки текста]  [Cбросить фильтры]

совмещённый датчик-преобразователь ПКН 5.0-50°.

Прямые преобразователи используются в основном для определения толщины изделий.
Наклонные преобразователи используются в случаях, когда установить датчик-преобразователь непосредственно над контролируемой поверхностью не представляется возможным из-за конструктивных особенностей объекта контроля (например, сварные соединения, угловые соединения, поверхности со сложным профилем), или из-за его повышенной шероховатости. Максимальная шероховатость поверхности (Rz) для применения ультразвукового контроля не должна превышать 40 мкм.
Для определения внутренних дефектов в объекте контроля в основном используются наклонные преобразователи, поскольку они позволяют эффективно сканировать объект контроля по вертикали. Прямые преобразователи не в полной мере отвечают этому назначению, поскольку не позволяют определять наличие «нижних дефектов» под «верхними дефектами». Сигнал отражается от «верхнего дефекта» и не позволяется зафиксировать «нижний дефект» (рис. 4). При использовании наклонного преобразователя возможно, перемещая его по горизонтальной поверхности, сканировать дефекты, расположенные в вертикальной плоскости (рис. 4).

Рис. 4. Определение координат отверстий с помощью прямого (а) и наклонного (б) преобразователя.
1 – дефекты; 2 – прямой преобразователь; 3 – наклонный преобразователь;
4 – риска на наклонном преобразователе;
Н – глубина залегания дефекта; L – расстояние до дефекта по горизонтали;
Х – полное расстояние до дефекта; a – угол ввода преобразователя.

2.2. Методы проведения ультразвукового контроля.
Наиболее распространённы на практике эхоимпульсный и теневой методы ультразвукового контроля.
Эхоимпульсный метод (рис. 5, 6) заключается в прозвучивании изделия короткими импульсами ультразвуковых колебаний и регистрации эхосигналов, отражённых от дефекта и идущих к приёмнику. Признаком дефекта является появление эхосигнала на экране дефектоскопа. При этом чем больше дефект, тем больше амплитуда эхосигнала.
Этот метод наиболее широко распространён из-за простоты реализации, возможности одностороннего доступа к изделию, независимости результатов контроля от конфигурации и состояния противоположной (донной) поверхности, а также из-за высокой точности в определении координат дефектов. Основным недостатком метода является наличие значительной «мёртвой» зоны в металле под пьезоэлектрическим преобразователем, что не позволяет выявлять в объекте контроля подповерхностные дефекты.

Рис. 5. Схема обнаружения дефектов эхоимпульсным методом с помощью прямого раздельно-совмещённого преобразователя.
1 – ультразвуковые импульсы, отражающиеся от донной поверхности; 2 – ультразвуковые импульсы, отражающиеся от дефекта; 3 – А-развёртка на экране дефектоскопа; 4 – дефект; У—усилитель, Г—генератор.

Рис. 6. Схема обнаружения дефектов эхоимпульсным методом с помощью наклонного раздельно-совмещённого преобразователя.
1 – ультразвуковые импульсы, отражающиеся от донной поверхности;
2 – ультразвуковые импульсы, отражающиеся от дефекта;
3 – А-развёртка на экране дефектоскопа;
4 – дефект; У—усилитель, Г—генератор
I – положение датчика-преобразователя, фиксирующего наличие дефекта;
II – положение датчика-преобразователя, фиксирующего донный сигнал.

Теневой метод (рис. 7) реализуется путём сквозного прохождения ультразвука через изделие. При этом используют два соосно размещённых пьезоэлектрических преобразователя (ПЭП) (излучатель и приёмник), а о наличии дефектов судят по пропаданию или уменьшению амплитуды сквозного сигнала. Недостатками метода являются необходимость двухстороннего доступа к изделию, а также использование сложной механической системы соосного фиксирования датчиков. К преимуществам следует отнести слабую зависимость амплитуды сигнала от ориентации дефекта, высокую помехоустойчивость и отсутствие «мёртвой» зоны.

Рис. 7. Схема обнаружения дефектов теневым методом с помощью прямого раздельного преобразователя.
1 – ультразвуковые импульсы, проходящие до донной поверхности; 2 – ультразвуковые импульсы, прерывающиеся на дефекте; 3 – изображение ослабления донного сигнала на экране дефектоскопа, 4 – дефект; У—усилитель, Г—генератор

3. Порядок проведения работы.
Целью проведения испытаний является определение координат внутренних отверстий в контрольных образцах. В качестве контрольных образцов используются бруски из стали марки Ст3 размером 105х27х43 мм. Все отверстия имеют диаметр 4 мм и являются сквозными.
Координаты отверстий следует нанести на чертёж бруска. Пример оформления результатов испытаний приведён на рис. 8. Расстояния до дефекта могут быть указаны как до точки отражения в дефекте (в этом случае они совпадают с показаниями дефектоскопа), так и до центра отверстия (в этом случае следует учитывать расстояние между центром отверстия и точкой