Энергия и жизнь [Николай Савельевич Печуркин] (fb2) читать постранично, страница - 2


 [Настройки текста]  [Cбросить фильтры]

сложность биосферы, связанное с ней усиление давления жизни и разнообразие групп организмов», авторы цитированного учебника говорят о неизбежности «не только появления все более сложных существ и органов, но и их энергетического совершенствования» [Там же, с. 266].

Естествознание XIX в. по праву гордилось двумя крупнейшими достижениями: разработкой материалистической концепции эволюции в науках о живой природе и разработкой концепции энергии в развитии физики. Несомненно, что поиск внутренней связи между этими концепциями был предметом многих исследований. Так, К. А. Тимирязев еще в 1912 г. подчеркивал, что вопрос о космической роли растений является какой-то пограничной областью между двумя великими обобщениями прошлого века, между учением о рассеянии энергии и учением о борьбе за существование. Однако попытки найти простые формальные связи и вывести на их основе энергетические принципы развития жизни оказались практически безрезультатными. Более того, непосредственное приложение термодинамических законов к анализу явлений жизни привело к прямому противоречию: эволюция (развитие) живых систем происходит в направлении, противоположном указываемому вторым началом термодинамики (вместо деградации системы и роста энергии — повышение организации системы). Следовательно, согласно представлениям классической термодинамики, жизни как устойчивого явления не должно существовать. Сам факт наличия и развития жизни убедительно демонстрирует некорректность выводов подобного рода. «Жизнь не укладывается и посылки, в которых энтропия установлена», — отмечал В. И. Вернадский [1960, с. 85].

Потребовалось развить новую область, термодинамики — неравновесную термодинамику, на основе которой оказалось возможным ввести термодинамические критерии эволюции открытых систем. В применении к живым системам, открытость которых является одним из важнейших свойств, эти критерии определяют устойчивость стационарного состояния (а не равновесия — аналога смерти!), в котором скорость производства энтропии и, следовательно, рассеяния энергии минимальна.

И опять физический критерий эволюции не соответствует развитию реальных живых систем, которые в эволюции явно увеличили и рассеяние, и использование потоков энергии, пропускаемых через себя.

Физики и механики назвали энергию «царицей мира», а энтропию — ее «тенью». Понятие энтропии имеет двойственную природу. (Третью сторону — информационную — мы пока не затрагиваем.) С одной стороны, энтропия характеризует рассеиваемое системой «бесполезное» тепло, а с другой— является мерой упорядоченности (с ростом энтропии увеличивается беспорядок — в этом проявляется «теневой» смысл энтропии). Так вот в биологии, где упорядоченность структур почему-то возрастает, больше внимания уделялось энтропии, чем энергии. «Царица мира»— энергия оказалась в тени своей собственной «тени» — энтропии. Много говорилось об отрицательной упорядочивающей энтропии, присущей живым организмам. Даже солнечный свет предпочитали рассматривать как «мощный источник отрицательной энтропии», а не как поток энергии [Шредингер. 1972, с. 70]. А между тем для существования любого стационарного состояния открытой системы необходим поток свободной энергии извне, а не поток отрицательной энтропии в систему, или негэнтропии, как это следовало из вывода Э. Шредингера, наиболее часто упоминаемого в литературе. Самым простым подтверждением этому является возможность гетеротрофного роста клеток (т. е. синтеза сложных биополимеров и структур) на простых неорганических солях и углеводах (и даже углеводородах). Еще более убедителен хемо- и фотоавтотрофный рост, где используются лишь простые неорганические соединения и поэтому о питании отрицательной энтропией (или на языке термодинамики — высокоупорядоченными структурами) не может быть и речи. Однако абсолютно необходимым условием развития во всех упомянутых случаях является поток свободной энергии в различных формах (при окислении органических соединении; выделяемой в экзергонических реакциях окисления неорганических веществ типа реакции образования «гремучего газа»; энергии квантов света).

В целом термодинамический анализ возможности устойчивого существования стационарных состоянии диссипативных структур (т. е. обладающих определенным уровнем организации), согласно И. Пригожину, не указывает пути эволюции этих состояний.

Итак, и к настоящему моменту физика и биология не дают единой картины развития, перехода от сложных физических к простым (но еще более сложным на самом деле) биологическим структурам. Ситуация настолько драматична, что вместо ожидаемого синтеза имеет место прямое размежевание. Физики в данном случае «отгородились» принципом дополнительности, который ввел знаменитый Н. Бор. Согласно этому принципу, некоторые понятия несовместимы и должны восприниматься как дополняющие друг друга. «Идея дополнительности,— пишет известный физик-теоретик