Юный техник, 2005 № 12 [Журнал «Юный техник»] (fb2) читать постранично, страница - 5


 [Настройки текста]  [Cбросить фильтры]

свободно.

Кроме того, сама решетка по разным причинам теряет строгую форму. Это резко ухудшает свойства металлов — реальная прочность их примерно в 1000 раз меньше, чем могла быть при идеальной кристаллической решетке. А что бы случилось с металлом, не будь у него вообще никакой кристаллической решетки?.. Впервые об этом ученые задумались довольно давно. Еще в 60-е годы XX века они нашли два основных способа получать из жидкого металлического расплава металл в твердом, но аморфном состоянии. Как осуществили сверхбыстрое замораживание расплавленного металла в ЦНИИчермете, мы уже описали выше. На мчащейся ленте, охлаждаемой жидким гелием, скорость затвердевания достигает миллиона градусов в секунду. Иначе говоря, металл застывает за тысячные доли секунды!

Но и этого бывает недостаточно! А потому в специальном конструкторском бюро Института металлургии РАН имени А.А.Байкова использовали другой способ. Расплавленный металл прямо из тугоплавкого тигля пускают в тончайший зазор между охлаждаемыми медными валками. Замораживание идет сразу с обеих сторон, потому и скорость охлаждения гораздо выше — миллионы градусов в секунду!

Механизм этого воздействия работает по принципу стоп-кадра в кино: только что все было в движении — и вдруг застыло в самых неожиданных позах. Так и здесь. Атомы, моментально застывая, не успевают выстроиться в кристаллическую решетку. Холод как бы примораживает их к месту в том положении, в котором они находились в расплаве.



Под микроскопом видно: металл превратился в аморфную массу.


Нужна золотая середина…

От полученного металлостекла ожидали многого. Теоретики, например, полагали, что такому материалу может быть не страшна коррозия — ведь она начинается на поверхностных границах крохотных зерен-кристалликов, из которых состоит поверхность металла, вгрызается вглубь, постепенно разрушая структуру.

Действительность превзошла все ожидания. Да, у аморфного металла, как и предсказывали, уникальная коррозионная стойкость. Кузов автомобиля, сделанный из него, служил бы верой и правдой сотни лет без всяких смазок И покрытий. Кроме того, прочность металлостекла оказалась в десятки раз большей, чем у обычной стали! Оно вдобавок обладает замечательными магнитными свойствами, способностью к сверхпроводимости, у него очень малы потери энергии при перемагничивании…

Однако наряду с достоинствами у стеклометаллов обнаружились и свои недостатки. Они, к примеру, довольно хрупки — если нагрузка превысит определенный предел, могут сразу рассыпаться, подобно стеклу обычному.

А нельзя ли как-то соединить достоинства обоих классов материалов, оставив за скобками недостатки? Это и удалось сделать физикам Дармштадта. Недавно они получили материал, который обладает уровнем пластической деформации при комнатной температуре до 20 % (этим редко могут похвастать и многие из обычных металлов) и в то же время полным набором преимуществ стеклометалла. При деформации, например, такой материал повышает свою прочность, а не снижает ее, как обычно. Это очень удобно, скажем, при изготовлении детали штамповкой или ковкой. Берете довольно мягкую заготовку, а из-под штампа выходит гораздо более твердая и прочная деталь.

Чтобы получить один из таких сплавов, Фалько Байер, инженер-физик факультета материаловедения, готовит расплав электротехнической меди с добавлением циркония и алюминия, а затем охлаждает его со скоростью 250 градусов в секунду.

«Если охлаждать расплав быстрее, получится стеклометалл чистой воды, — поясняет физик. — Если охлаждать чересчур медленно — образуется обычная кристаллическая структура. Так что истина, как это часто бывает, где-то посередине».



Ф. Байер доволен: все получилось как надо…


Как показали исследования шлифов под микроскопом, в таких материалах образуются микроструктры, отличающиеся по своему строению от окружающего материала. Сами размеры таких включений не превышают нескольких нанометров, но и этого уже достаточно, чтобы стеклометалл вел себя совершенно иначе.

Кристаллики не дают распространяться микротрещинам, которые обычно и приводят к разрушению материала. А пластичность в сочетании с высокой коррозионной стойкостью — свойство, которое высоко ценится в современном машиностроении. Что еще очень ценно — получающиеся сплавы обладают весьма малой плотностью, то есть получаются весьма легкими. А значит, могут найти себе применение в авиации и космической отрасли.


И мало, и дорого…

Процесс получения новых материалов пока еще не отработан окончательно и позволяет получать лишь сравнительно небольшие образцы — прутки величиной со спичку, пластины размерами с визитную карточку. И все-таки материаловеды полагают, что отработка технологии получения новых сплавов — дело ближайших