100 великих научных открытий [Дмитрий К Самин] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

СТО ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ

ВВЕДЕНИЕ

Жизнь человека с самого начала складывалась так, что все, чем бы он не занимался, заставляло его наблюдать за окружающим миром и делать из этого выводы. Человеку приходилось совершенствовать орудия охоты и производства, обустраивать свою жизнь и окружающую среду, то есть заниматься в меру своих возможностей всем тем, что позднее стало именоваться наукой и техникой.

«Каждый новый шаг в развитии человечества требовал от наших предков все больших знаний и умения, — пишет академик В.А Кириллин. — Обработка материалов, изготовление орудий труда и охоты диктовали необходимость изучения свойств камня, дерева, кости, а позднее металлов. Использование огня также требовало определенных знаний. Для того чтобы охота была успешной, необходимо было знать жизнь и повадки животных. Занятия охотой и рыбной ловлей, а в дальнейшем земледелием заставляло людей наблюдать за сменой времен года, изменениями погоды. Таким образом, постепенно накапливались начала научных знаний».

В самых примитивных формах уже первобытный охотник ориентировался на местности по светилам. Не случайно, поэтому, что именно астрономия, а скажем не химия, стала одной из самых древних наук.

Вместе с развитием хозяйственной деятельности человека, в период расцвета первых цивилизаций значительное развитие получили начала науки. Так были введены в практику жизни весы, а вместе с ними и единицы измерения. Тогда же оказались заложены основы арифметики и десятичной системы счета. Бурное развитие строительства привело к возникновению землемерной съемки и картографии. Можно продолжить этот ряд и другими примерами.

В пору становления науки ею занимались лишь преданные одиночки, а полученные ими результаты долгое время не считались обязательными для всех. Нужен был новый шаг вперед. Возникновение науки в современном виде было бы невозможно без появления научного метода.

В 1440 году Николай Кузанский в своем сочинении «Об ученом невежестве» настаивал, что все опознания о природе необходимо записывать в цифрах, а все опыты над нею производить с весами в руках.

А еще в XIII веке Роджер Бэкон в своем трактате писал:

«Существует естественный и несовершенный опыт, который не сознает своего могущества и не отдает себе отчета в своих приемах: им пользуются ремесленники, а не ученые… Выше всех умозрительных знаний и искусств стоит умение производить опыты, и эта наука есть царица наук…

Философы должны знать, что их наука бессильна, если они не применяют к ней могущественную математику… Невозможно отличить софизм от доказательства, не проверив заключение путем опыта и применения».

Именно научный метод преобразовал мир, в котором мы живем, и именно на основе успехов этого метода наука дала человеку власть над природой.

Причина могущества науки — в ее всеобщности: ее законы свободны от произвола отдельных людей, она отражает лишь коллективный их опыт, независимый от возраста, национальности и настроения.

Страны Запада, быстрее приняв новую веру в науку, далеко обогнали прежде цветущие страны Востока. Такой успех стал возможен благодаря простому открытию: суть многих явлений природы можно записать в виде чисел и уравнений, устанавливающих связи между числами. Индуктивные науки пришли на смену чистому умозрению, позволив «проверять алгеброй гармонию».

Наибольшее внимание из всех наук в книге уделяется физике. Это объясняется тем, что именно в физике рассматривается широчайший круг структур и явлений, существующих и происходящих в природе. Не случайно открытия физиков часто имеют определяющее значение для других наук, например, химии, биологии, геологии. Вместе с физикой в главу «Основы мироздания» входит ее ближайшая «родственница» — химия.

В отдельный раздел выделена «Могущественная математика», без которой невозможно даже существование подавляющего большинства наук.

Еще одну главу, «Третья планета от Солнца», составили науки о Земле как о планете: астрономия, геология, биосфера, ноосфера.

Четвертая глава, «Тайны живого», посвящена биологии, медицине и психологии. И, наконец, завершает книгу глава «Законы общества», куда вошли такие науки, как экономика, языкознание и история.

В заключение хочется сказать вот о чем. В гипотезах о будущем науки недостатка нет, их множество — от безудержного энтузиазма до самого мрачного пессимизма. Но как бы ни развивалось человечество, оно всегда будет пользоваться научными открытиями и ее плодами так же, как мы вспоминаем века прошедшие.

ОСНОВЫ МИРОЗДАНИЯ

ЗАКОН АРХИМЕДА

Архимед (287 до н. э. — 212 до н. э.) родился в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.

В теоретическом отношении труд этого великого ученого был блистателен. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» — отношение длины окружности к диаметру — и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

Архимед проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг («Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю»), клин, блок, бесконечный винт и лебедка.

Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы и изобретал новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, статика, а также гидростатика.

Учение о гидростатике Архимед развивает в труде «О плавающих телах». «Предположим, — говорит ученый, — что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим». Полагаясь на это положение, Архимед математически доказывает, что следующие ниже «следствия» полностью объясняются с помощью приведенной гипотезы:

«1) Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.

2) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости.

3) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной (части тела), имел вес, равный весу всего тела.

4) Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.

5) Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».

Пункт 5 содержит фактически общеизвестный закон Архимеда, открытие которого позволило ему, согласно преданию, осуществить проверку состава короны сиракузского царя Гиерона. Знаменитый рассказ о первом практическом применении Закона Архимеда приведен у древнеримского автора Витрувия в его труде «Об архитектуре»:

«…Исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, — один из золота, другой из серебра. Сделав это, он наполнил водой сосуд до самых краев и опустил в него серебряный слиток, и вот, какой объем слитка был погружен в сосуд, соответственное ему количество вытекло воды. Вынув слиток, он долил в сосуд такое количество воды, на какое количество стало там ее меньше, отмеряя вливаемую воду секстарием, чтобы, как и прежде, сосуд был наполнен водой до самых краев. Так отсюда он нашел, какой вес серебра соответствует какому определенному количеству воды.

Произведя такое исследование, он после этого таким же образом опустил золотой слиток в полный сосуд. Потом, вынув его и добавив той же мерой вылившееся количество воды, нашел на основании меньшего количества секстариев воды, насколько меньший объем занимает слиток золота по сравнению с одинаково с ним весящим слитком серебра. После этого, наполнив сосуд и опустив в ту же воду корону, нашел, что при погружении короны вытекло больше воды, чем при погружении золотой массы одинакового с ней веса; и таким образом на основании того заключения, что короной вытеснялось большее количество воды, чем золотым слитком, он вскрыл примесь в золоте серебра и обнаружил явное воровство поставщика».

«В этом рассказе, — отмечает Я.Г. Дорфман, — убедительно лишь заключение Архимеда о том, что корона состоит из сплава, а не из чистого золота. Но ниоткуда не следует, что второй компонентой было обязательно серебро. Во всяком случае, следует отметить, что это выдающееся открытие Архимеда знаменует собой первое в истории применение физического измерительного метода к контролю и анализу химического состава без нарушения целостности изделия. Огромное практическое значение этого открытия в эпоху, когда еще никаких других методов подобного рода не было, естественно, привлекло к себе всеобщее внимание и стало предметом дальнейших исследований и практических использований на протяжении многих последующих веков.

По-видимому, и сам Архимед не ограничился описанным полукачественным экспериментом, а перешел к более точному количественному измерению. Автор арабского сочинения XII века „Книга о весах мудрости“ ал-Хазини, цитируя „слово в слово“ не дошедший до нас трактат грека Менелая, жившего во времена римского императора Домициана (81–96 гг. до н. э.), сообщает, что Архимед „изобрел механическое приспособление, которое благодаря своему тонкому устройству позволило ему определить, сколько золота и сколько серебра содержится в короне, не нарушая ее формы“. Ал-Хазини приводит также схему устройства „весов Архимеда“ с подвижным грузом.

Сравнивая на этом приборе веса упомянутых слитков в воде, Архимед мог с помощью подвижного груза определять численное отношение удельных весов золота и серебра, а, сопоставляя таким же способом веса короны и одного из этих слитков, мог установить относительное количество золота и серебра в короне (если в состав короны входили только эти два металла)».

Синезий из Кирэны в IV веке, ученик знаменитой александрийской ученой Ипатии, основываясь на принципах Архимеда, изобрел «гидроскоп» — ареометр для определения удельного веса жидкостей. Прибор, изготовленный из бронзы, имел насечки. По-видимому, этот прибор использовался для составления таблиц удельных весов различных жидкостей. К сожалению, подобные таблицы до нас не дошли.

АТМОСФЕРНОЕ ДАВЛЕНИЕ

Существование воздуха известно человеку с древнейших времен. Греческий мыслитель Анаксимен, живший в VI веке до н. э., считал воздух основой всех вещей. Вместе с тем воздух представляет собой нечто неуловимое, как бы невещественное — «дух».

Древние атомисты Демокрит, Эпикур и Лукреций не сомневались в материальной природе воздуха, атомы которого, по их мнению, обладают подвижностью и круглой формой. Более того, они считали, что сама душа имеет атомистическую природу, атомы души особенно легки, малы и подвижны. Аристотель, причисляя воздух к одним из четырех материальных элементов, полагал, что воздух имеет вес, и даже думал, что ему удалось это подтвердить опытом, взвешивая «пустой» и надутый воздухом пузырь. Аристотель уже хорошо знал всасывающее действие разреженного пространства и вывел из этого факта принцип «природа не терпит пустоты».

Большое количество пневматических приборов было изобретено Рероном, считавшим, что воздух состоит из частиц, разделенных малыми пустотами. Однако существование больших пустот он считал противным природе и этим объяснял всасывание, действие насосов, сифонов, а также другие явления, ныне объясняемые атмосферным давлением.

В эпоху раннего средневековья представление об атмосфере высказал египетский ученый Ал Хайсама (Альгазена), живший в XI веке. Он не только знал, что воздух имеет вес, но что плотность воздуха уменьшается с высотой, и этим уменьшением объяснял атмосферную рефракцию. Наблюдая за продолжительностью сумерек, Альгазен оценивал высоту атмосферы примерно в 40 километров. Однако средневековая Европа вернулась к аристотелевской концепции четырех элементов и принципу «боязни пустоты», оставив надолго изучение физических свойств воздушного океана.

Первыми, кто практически измерил давление воздушного океана, были итальянские колодезники. Вот как об этом факте рассказывается в «Беседах» Галилея:

«Я видел, — говорит один из собеседников Сагредо, — однажды колодец, в который был помещен насос для накачивания воды кем-то, кто думал таким образом доставать воду с меньшим трудом или в большем количестве, нежели просто ведрами. Этот насос имел поршень с верхним клапаном, так что вода поднималась всасыванием, а не давлением, как то делается в насосах с нижним клапаном. Пока колодец был наполнен водою до определенной высоты, насос всасывал и подавал ее прекрасно, но как только вода опускалась ниже этого уровня — насос переставал работать. Заметив первый раз такой случай, я подумал, что насос испорчен, и позвал мастера для починки; последний заявил, однако, что все было исправно, но что вода опустилась до той глубины, с которой она не может быть поднята насосом вверх, при этом он прибавил, что ни насосами, ни другими машинами, поднимающими воду всасыванием, невозможно поднять воду и на волос выше восемнадцати локтей; будут ли насосы широкими или узкими — предельная высота остается той же самой».

Галилей считал, что предельная высота водяного столба 18 локтей является мерой «боязни пустоты». «Так как медь в девять раз тяжелее воды, то сопротивление разрыву медного стержня, обусловленное боязнью пустоты, равняется весу двух локтей стержня той же толщины», — писал Галилей в «Беседах».

Другими словами, «боязнь пустоты» (т. е. сила атмосферного давления) уравновешивается либо весом водяного столба в 10 метров, либо весом медного столба высотой в 1,12 метра, составляя, по оценке Галилея, около 1 килограмма на квадратный сантиметр. Таким образом, практики с достаточной точностью оценили силу атмосферного давления, и подсчеты Галилея правильны, хотя интерпретация его наблюдения, сделанного итальянскими мастерами, носит еще схоластический характер. Необходимо было сделать дальнейший шаг. Его сделал Торричелли.

Эванджелиста Торричелли (1608–1647) родился в Фаэнце в Италии, в знатной семье. Рано лишившись отца, Торричелли воспитывался своим дядей — ученым монахом, отдавшим его в иезуитскую школу.

В восемнадцать лет Торричелли отправили в Рим для продолжения математического образования. В Риме Эванджелиста сблизился с учеником и последователем Галилея — Бендетто Кастелли (1577–1644). Кастелли был доминиканским священником и профессором математики. Он рано примкнул к учению Галилея и сделался верным помощником и другом великого ученого.

В 1632 году вышел знаменитый «Диалог о двух системах мира» Галилея, а в 1638 году было напечатано его последнее и наиболее важное сочинение «Беседа о двух науках». Это сочинение оказало сильное влияние на Торричелли, и под его впечатлением он написал сочинение «О естественном ускорительном движении», в котором развивал идеи Галилея.

Рукопись Торричелли его учитель Кастелли, уезжая из Рима в Венецию, захватил с собой и по дороге, побывав у Галилея, познакомил его с ней. Работа Торричелли настолько понравилась Галилею, что он пригласил к себе молодого ученого.

В октябре 1641 года Торричелли прибыл в Арчетри и начал работать над завершением «Бесед», однако его совместная работа с Галилеем продолжалась недолго. В январе 1642 года Галилей скончался.

Герцог Тосканский предложил Торричелли занять должность Галилея. Торричелли согласился и в этой должности провел остаток своей короткой жизни.

После смерти Галилея его два ученика — Торричелли и Вивиани — работали в тесном содружестве. Теперь их главной задачей было утверждение экспериментального метода. К Торричелли и Вивиани примкнуло еще несколько человек. Из этого кружка и родилась знаменитая Флорентийская академия опыта, получившая свое организационное оформление 19 июня 1657 года, спустя десять лет после смерти Торричелли.

Уже в римский период жизни Торричелли стоял на пороге фундаментального открытия — открытия давления воздушного океана. Однако пока его внимание привлекает новая динамика. В сочинении «О естественном ускорительном движении», которое было представлено Кастелли Галилею и издано в расширенном виде во Флоренции в 1641 году на итальянском языке под заглавием «Трактат о движении тяжелых тел» (латинский перевод трактата в двух книгах вышел в 1644 году), Торричелли развивает механику Галилея.

Торричелли стал первым ученым, решившим баллистическую задачу о траектории брошенного тела в однородном поле тяжести в отсутствии сопротивления воздуха.

Наиболее замечательным результатом работ Торричелли по механике является открытие им законов истечения жидкости из отверстия в сосуде. Это открытие, примыкающее к исследованиям его учителя Кастелли, создало ему славу основателя гидравлики.

И, наконец, Торричелли совершает величайшее открытие. Ему приходит в голову мысль измерить вес атмосферы весом ртутного столба. В 1643 году по его указанию эксперимент был произведен другом Торричелли Винченцо Вивиани. Опыт оправдал все ожидания, ртуть остановилась на заданной высоте, над нею образовалась «торричеллиева пустота».

Позже Торричелли повторил опыт с двумя трубками, о чем сообщает в письме к итальянскому математику Риччи от 11 июня 1644 года, которое является единственной публикацией о знаменитых опытах. Вот выдержки из этого письма.

«…Многие утверждают, что пустоты вообще не существует; другие же говорят, что получение ее достижимо лишь преодолением сопротивления природы и при том с большим трудом. Я полагаю, что во всех случаях, когда при получении пустоты явно обнаруживается противодействие, нет надобности приписывать пустоте то, что, очевидно, обусловлено совсем иной причиной. Говорю так потому, что некоторые ученые, видя невозможность отрицать факт противодействия, проявляющегося, вследствие тяжести воздуха, при образовании пустоты, не приписывают этого сопротивления давлению воздуха, а упорно утверждают, что сама природа препятствует образованию пустоты. Мы живем на дне воздушного океана, и опыты с несомненностью доказывают, что воздух имеет вес…

Нами было изготовлено много стеклянных пузырьков с трубкой длиною в два локтя; мы наполняли их ртутью, придерживая отверстие пальцем; когда затем трубки опрокидывали в чашку с ртутью, они опоражнивались, но лишь отчасти: каждая трубка оставалась наполненной ртутью до высоты локтя и одного пальца. Желая доказать, что пузырек (в верхней части трубки) совершенно пуст, подставленную чашку доливали водой, и тогда, при постепенном поднимании трубки, можно было видеть, что, как только ее отверстие оказывалось в воде, из трубки выливалась ртуть и весь пузырек, до самого верху, стремительно наполнялся водой. Итак, пузырек пуст, ртуть же держится в трубке. До сих пор принимали, что сила, удерживающая ртуть от естественного стремления опускаться, находится внутри верхней части трубки — в виде пустоты или весьма разреженной материи. Я не утверждаю, что причина лежит вне сосуда: на поверхность жидкости в чашке давит воздушный столб высотою 50x3000 шагов — не удивительно, что жидкость входит внутрь стеклянной трубки (к которой она не имеет ни влечения, ни отталкивания) и поднимается до тех пор, пока не уравновесится внешним воздухом. Вода же поднимается в подобной, но гораздо более длинной трубке во столько раз выше, во сколько раз ртуть тяжелее воды…»

Для полной убедительности Торричелли поставил опыт с двумя трубками. Он хочет показать, что ртуть не удерживается никакими симпатиями или антипатиями, а форма пространства над ртутью не играет никакой роли и дело только во внешнем давлении воздуха.

«Это соображение, — продолжает он в том же письме, — подтвердилось опытом, поставленным одновременно с двумя трубками А и В, в которых ртуть всегда устанавливалась на одинаковом горизонте АВ, это вполне надежное указание на то, что сила не находится внутри (вакуума), так как большая сила должна быть внутри сосуда АВ, в котором находится более разреженное притягивающее нечто, и она должна быть много сильнее по причине более полного разрежения, чем в очень малом пространстве В».

Торричелли удалось найти еще более важное доказательство внешней причины образования ртутного столба. Ученый заметил, что высота столба испытывала колебания, то есть давление атмосферы менялось. Таким образом, трубка Торричелли стала первым барометром. Именно с этого опыта началось научное наблюдение за погодой, важнейшими характеристиками которой являются давление и температура.

Стоит заметить, что эксперимент Торричелли был не безупречен. Данная им высота ртутного столба, если принять во внимание высоту Флоренции над уровнем моря, соответствует 74,2 сантиметрам ртутного столба. Малое значение этой величины, по-видимому, можно объяснить тем, что в «торричеллиевой пустоте» оставалось еще некоторое количество воздуха.

Борьба против учения о боязни пустоты не закончилась опытом Торричелли. Гипотеза о силах, удерживающих ртутный столб, жила еще долго после смерти Торричелли. Знаменитые опыты Паскаля (1623–1662), доказавшего, что изменение высоты барометра связано с высотой и построившего водяной барометр, подтвердили выводы Торричелли. Но только изобретение воздушного насоса Бойлем и Герике, а также эффективные опыты по демонстрации силы атмосферного давления, произведенные последним, окончательно разбили концепцию боязни пустоты. Было окончательно похоронено представление о воздухе как о каком-то духовном начале. Герике доказал прямым опытом весомость воздуха, взвешивая откачанный сосуд и сосуд с воздухом. Этот опыт привел его к основному выводу: «Воздух несомненно является телесным нечто». Таким образом, в науке утвердилось представление о том, что воздух является одним из видов материи, которую можно удалить из занимаемого ею места и образовать «пустоту», «вакуум».

ЗАКОН БОЙЛЯ-МАРИОТТА

Исследования великого английского ученого Бойля положили начало рождению новой химической науки. Он выделил химию в самостоятельную науку и показал, что у нее свои проблемы, свои задачи, которые надо решать своими методами, отличными от медицины. Систематизируя многочисленные цветные реакции и реакции осаждения, Бойль положил начало аналитической химии. Он же стал автором одного из первых законов рождающейся физико-химической науки.

Роберт Бойль (1627–1691) был тринадцатым ребенком из четырнадцати детей Ричарда Бойля — первого герцога Коркского, свирепого и удачливого стяжателя, жившего во времена королевы Елизаветы и умножившего свои угодья захватом чужих земель. Он родился в Лисмор Касле, одном из ирландских поместий отца. Там Роберт провел свое детство. Он получил превосходное домашнее образование и в возрасте восьми лет стал студентом Итонского университета. Там он проучился четыре года, после чего уехал в новое поместье отца — Столбридж.

Как было принято в то время, в возрасте двенадцати лет Роберта вместе с братом отправили в путешествие по Европе. Он решил продолжить образование в Швейцарии и Италии и пробыл там долгие шесть лет. В Англию Бойль вернулся только в 1644 году, уже после смерти отца, который оставил ему значительное состояние.

В Столбридже он устроил лабораторию, где к концу 1645 года начал исследования по физике, химии и агрохимии. Бойль любил работать одновременно по нескольким проблемам. Обычно он подробно разъяснял помощникам, что предстоит им сделать за день, а затем удалялся в кабинет, где его ждал секретарь. Там он диктовал свои философские трактаты.

Ученый-энциклопедист, Бойль, занимаясь проблемами биологии, медицины, физики и химии, проявлял не меньший интерес к философии, теологии и языкознанию. Бойль придавал первостепенное значение лабораторным исследованиям. Наиболее интересными и разнообразными были его опыты по химии. Он считал, что химия, отпочковавшись от алхимии и медицины, вполне может стать самостоятельной наукой.

Поначалу Бойль занялся получением настоев из цветов, целебных трав, лишайников, древесной коры и корней растений. Самым интересным оказался фиолетовый настой, полученный из лакмусового лишайника. Кислоты изменяли его цвет на красный, а щелочи — на синий. Бойль распорядился пропитать этим настоем бумагу и затем высушить ее. Клочок такой бумаги, погруженный в испытуемый раствор, изменял свой цвет и показывал, кислый ли раствор или щелочной. Это было одно из первых веществ, которые уже тогда Бойль назвал индикаторами.

Наблюдательный ученый не мог пройти мимо еще одного свойства растворов: когда к раствору серебра в азотной кислоте добавляли немного соляной кислоты, образовывался белый осадок, который Бойль назвал «луна корнеа» (хлорид серебра). Если этот осадок оставляли в открытом сосуде, он чернел. Это была аналитическая реакция, достоверно показывающая, что в исследуемом веществе содержится «луна» (серебро).

Молодой ученый продолжал сомневаться в универсальной аналитической способности огня и искал иные средства для анализа. Его многолетние исследования показали, что, когда на вещества действуют теми или иными реактивами, они могут разлагаться на более простые соединения. Используя специфические реакции, можно было определять эти соединения. Одни вещества образовывали окрашенные осадки, другие выделяли газ с характерным запахом, третьи давали окрашенные растворы и т. д. Процессы разложения веществ и идентификацию полученных продуктов с помощью характерных реакций Бойль назвал анализом. Это был новый метод работы, давший толчок развитию аналитической химии.

В 1654 году ученый переселился в Оксфорд, где продолжил свои эксперименты вместе с ассистентом Вильгельмом Гомбергом. Исследования сводились к одной цели: систематизировать вещества и разделить их на группы в соответствии с их свойствами.

После Гомберга его ассистентом стал молодой физик Роберт Гук. Они посвятили свои исследования в основном газам и развитию корпускулярной теории.

Узнав из научных публикаций о работах немецкого физика Отто Герике, Бойль решил повторить его эксперименты и для этой цели изобрел оригинальную конструкцию воздушного насоса. Первый образец этой машины был построен с помощью Гука. Исследователям удалось почти полностью удалить воздух насосом. Однако все попытки доказать присутствие эфира в пустом сосуде оставались тщетными.

— Никакого эфира не существует, — сделал вывод Бойль. Пустое пространство он решил назвать вакуумом, что по-латыни означает «пустой».

В 1660 году в своем поместье Бойль завершил свою первую большую научную работу — «Новые физико-механические эксперименты относительно веса воздуха и его проявления». Следующей стала книга «Химик — скептик». В этих книгах Бойль камня на камне не оставил от учения Аристотеля о четырех элементах, существовавшего без малого две тысячи лет, Декартова «эфира» и трех алхимических начал. Естественно, этот труд вызвал резкие нападки со стороны последователей Аристотеля и картезианцев. Однако Бойль опирался в нем на опыт, и потому доказательства его были неоспоримы. Большая часть ученых — последователи корпускулярной теории — с восторгом восприняли идеи Бойля. Многие из его идейных противников тоже вынуждены были признать открытия ученого.

Новым ассистентом у него в лаборатории Оксфорда становится молодой физик Ричард Таунли. Вместе с ним Бойль открыл один из фундаментальных физических законов, установив, что изменение объема газа обратно пропорционально изменению давления. Это означало, что, зная изменение объема сосуда, можно было точно вычислить изменение давления газа. Это открытие стало величайшим открытием XVII века. Бойль впервые описал его в 1662 году («В защиту учения относительно эластичности и веса воздуха») и скромно назвал гипотезой.

Понятие упругости воздуха, что соответствует нынешнему понятию давлению, было определяющим в замыслах и в осуществлении опытов Бойля.

«Упругость воздуха, — пишет Льоцци, — была продемонстрирована Паскалем в опыте, повторенном Академией опытов и Герике. Пузырь с воздухом раздувается, если его поместить в барометрическую камеру или в резервуар, из которого откачан воздух. Опыт Герике с двумя сообщающимися сосудами также свидетельствовал об упругости воздуха». Заметим кстати, что из описанных опытов с воздухом родилась теория упругости. Этот термин, введенный Пекке в 1651 году, широко применялся Бойлем, который произвел также первые исследования упругости твердых тел.

Против такого понимания ополчился Франческо Лино (1595–1675) который по существу отстаивал идеи, выдвинутые Фабри, а также Мерсенном, пытавшимися приписать эффект Торричелли и всасывание воды насосом сцеплению «крючковатых» частиц воды и воздуха, сталкивающихся друг с другом. В своей работе «Об эксперименте с ртутью в стеклянных трубках…», опубликованной в 1660 году, Лино замечает, что если опустить в ртуть трубку, открытую с обоих концов, а затем прикрыть верхний конец пальцем и частично вытащить трубку из ртути, то чувствуется, что подушечка пальца втягивается внутрь трубки. Это притяжение, рассуждает далее Лино, свидетельствует не о внешнем атмосферном давлении, а о внутренней силе, обусловленной невидимыми нитями («фуникулами») материальной субстанции, прикрепленными одним концом к пальцу, а другим к столбу ртути.

Сейчас такие идеи вызывают лишь улыбку, но тогда они нуждались в серьезном рассмотрении, что и сделал Бойль в своей работе «Защита против Лино», где ставит себе целью доказать, что упругость воздуха способна на большее, нежели простое удержание «торричеллиева столба».

Бойль подробнейшим образом описывает свое исследование: «Мы взяли длинную стеклянную трубку, которая искусной рукой с помощью лампы была изогнута таким образом, что согнутая вверх часть была почти параллельна остальной части. Отверстие в этом более коротком колене… было герметически запаяно. Короткое колено по всей своей длине разделено на дюймы (каждый из которых еще поделен на восемь частей) с помощью полоски бумаги с нанесенными на ней делениями, которая была аккуратно приклеена к трубке». Такая же полоска бумаги была приклеена к длинному колену. Затем в трубку была налита «ртуть в таком количестве, чтобы она заполнила полукруглую или изогнутую часть сифона» и стояла на одном и том же уровне в обоих коленах. «Когда это было сделано, мы начали доливать ртуть в длинное колено… покуда воздух в коротком колене не оказался уменьшенным благодаря сжатию так, что он занял лишь половину первичного объема… Мы не спускали глаз с более длинного колена трубки… и мы заметили, что ртуть в этом более длинном колене трубки стояла на 29 дюймов выше, чем в другом».

Подводя итоги этим экспериментам, Бойль отметил: «Когда воздух был сжат настолько, что он был сгущен в объеме, составлявшем одну четверть первоначального, мы попробовали, насколько холод от льняной ткани, смоченной водой, сгустит воздух. И порой казалось, что воздух несколько сжимается, однако не настолько, чтобы на этом можно было строить какие-то заключения. Затем мы также попробовали, будет ли жар… расширять воздух; при приближении пламени свечи к той части, где был заключен воздух, обнаружилось, что теплота оказывает более заметное действие, нежели ранее действовавший холод».

Интересно, что выводы из исследований сделал не Бойль, а Таунли. Бойль указывает, что Ричард Таунли, читая первое издание его сочинения «Новые физико-механические эксперименты касательно упругости воздуха» высказал гипотезу, что «давления и протяжения обратно пропорциональны друг другу».

Я.Г. Дорфман пишет: «Пятнадцать лет спустя после опубликования этих исследований Бойлем, т. е. в 1679 году, во Франции появилась „Речь о природе воздуха“ аббата Эдма Мариотта, в которой наряду с другими вопросами описывались аналогичные экспериментам Бойля опыты по изучению зависимости между давлением воздуха и занимаемым объемом. Мариотт ни словом не упоминает о своем предшественнике, словно ему совершенно неизвестны работы Бойля по пневматике. Между тем работы Бойля были широко известны: они публиковались на латинском и английском языке. Впрочем, Мариотт не впервые забыл упомянуть своего предшественника, ведь точно так же в 1673 году в труде о соударениях он ни словом не сказал о работе Гюйгенса, позаимствовав у последнего не только методику эксперимента, но и основы теории.

Работа Мариотта значительно уступает работе Бойля в отношении тщательности эксперимента. Бойль, как мы видели, измеряет высоты ртутного столба с точностью до шестнадцатых долей дюйма, сопоставляет реально наблюдаемые значения с вычислениями и указывает на неизбежную погрешность в измерениях. Мариотт измеряет высоты ртутного столба в целых дюймах и ограничивается сообщением, что опытные данные строго согласуются с расчетными. Осторожный и критически настроенный, Бойль называет открытый им закон только „гипотезой“, требующей экспериментального подтверждения. Мариотт провозглашает его законом или правилом природы. Так что по справедливости „закон Бойля—Мариотта“ должен именоваться „законом Бойля—Таунли“ или „Бойля—Таунли—Гука“. К сожалению, иногда в курсах физики ошибочно утверждается, будто Мариотт „уточнил“ исследования Бойля, что совершенно не соответствует действительности».

Тем не менее именно Мариотт (1620–1684) предсказал различные применения закона. Из них наиболее важным был расчет высоты места по данным барометра. Расчет, производившийся путем оперирования с бесконечно малыми величинами, привел к неудаче вследствие слабой математической подготовки ученого.

Позднее в 1686 году к проблеме определения высоты по атмосферному давлению обратился английский астроном Эдмонд Галлей (1656–1742). Он известен большинству читателей по открытой им комете, носящей его имя. Так вот, Галлей нашел формулу, по существу правильную, если не учитывать изменения температуры. Суть формулы Галлея сводилась к утверждению, что по мере возрастания высоты в арифметической прогрессии атмосферное давление уменьшается в геометрической прогрессии.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

Мысль, что тела падают на землю вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние, например Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Вот вопросы, которые до Ньютона — автора закона всемирного тяготения, смущали ученых и философов.

Открыв свой третий закон, Кеплер пришел в такое восторженное состояние, что ему показалось, будто он бредит. В 1619 году Кеплер издал знаменитую «Гармонию мироздания», в которой был на расстоянии одного taara от открытия Ньютона и все-таки не сделал его. Мало того, что Кеплер приписывал движения планет некоторому взаимному притяжению, он даже готов был принять закон «квадратной пропорции» (то есть действия, обратно пропорционального квадратам расстояний). Увы, вскоре он отказался от него и вместо этого предположил, что притяжение обратно пропорционально не квадратам расстояний, а самим расстояниям. Кеплеру не удалось установить механических начал им же открытых законов планетного движения.

Непосредственными предшественниками Ньютона в этой области были его соотечественники Джильберт и в особенности Гук. В 1660 году Джильберт издал книгу «О магните», в которой сравнивал действие Земли на Луну с действием магнита на железо. В другом сочинении Джильберта, напечатанном уже после его смерти, сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам. Но ближе всего к истине подошел Роберт Гук, современник и соперник Ньютона. 21 марта 1666 года, то есть незадолго до того времени, когда Ньютон впервые глубоко вник в тайны небесной механики, Гук прочел на заседании Лондонского королевского общества отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли. Сознавая неудовлетворительность своих первых опытов, Гук придумал измерять силу тяжести посредством качания маятника — мысль в высшей степени остроумная и плодотворная. Два месяца спустя Гук сообщил в том же обществе, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника. Значительно позднее, когда Ньютон уже готовил к печати свой великий труд, Гук независимо от Ньютона пришел к мысли, что «сила, управляющая движением планет», должна изменяться в «некоторой зависимости от расстояний», и заявил, что «построит целую систему мироздания», основанную на этом начале. Но здесь-то и обнаружилось различие между талантом и гением. Счастливые мысли Гука так и остались в зачаточном состоянии. Ему не хватило сил справиться со своими гипотезами, и приоритет открытия принадлежит Ньютону.

Исаак Ньютон (1642–1726) родился в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения сына. Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил. Думали, что младенец не выживет. Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

По имущественному положению семья Ньютонов принадлежала к числу фермеров средней руки. Когда Исаак подрос, его устроили в начальную школу. По достижении двенадцатилетнего возраста мальчик начал посещать общественную школу в Грантэме. Его поместили на квартиру к аптекарю Кларку, где он прожил с перерывами около шести лет. Жизнь у аптекаря впервые возбудила в нем охоту к занятиям химией.

5 июня 1660 года, когда Ньютону еще не исполнилось восемнадцати лет, он был принят в Тринити-колледж. Кембриджский университет был в то время одним из лучших в Европе: здесь одинаково процветали науки филологические и математические. Ньютон обратил главное внимание на математику. Но одновременно в 1665 году он получил степень бакалавра изящных искусств (словесных наук).

Его первые научные опыты связаны с исследованиями света. Ученый доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Изучая преломление света в тонких пленках, Ньютон наблюдал дифракционную картину, получившую название «колец Ньютона».

В 1666 году в Кембридже проявилась какая-то эпидемия, которую по тогдашнему обычаю сочли чумой, и Ньютон удалился в свой Вульсторп. Здесь в деревенской тиши, не имея под рукой ни книг, ни приборов, живя почти отшельнической жизнью, двадцатичетырехлетний Ньютон предался глубоким философским размышлениям. Плодом их было гениальнейшее из его открытий — учение о всемирном тяготении.

Был летний день. Ньютон любил размышлять, сидя в саду, на открытом воздухе. Предание сообщает, что размышления Ньютона были прерваны падением налившегося яблока. Знаменитая яблоня долго хранилась в назидание потомству. А после того как засохла, была срублена и превращена в исторический памятник в виде скамьи.

Ньютон давно размышлял о законах падения тел, и весьма возможно, что, в частности, падение яблока опять навело его на эти мысли, от которых он перешел к вопросу: везде ли на земном шаре падение тел происходит одинаково? Так, например, можно ли утверждать, что в высоких горах тела падают с такою же скоростью, как и в глубоких шахтах?

Но каким образом открыл Ньютон этот закон, для которого аналогия с падением яблока уже не могла иметь никакого значения? Сам Ньютон писал много лет спустя, что математическую формулу, выражающую закон всемирного тяготения, он вывел из изучения знаменитых законов Кеплера. Возможно, однако, что его работу в этом направлении значительно ускорили исследования, производившиеся им в области оптики Закон, которым определяется «сила света» или «степень освещения» данной поверхности, весьма схож с математической формулой тяготения. Простые геометрические соображения и прямой опыт показывают, что при удалении, например, листа бумаги от свечи на двойное расстояние степень освещения поверхности бумаги уменьшается, и притом не вдвое, а в четыре раза, при тройном расстоянии — в девять раз и так далее. Это и есть закон, который во времена Ньютона называли кратко законом «квадратной пропорции». Если, говорить точнее, «сила света обратно пропорциональна квадратам расстояний». Весьма естественно для такого ума, как Ньютон, было попытаться приложить этот закон к теории тяготения.

Раз придя к мысли, что притяжение Луны Землей определяет движение земного спутника, Ньютон неминуемо пришел к подобной же гипотезе относительно движенияпланет вокруг Солнца. Но ум его не довольствовался непроверенными гипотезами. Он стал вычислять, и понадобились десятки лет для того, чтобы его предположения превратились в грандиознейшую систему мироздания.

При этом Ньютон никогда не мог бы развить и доказать своей гениальной идеи, если бы не владел могущественным математическим методом, известным сегодня под именем дифференциального и интегрального исчислений.

Справедливость требует отметить и вклад Роберта Гука. Так, проницательный Гук исправил вывод Ньютона и написал последнему, что падающие тела должны уклоняться не совсем точно на восток, но на юго-восток. Тот согласился с доводами Гука, и опыты, произведенные последним, вполне подтвердили теорию.

Гук исправил и другую ошибку Ньютона. Исаак полагал, что падающее тело, вследствие соединения его движения с движением Земли, опишет винтообразную линию. Гук показал, что винтообразная линия получается лишь в том случае, если принять во внимание сопротивление воздуха и что в пустоте движение должно быть эллиптическим — речь идет об истинном движении, то есть таком, которое мы могли бы наблюдать, если бы сами не участвовали в движении земного шара.

Проверив выводы Гука, Ньютон убедился, что тело, брошенное с достаточной скоростью, находясь в то же время под влиянием силы земного тяготения, действительно может описать эллиптический путь. Размышляя над этим предметом, Ньютон открыл знаменитую теорему, по которой тело, находящееся под влиянием притягивающей силы, подобной силе земного тяготения, всегда описывает какое-либо коническое сечение, то есть одну из кривых, получаемых при пересечении конуса плоскостью (эллипс, гипербола, парабола и в частных случаях круг и прямая линия). Кроме того, Ньютон определил, что центр притяжения, то есть точка, в которой сосредоточено действие всех притягивающих сил, действующих на движущуюся точку, находится в фокусе описываемой кривой. Так, центр Солнца находится (приблизительно) в общем фокусе эллипсов, описываемых планетами.

Достигнув таких результатов. Ньютон сразу увидел, что он вывел теоретически, то есть исходя из начал рациональной механики, один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Но Ньютон не удовольствовался этим основным совпадением теории с наблюдением. Он хотел убедиться, возможно ли при помощи теории действительно вычислить элементы планетных орбит, то есть предсказать все подробности планетных движений? На первых порах ему не повезло.

Джон Кондуитт пишет об этом так: «В 1666 году он вновь оставил Кембридж… чтобы поехать к своей матери в Линкольншир, и в то время как он размышлял в саду, ему в голову пришло, что сила тяжести (которая заставляет яблоко падать на землю) не ограничена определенным расстоянием от Земли, а что сила должна распространяться гораздо дальше, чем обычно думают. Почему бы не до Луны? — сказал он себе, и если так, это должно влиять на ее движение и, возможно, удерживать ее на орбите, вследствие чего он решил вычислить, каков мог бы быть эффект такого предположения; но поскольку у него не было тогда книг, он использовал общеупотребительное суждение, распространенное среди географов и наших моряков до того, как Норвуд измерил Землю, и заключающееся в том, что в одном градусе широты на поверхности Земли содержится 60 английских миль. Расчет не совпал с его теорией и заставил его довольствоваться предположением, что наряду с силой тяжести должна быть еще примесь той силы, которой была бы подвержена Луна, если бы она переносилась в своем движении вихрем…»

Изучение законов эллиптического движения значительно подвинуло вперед исследования Ньютона. Но до тех пор, пока вычисления не согласовались с наблюдением, Ньютон должен был подозревать существование некоторого все еще от него ускользавшего источника ошибки или неполноты теории.

Лишь в 1682 году Ньютон смог использовать более точные данные при измерении меридиана, полученные французским ученым Пикаром. Зная длину меридиана, Ньютон вычислил диаметр земного шара и немедленно ввел новые данные в свои прежние вычисления. К величайшей радости своей ученый убедился, что его давнишние взгляды совершенно подтвердились. Сила, заставляющая тела падать на Землю, оказалась совершенно равной той, которая управляет движением Луны.

Этот вывод был для Ньютона высочайшим торжеством его научного гения. Теперь вполне оправдались его слова: «Гений есть терпение мысли, сосредоточенной в известном направлении». Все его глубокие гипотезы, многолетние вычисления оказались верными. Теперь он вполне и окончательно убедился в возможности создать целую систему мироздания, основанную на одном простом и великом начале. Все сложнейшие движения Луны, планет и даже скитающихся по небу комет стали для него вполне ясными. Явилась возможность научного предсказания движений всех тел Солнечной системы, а быть может, и самого Солнца, и даже звезд и звездных систем.

В конце 1683 года Ньютон, наконец, сообщил Королевскому обществу основные начала своей системы в виде ряда теорем о движении планет.

Однако теория была слишком гениальна, чтобы не нашлись завистники и люди, старавшиеся приписать себе хотя бы часть славы этого открытия. Без сомнения, некоторые из тогдашних английских ученых довольно близко подошли к открытиям Ньютона, но понять трудность вопроса еще не значит решить его. Знаменитый архитектор и математик Кристофер Рен пытался объяснить движение планет «падением тел на Солнце, соединенным с первоначальным движением». Астроном Галлей предполагал, что законы Кеплера объяснимы при помощи действия силы, обратно пропорциональной квадратам расстояний, но не умел доказать этого.

Гук уверял членов Королевского общества, что все идеи, содержавшиеся в «Началах», уже сто раз предлагались им; те же, что не излагались им ранее, — ошибочны. Гюйгенс полностью и категорически отверг идею взаимного тяготения частиц, допуская наличие тяготения лишь внутри тел. Лейбниц продолжал настаивать на том, что движение планет может быть объяснено только посредством некоторой эфирной вихрящейся жидкости, сбивающей планеты с прямолинейного пути Бернулли и Кассини тоже упорно твердили о вихрях.

Однако потихоньку шум утих, а слава открытия всемирного тяготения досталась по праву Исааку Ньютону.

СПЕКТР СВЕТА

Декарт еще в 1629 году выяснил ход лучей в призме и в стеклах различной формы. Он даже придумал механизмы для полировки стекол. Шотландский профессор Грегори построил модель замечательного для своего времени телескопа, основанного на теории вогнутых зеркал. Таким образом, уже тогда практическая оптика достигла значительной степени совершенства и была одною из наук, наиболее занимавших тогдашний ученый мир.

К 1666 году, когда Ньютон начал оптические исследования, теория преломления весьма мало подвинулась со времен Декарта. О цветах радуги и цветах тел существовали весьма сбивчивые теории и понятия: почти все тогдашние ученые ограничивались утверждением, что тот или иной цвет представляет либо «смешение света с тьмою», либо соединение других цветов. Само собою разумеется, что такой очевидный факт, как радужное окрашивание, наблюдаемое при рассматривании предметов сквозь призму или сквозь плохое оптическое стекло, был слишком известен всем, занимавшимся оптикой. Но все были твердо убеждены в том, что всякого рода лучи при прохождении сквозь призму или сквозь увеличительное стекло преломляются совершенно одинаково. Окрашивание и радужные каймы приписывали исключительно шероховатостям поверхности призмы или стекла.

Поначалу Ньютон много работал над шлифовкою увеличительных стекол и зеркал. Эти работы познакомили его опытным путем с основными законами отражения и преломления, с которыми он был уже теоретически знаком по трактатам Декарта и Джемса Грегори. Ньютон начинает серии экспериментов, о которых впоследствии сам великий ученый подробнейшим образом рассказал в своих трудах.

«В начале 1666 года, то есть тогда, когда я был занят шлифовкой оптических стекол несферической формы, я достал треугольную стеклянную призму и решил испытать с ее помощью прославленное явление цветов. С этой целью я затемнил свою комнату и проделал в ставнях небольшое отверстие с тем, чтобы через него мог проходить тонкий луч солнечного света. Я поместил призму у места входа света так, чтобы он мог преломляться к противоположной стене. Сначала вид ярких и живых красок, получавшихся при этом, приятно развлек меня. Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлен их продолговатой формой, в соответствии с известными законами преломления я ожидал бы увидеть их круглыми. По бокам цвета ограничивались прямыми линиями, а на концах затухание света было настолько постепенным, что было трудно точно определить, какова же их форма; она казалась даже полукруглой.

Сравнивая длину этого цветного спектра с его шириной, я выявил, что она примерно в пять раз больше. Диспропорция была столь необычна, что возбудила во мне более чем обычное любопытство, стремление выяснить, что же может быть ее причиной. Вряд ли различная толщина стекла или граница света с темнотою могли вызывать подобный световой эффект. И я решил вначале все же изучить именно эти обстоятельства и попробовал, что произойдет, если пропускать свет через стекла различной толщины, или через отверстия различных размеров, или при установлении призмы вне помещения, так, чтобы свет мог преломляться перед тем, как он сужается отверстием. Но я выяснил, что ни одно из этих обстоятельств не является существенным. Картина цветов во всех случаях была той же самой.

Тогда я подумал: не могут ли быть причиной расширения цветов какие-либо несовершенства стекла или другие непредвиденные случайности? Чтобы проверить это, я взял другую призму, подобную первой, и разместил ее так, что свет, следуя через обе призмы, мог преломляться противоположными путями, причем вторая призма возвращала свет к тому направлению, от которого первая отклоняла его. И таким образом, думал я, обычные эффекты первой призмы будут разрушены другой, а необычные усилятся за счет многократности преломлений. Оказалось, однако, что луч, рассеиваемый первой призмой в продолговатую форму, второй призмой приводился в круглую настолько четко, как если бы он вообще ни через что не проходил. Таким образом, какова бы ни была причина удлинения, оно не является следствием случайных неправильностей.

Далее я перешел к более практическому рассмотрению того, что может произвести различие угла падения лучей, идущих от различных частей Солнца. И из опыта и расчетов стало мне очевидно, что различие углов падения лучей, идущих от различных частей Солнца, не может вызвать после их пересечения расхождения на угол заметно больший, чем тот, под которым они ранее сходились, величина же этого угла не больше 31–32 минут; поэтому нужно найти иную причину, которая могла бы объяснить появление угла в два градуса сорок девять минут.

Тогда я стал подозревать, не идут ли лучи после прохождения их через призму криволинейно, и не стремятся ли они в соответствии с их большей или меньшей криволинейностью к различным частям стены. Мое подозрение усилилось, когда я припомнил, что часто видел теннисный мяч, который при косом ударе ракеткой описывает подобную кривую линию. Ибо мячу сообщается при этом как круговое, так и поступательное движения. Та сторона мяча, где оба движения согласуются, должна с большей силой давить и толкать прилежащий воздух, чем другая сторона, и, следовательно, будет возбуждать пропорционально большее сопротивление и реакцию воздуха. И по этой самой причине, если бы лучи света были шарообразными телами (гипотеза Декарта) и при их наклонном продвижении из одной среды в другую они приобрели бы круговое движение, они должны были бы испытывать большее сопротивление от омывающего их со всех сторон эфира с той стороны, где движения согласуются, и постепенно отгибались бы в другую сторону. Однако, несмотря на всю правдоподобность этого предположения, я при проверке его не наблюдал никакой кривизны лучей. И кроме того (что было достаточно для моей цели), я наблюдал, что различие между длиной изображения и диаметром отверстия, через которое проходил свет, было пропорционально расстоянию между ними.

Постепенно устраняя эти подозрения, я пришел наконец к experimentum crucis, который был таков: я взял две доски и поместил одну из них непосредственно за призмой окна, так что свет мог следовать через небольшое отверстие, проделанное в ней для этой цели, и падать на другую доску, которую я разместил на расстоянии примерно 12 футов, причем в ней также было проделано отверстие с тем, чтобы часть света могла пройти через нее. Затем я разместил за этой второй доской другую призму таким образом, что свет, пройдя через обе эти доски, мог следовать сквозь призму, снова преломляясь в ней, прежде чем он упадет на стену. Сделав так, я взял первую призму в руку и медленно повертывал ее туда и сюда, примерно вокруг оси, так что разные части изображения, падавшего на вторую доску, могли последовательно проходить через отверстие в ней, и я мог наблюдать, на какое место стены отбрасывает лучи вторая призма. И я увидел посредством изменения этих мест, что свет, стремящийся к тому концу изображения, к которому происходило наибольшее преломление первой призмой, испытывал во второй призме значительно большее преломление, чем свет, направленный к другому концу. И таким образом была открыта истинная причина длины этого изображения, которая не может быть иной, чем то, что свет состоит из лучей различной преломляемости, которые независимо от различия их возникновения падают на различные части стены в соответствии с их степенями преломления…»

Разные неосновательные «подозрения» — так называл Ньютон свои гипотезы — навели его, наконец, на мысль сделать следующий опыт. Подобно тому, как в начале своего анализа он уединил тонкий пучок белых солнечных лучей, так теперь ему пришла на ум мысль уединить часть преломленных лучей. Это был второй и важнейший шаг в деле анализа спектра. Заметив, что в его опыте фиолетовая часть спектра всегда была наверху, ниже синяя и так далее до нижней красной, Ньютон попытался уединить лучи одного какого-нибудь цвета и исследовать их отдельно. Взяв дощечку с весьма малым отверстием, Ньютон приложил ее к той поверхности призмы, которая обращена к экрану, и, прижимая к призме, передвигал то вверх, то вниз, причем без труда достиг уединения одноцветных, например одних красных, лучей, прошедших сквозь малое отверстие в дощечке. Новый, еще более тонкий пучок чисто красных лучей подлежал дальнейшему исследованию. Пропустив красные лучи сквозь вторую призму. Ньютон увидел, что они снова преломляются, но на этот раз все почти одинаково. Ньютон думал даже, что совсем одинаково, то есть считал одноцветные лучи вполне однородными. Повторив опыт над желтыми, фиолетовыми и всеми остальными лучами, он, наконец, понял главную особенность, отличающую те или иные лучи от лучей другого цвета. Пропуская сквозь одну и ту же призму то одни красные лучи, то одни фиолетовые и так далее, он окончательно убедился, что белый свет состоит из лучей разной преломляемости и что степень преломляемости находится в тесной связи с качеством лучей, именно с их цветом. Оказалось, что красные лучи наименее преломляемы и так далее до наиболее преломляемых — фиолетовых.

Ньютон так сформулировал выводы крупнейшего открытия:

«1. Точно так же, как лучи света различаются по степени их преломления, точно так же они различаются и по их склонности проявлять тот или иной частный цвет. Цвета не являются качествами света, происходящими из-за преломлений или отражений в естественных телах (как обычно считают), но суть естественные и прирожденные качества, различные в различных лучах…

2. Одной и той же степени преломляемости всегда соответствует один и тот же цвет, а одному и тому же цвету всегда соответствует одна и та же степень преломляемости. А связь между цветами и преломляемостью очень точна и четка: лучи либо точно согласуются в обоих отношениях, либо пропорционально в них же не согласуются.

3. Образцы цвета и степень отклонения, свойственные каждому отдельному сорту лучей, не изменяются ни преломлением, ни отражением от естественных тел, ни любой ивой причиной, которую я смог наблюдать».

«Теории Ньютона делали возможным развитие физики как точной науки, — пишет в своей книге Владимир Карцев. — Она стала все больше приближаться к математике и все больше отдаляться от философии. Письмо с описанием экспериментов и выводов, посланное Ньютоном издателю „Философских трудов“, должно было перед опубликованием пройти апробацию в Королевском обществе, быть там заслушано и обсуждено. Это и произошло 8 февраля 1672 года…

…Это была первая научная статья Ньютона. Тот необычный резонанс, который получила столь небольшая по объему работа, ее громадное влияние на судьбу Ньютона и судьбу науки в целом вынуждают наших современников более внимательно отнестись к тому новому, что привнесла она в мир научного исследования.

Эта статья знаменует наступление новой науки — науки нового времени, науки, свободной от беспочвенных гипотез, опирающейся лишь на твердо установленные экспериментальные факты и на тесно связанные с ними логические рассуждения. Сейчас, в конце XX века, трудно оценить сенсационность и необычность этой маленькой статьи Ньютона. Но самые глубокие умы семнадцатого столетия быстро разглядели в небольшом письме „сумасшедшие идеи“, приводящие в конце концов к взрыву устоявшихся и привычных представлений, которые, в свою очередь, лишь недавно одержали верх над аристотелевской метафизикой».

Открытие различной преломляемости лучей послужило исходным пунктом целого ряда научных открытий. Дальнейшее развитие идеи Ньютона привело в новейшее время к открытию так называемого спектрального анализа.

ОТКРЫТИЕ КИСЛОРОДА

Удивительно, но кислород был открыт несколько раз. Первые сведения о нем встречаются уже в VIII веке в трактате китайского алхимика Мао Хоа. Китайцы представляли себе, что этот газ («йын») — составная часть воздуха, и называли его «деятельным началом»! Жителям самой большой азиатской страны было известно и то, что кислород соединяется с древесным углем, горящей серой, некоторыми металлами. Китайцы могли и получать кислород, используя соединения типа селитры.

Все эти древние сведения постепенно забылись. Лишь в XV веке о кислороде мимоходом упоминает великий Леонардо да Винчи.

Вновь его открывает в XVII веке голландец Дреббель. О нем известно очень мало. Вероятно, то был великий изобретатель и крупный ученый. Он сумел создать подводную лодку. Однако объем лодки ограничен, поэтому брать с собой воздух, состоящий в основном из азота, было невыгодно. Логичнее использовать кислород. И Дреббель получает его из селитры! Это произошло в 1620 году, более чем за сто пятьдесят лет до «официального» открытия кислорода Пристли и Шееле.

Джозеф Пристли (1733–1804) родился в Филдхеде (Йоркшир) в семье бедного суконщика. Пристли изучал теологию и даже читал проповеди в независимой от англиканской церкви протестантской общине. Это позволило ему в дальнейшем получить высшее теологическое образование в Академии в Девентри. Там Пристли кроме теологии занимался философией, естествознанием, изучил девять языков.

Поэтому, когда в 1761 году Пристли был обвинен в свободомыслии и ему запретили читать проповеди, он стал преподавателем языков в Уоррингтонском университете. Там Пристли впервые прослушал курс химии. Эта наука произвела на Пристли такое большое впечатление, что он, в тридцатилетнем возрасте будучи человеком с определенным положением, решил приступить к изучению естествознания и проведению химических экспериментов. По предложению Бенджамена Франклина, Пристли в 1767 году написал монографию «История учения об электричестве». За этот труд он был избран почетным доктором Эдинбургского университета, а позже членом Лондонского Королевского общества (1767) и иностранным почетным членом Петербургской Академии наук (1780).

С 1774 по 1799 год Пристли открыл или впервые получил в чистом виде семь газообразных соединений: закись азота, хлористый водород, аммиак, фтористый кремний, диоксид серы, оксид углерода и кислород.

Пристли удалось выделить и исследовать эти газы в чистом состоянии, поскольку он существенно улучшил прежнее лабораторное оборудование для собирания газов. Вместо воды в пневматической ванне, предложенной ранее английским ученым Стивеном Гейлсом (1727), Пристли стал использовать ртуть. Пристли независимо от Шееле открыл кислород, наблюдая выделение газа при нагревании без доступа воздуха твердого вещества, находящегося под стеклянным колпаком, с помощью сильной двояковыпуклой линзы.

В 1774 году Пристли провел опыты с оксидом ртути и суриком. Маленькую пробирку с небольшим количеством красного порошка он опустил открытым концом в ртуть и нагревал вещество сверху при помощи двояковыпуклой линзы.

Свои опыты по получению кислорода при нагревании оксида ртути Пристли впоследствии изложил в шеститомном труде «Опыты и наблюдения над различными видами воздуха». В этой работе Пристли писал: «Достав линзу с диаметром 2 дюйма, с фокусным расстоянием 20 дюймов, я начал исследовать с ее помощью, какой род воздуха выделяется из разнообразнейших веществ, естественных и искусственно приготовленных.

После того как с помощью этого прибора я проделал ряд опытов, я попытался 1 августа 1774 года выделить воздух из кальцинированной ртути и увидел тотчас, что воздух может очень быстро выделиться из нее. Меня несказанно удивило то, что свеча в этом воздухе горит необычайно ярко, и я совершенно не знал, как объяснить это явление. Тлеющая лучинка, внесенная в этот воздух, испускала яркие искры. Я обнаружил такое же выделение воздуха при нагревании свинцовой извести и сурика.

Тщетно пытался я найти объяснение этому явлению… Но ничто, что я делал до сих пор, меня так не удивило и не дало такого удовлетворения».

«Почему это открытие вызвало у Дж. Пристли такое удивление? — спрашивает Ю.И. Соловьев. — Убежденный сторонник учения о флогистоне, он рассматривал оксид ртути как простое вещество, образованное при нагревании ртути в воздухе и, следовательно, лишенное флогистона. Поэтому выделение „дефлогистированного воздуха“ из оксида ртути при нагревании казалось ему просто невозможным. Вот почему он был „так далек от понимания того, что в действительности получил“… В 1775 году он описал те свойства, которые отличают „новый воздух“ от „другого газа“ — оксида азота».

Открыв новый газ в августе 1774 года, Дж. Пристли, вместе с тем, Не имел ясного представления о его истинной природе: «Я откровенно признаюсь, что в начале опытов, о которых говорится в этой части, я был так далек от того, чтобы образовать какую-нибудь гипотезу, которая привела бы к открытиям, которые я сделал, что они показались бы мне невероятными, если бы мне о них сказали».

Исследования Пристли по химии газов, и особенно открытие им кислорода, подготовили поражение теории флогистона и наметили новые пути развития химии.

Через два месяца после получения кислорода Пристли, приехав в Париж, сообщил о своем открытии Лавуазье. Последний тотчас понял громадное значение открытия Пристли и использовал его при создании наиболее общей кислородной теории горения и опровержении теории флогистона.

Одновременно с Пристли работал Шееле. Он писал о своих приоритетах: «Исследования воздуха являются в настоящее время важнейшим предметом химии. Этот упругий флюид обладает многими особыми свойствами, изучение которых способствует новым открытиям. Удивительный огонь, этот продукт химии, показывает нам, что без воздуха он не может производиться…»

Карл Вильгельм Шееле (1742–1786) родился в семье пивовара и торговца зерном в шведском городе Штральзунде. Карл учился в Штральзунде в частной школе, но уже в 1757 году переехал в Гетеборг.

Родители Шееле не имели средств, чтобы дать высшее образование Карлу, который был уже седьмым сыном в этой большой семье. Поэтому он вынужден был стать сначала учеником аптекаря, затем уже проложить себе путь в науку многолетним самообразованием. Работая в аптеке, он достиг большого искусства в химическом эксперименте.

В одной из аптек Гетеборга Шееле освоил основы фармации и лабораторной практики. Кроме того, он усердно изучал труды химиков И. Кункеля, Н. Лемери, Г. Шталя, К. Неймана.

Проработав восемь лет в Гетеборге, Шееле переехал в Мальме, где очень скоро проявил замечательные экспериментальные способности. Там он смог по вечерам заниматься собственными исследованиями в лаборатории аптекаря, где днем готовил лекарства.

В конце апреля 1768 году Шееле переехал в Стокгольм, надеясь в столице установить близкие контакты с учеными и получить новый стимул для проведения работ. Однако в стокгольмской аптеке «Корпен» Шееле не пришлось проводить химические опыты; он занимался только приготовлением лекарств. И лишь иногда, устроившись где-нибудь на тесном подоконнике, ему удавалось проводить собственные опыты. Но даже в таких условиях Шееле сделал ряд открытий. Так, например, изучая действие солнечного света на хлорид серебра, Шееле нашел, что потемнение последнего начинается в фиолетовой части спектра и выражено там наиболее сильно.

Два года спустя Шееле переехал в Упсалу, где в университете работали такие знаменитые ученые, как ботаник Карл Линней и химик Торберн Бергман. Шееле и Бергман вскоре стали друзьями, что немало способствовало успехам в научной деятельности обоих химиков.

Шееле был одним из тех ученых, которым сопутствовала удача в их работе. Его экспериментальные исследования существенно способствовали превращению химии в науку. Он открыл кислород, хлор, марганец, барий, молибден, вольфрам, органические кислоты (винную, лимонную, щавелевую, молочную), серный ангидрид, сероводород, кислоты — плавиковую и кремнефторводо-родную, многие другие соединения. Он впервые получил газообразные аммиак и хлористый водород. Шееле также показал, что железо, медь и ртуть имеют различные степени окисления. Он выделил из жиров вещество, впоследствии названное глицерином (пропантриолом). Шееле принадлежит заслуга получения цианистоводородной (синильной) кислоты из берлинской лазури.

Наиболее значительный труд Шееле «Химический трактат о воздухе и огне» содержит его экспериментальные работы, выполненные в 1768–1773 годах.

Из этой трактата видно, что Шееле несколько раньше Пристли получил и описал свойства «огненного воздуха» (кислорода). Ученый получал кислород различными путями: нагреванием селитры, нитрата магния, перегонкой смеси селитры с серной кислотой.

«Огненный воздух», — писал Шееле, — есть тот самый, посредством которого поддерживается циркуляция крови и соков у животных и растений… Я склонен думать, что «огненный воздух» состоит из кислой тонкой материи, соединенной с флогистоном, и, вероятно, что все кислоты получили свое начало от «огненного воздуха».

Шееле объяснял полученные им результаты предположением, что теплота — соединение «огненного воздуха» (кислорода) и флогистона. Следовательно, он так же, как и М.В. Ломоносов, и Г. Кавендиш, отождествлял флогистон с водородом и думал, что при сжигании водорода в воздухе (при соединении водорода и «огненного воздуха») образуется теплота.

В 1775 году Бергман опубликовал статью об открытии Шееле «огненного воздуха» и о его теории. «Мы уже раньше отмечали, — писал Бергман, — большую силу, с которой „чистый (огненный) воздух“ удаляет флогистон из железа и меди. Азотная кислота имеет также большое сродство к этому элементу… Эти явления приписываются переселению флогистона из кислоты в воздух и легко объясняются тем, что так хорошо было доказано опытами г-на Шееле, что теплота — не что иное, как флогистон, тесно соединенный с чистым воздухом, в комбинации которых порождается полученное тело (и происходит) уменьшение прежде занимаемого объема».

Хотя обычно и говорят, что Шееле опоздал с публикацией своей статьи относительно Пристли примерно на два года, однако Бергман сообщил об открытии Шееле кислорода, по крайней мере, на три месяца раньше открытия Пристли.

Вот выдержка из предисловия Бергмана к книге Шееле:

«Химия учит, что упругая среда, которая окружает Землю, во все времена и во всех местах имеет единый состав, включающий три различных вещества, а именно хороший воздух (кислород — Прим авт.), испорченный „мефитический воздух“ (азот — Прим. авт.) и эфирную кислоту (углекислый газ — Прим. авт.). Первый Пристли назвал, не то что не правильно, но с натяжкой, „дефлогистированным воздухом“, Шееле — „огненным воздухом“, поскольку он один поддерживает огонь, в то время как два других гасят его… Я повторил, с различными изменениями, основные опыты, на которых он (Шееле) основывал свои заключения, и нашел их совершенно правильными. Тепло, огонь и свет имеют в основном одни и те же составные элементы: хороший воздух и флогистон… Из видов известных теперь веществ хороший воздух является наиболее эффективным для удаления флогистона, который, как видно, представляет собой настоящее элементарное вещество, входящее в состав многих материй. Поэтому я и поместил хороший воздух наверху, над флогистоном, в моей новой таблице сродства… В заключение я должен сказать, что этот замечательный труд бьш закончен два года тому назад, несмотря на то, что по различным причинам, о которых излишне упоминать здесь, опубликован только теперь. Следовательно, случилось так, что Пристли, не зная труда Шееле, ранее описал различные новые свойства, относящиеся к воздуху. Однако мы видим, что они отличного рода и представлены в иной связи».

ТЕОРИЯ ГОРЕНИЯ

Во второй половине XVIII века химия была на подъеме — открытия сыпались за открытиями. В это время выдвигается ряд блестящих экспериментаторов — Пристли, Блэк, Шееле, Кавендиш и другие. В работах Блэка, Кавендиша и в особенности Пристли ученым открывается новый мир — область газов, дотоле совершенно неведомая. Приемы исследования постоянно совершенствуются. Блэк, Кронштедт, Бергман и другие разрабатывают качественный анализ. В результате этого удалось открыть массы новых элементов и соединений.

На рубеже XVII и XVIII веков немецкий химик Георг Эрнст Сталь (1659–1734) предложил так называемую теорию флогистона — по существу, первую химическую теорию. Хотя она и оказалась ошибочной, но позволила систематизировать процессы горения и обжига (кальцинации) металлов, объяснив эти процессы с единой точки зрения. Сталь считал, что различные вещества и металлы содержат в своем составе особое «начало горючести» — флогистон. При прокаливании металлы теряли флогистон, превращаясь в оксиды, т. е. процессы окисления заключались в потере окислявшимися веществами флогистона. Напротив, в ходе процессов восстановления оксиды приобретали флогистон, вновь становясь металлами. Критика учения о флогистоне во многом способствовала развитию химического мышления.

Однако основные явления химии — процессы горения и окисления вообще, состав воздуха, роль кислорода, строение главных групп химических соединений (окислов, кислот, солей и прочего) — не были еще объяснены. Напротив, факты накапливались, а идеи запутывались. Довольно благовидное в изложении Сталя учение о флогистоне превращается у его последователей в какую-то фантасмагорию: это уже не одна теория, это — десятки теорий, запутанных, противоречивых, изменяющихся у каждого автора.

В середине XVIII века на авансцену вышла так называемая пневматическая химия, изучавшая газы с химической точки зрения. Одним из выдающихся ее достижений стало открытие кислорода. Понимание его природы как самостоятельного газообразного химического элемента позволило французу Антуану Лавуазье развенчать концепцию флогистона и сформулировать кислородную теорию горения. Вместе с крупными достижениями химического анализа это событие положило начало первой химической революции.

Антуан Лоран Лавуазье (1743–1794) родился в семье адвоката 28 августа 1743 года. Первоначальное образование он получил в коллеже Мазарини. Антуан учился отлично. По выходе из коллежа он поступил на факультет права. В 1763-м Антуан получил степень бакалавра, в следующем году — лиценциата прав.

Но юридические науки не могли удовлетворить его безграничной и ненасытной любознательности. Не оставляя своих занятий правом, он изучал математику и астрономию у Лакайля, очень известного в то время астронома, имевшего небольшую обсерваторию в коллеже Мазарини; ботанику — у великого Бернара Жюсье, с которым вместе составлял гербарии; минералогию — у Гэтара, составившего первую минералогическую карту Франции; химию — у Руэля.

Первые работы Лавуазье были сделаны под влиянием его учителя и друга Гэтара. Гэтар предпринял ряд экскурсий; Лавуазье был его сотрудником в течение трех лет, начиная с 1763 года. Плодом этой экскурсии явилась его первая работа — «Исследование различных родов гипса».

После пяти лет сотрудничества с Гэтаром, в 1768 году, когда Лавуазье исполнилось 25 лет, он был избран членом Академии наук.

В жизни Лавуазье придерживался строгого порядка. Он положил себе за правило заниматься наукой шесть часов в день: от шести до девяти утра и от семи до десяти вечера. Остальная часть дня распределялась между занятиями по откупу, академическими делами, работой в различных комиссиях и так далее.

Один день в неделю посвящался исключительно науке. С утра Лавуазье запирался в лаборатории со своими сотрудниками; тут они повторяли опыты, обсуждали химические вопросы, спорили о новой системе. Здесь можно было видеть славнейших ученых того времени — Лапласа, Монжа, Лагранжа, Гитона Морво, Маккера.

Лаборатория Лавуазье сделалась центром тогдашней науки. Он тратил огромные суммы на приобретение и монтирование приборов, представляя в этом отношении совершенную противоположность некоторым из своих современников.

В то время еще только предстояло найти основной закон химии, руководящее правило химических исследований; создать метод исследования, вытекавший из этого основного закона; объяснить главные разряды химических явлений и, наконец, развенчать существовавшие фантастические теории.

Эту задачу взял на себя и исполнил Лавуазье. Для выполнения ее недостаточно было экспериментального таланта. К золотым рукам требовалось присоединить золотую же голову. Такое счастливое соединение представлял Лавуазье.

В научной деятельности Лавуазье поражает ее строго логический ход. Сначала он вырабатывает метод исследований. Потом ученый ставит опыт.

Так, в течение 101 дня перегонял воду в замкнутом аппарате. Вода испарялась, охлаждалась, возвращалась в приемник, снова испарялась и так далее. В результате получилось значительное количество осадка. Откуда он взялся?

Общий вес аппарата по окончании опыта не изменился: значит, никакого вещества извне не присоединилось. В ходе этой работы Лавуазье убеждается во всесильности своего метода — метода количественного исследования.

Овладев в совершенстве методом, Лавуазье приступает к своей главной задаче. Работы его, создавшие современную химию, охватывают период времени с 1772 по 1789 год. Исходным пунктом его исследований послужил факт увеличения веса тел при горении. В 1772 году он представил в академию коротенькую записку, в которой сообщал о результате своих опытов, показавших, что при сгорании серы и фосфора они увеличиваются в весе за счет воздуха, иными словами, соединяются с частью воздуха.

Этот факт — основное, капитальное открытие явления, послужившее ключом к объяснению всех остальных. Никто этого не понимал, да и современному читателю может с первого взгляда показаться, что речь здесь о единичном неважном явлении… Но это неверно. Объяснить факт горения значило объяснить целый мир явлений окисления, происходящих всегда и всюду в воздухе, земле, организмах — во всей мертвой и живой природе, в бесчисленных вариациях и разнообразнейших формах.

Около шестидесяти мемуаров было им посвящено уяснению различных вопросов, связанных с этим исходным пунктом. В них новая наука развивается как клубок. Явления горения естественно приводят Лавуазье, с одной стороны, к исследованию состава воздуха, с другой — к изучению остальных форм окисления; к образованию различных окисей и кислот и уяснению их состава; к процессу дыхания, а отсюда — к исследованию органических тел и открытию органического анализа, и т. д.

Ближайшей задачей Лавуазье являлась теория горения и связанный с ней вопрос о составе воздуха. В 1774 году он представил академии мемуар о прокаливании олова, в котором сформулировал и доказал свои взгляды на горение. Олово прокаливалось в замкнутой реторте и превратилось в «землю» (окись). Общий вес остался неизменным — следовательно, увеличение веса олова не могло происходить за счет присоединения «огненной материи», проникающей, как полагал Бойль, сквозь стенки сосуда. Вес металла увеличился. Это увеличение равно весу той части воздуха, которая исчезла при прокаливании. Выходит, металл, превращаясь в землю, соединяется с воздухом. Этим и исчерпывается процесс окисления: никакие флогистоны, «огненные материи» тут не участвуют. В данном объеме воздуха может сгореть только определенное количество металла, причем при этом исчезает определенное количество воздуха. Отсюда вытекает мысль о его сложности: «Как видно, часть воздуха способна, соединяясь с металлами, образовывать земли, другая же — нет; это обстоятельство заставляет меня предполагать, что воздух — не простое вещество, как думали раньше, а состоит из весьма различных веществ».

В следующем, 1775 году Лавуазье представил академии мемуар, в котором состав воздуха был впервые точно выяснен. Воздух состоит из двух газов, «чистого воздуха», способного усиливать горение и дыхание, окислять металлы, и «мефитического воздуха», не обладающего этими свойствами. Названия кислород и азот были даны позднее.

Вникнем в ход рассуждений Лавуазье. Металл увеличивается в весе — значит, к нему присоединилось какое-нибудь вещество. Откуда оно взялось? Определяем вес других тел, входивших в реакцию, и видим, что воздух уменьшился в весе настолько же, на сколько увеличился вес металла; стало быть, искомое вещество выделилось из воздуха. Это — метод весового определения. Однако для того чтобы понять его значение, нужно признать, что все химические тела имеют вес, что весомое тело не может превратиться в невесомое, что, наконец, ни единая частица материи не может исчезнуть или возникнуть из ничего.

В том же мемуаре Лавуазье выяснил строение «постоянного воздуха», как называли тогда углекислоту. Если нагревать окись ртути в присутствии угля, то выделяющийся кислород соединяется с углем, образуя «постоянный воздух».

В трактате «О горении вообще» (1777) он подробно развивает свою теорию. Всякое горение есть соединение тела с кислородом; результат его — сложное тело, а именно «металлическая земля» (окисел) или кислота (ангидрид по современной терминологии).

Теория горения повела к объяснению состава различных химических соединений. Уже давно различались окислы, кислоты и соли, но строение их оставалось загадочным. Общий результат их можно сформулировать так: Лавуазье дал первую научную систему химических соединений, установив три главные группы — окислы (соединения металлов с кислородом), кислоты (соединения неметаллических тел с кислородом) и соли (соединения окислов и кислот).

Десять лет прошло со времени первой работы Лавуазье, а он почти вовсе не касался теории флогистона. Он просто обходился без нее. Процессы горения, дыхания, окисления, состав воздуха, углекислоты, множество других соединений объяснились без всяких таинственных принципов совершенно просто и ясно — соединением и разделением реальных весовых тел. Но старая теория еще существовала и влияла на ученых.

В 1783 году Лавуазье напечатал «Размышления о флогистоне». Опираясь на свои открытия, он доказывает полнейшую ненужность теории флогистона. Без нее факты объясняются ясно и просто, с нею начинается бесконечная путаница. «Химики сделали из флогистона туманный принцип, который вовсе не определен точно и, следовательно, пригоден для всевозможных объяснений, иногда это весомый принцип, иногда — невесомый, иногда — свободный огонь, иногда — огонь, соединенный с землею; иногда он проходит сквозь поры сосудов, иногда они непроницаемы для него; он объясняет разом и щелочность и нещелочность, и прозрачность и тусклость, й цвета и отсутствие цветов. Это настоящий Протей, который ежеминутно меняет форму».

«Размышления о флогистоне» были своего рода похоронным маршем по старой теории, так как она давно уже могла считаться погребенной.

Наконец, знание водорода и продукта его окисления дало Лавуазье возможность положить главный камень в основание органической химии. Он определил состав органических тел и создал органический анализ путем сжигания углерода и водорода в определенном количестве кислорода. Как утверждает Н. Меншуткин: «Таким образом, историю органической химии, как и неорганической, приходится начинать с Лавуазье».

ОСНОВНОЙ ЗАКОН ЭЛЕКТРОСТАТИКИ

Электрические явления постепенно теряли свой первоначальный характер отдельных разрозненных забавных явлений природы и постепенно образовывали некое единство, которое существующие теории пытались охватить несколькими основными принципами. Наступало время перехода от качественных исследований к количественным.

Такое направление исследований отчетливо выражено в работе 1859 года петербургского академика Ф. Эпинуса (1724–1802).

Эпинус в основу своего математического рассмотрения кладет следующие принципы: каждое тело обладает в своем естественном состоянии вполне определенным количеством электричества. Частицы электрического флюида взаимно отталкиваются и притягиваются к обычной материи. Электрические эффекты проявляются, когда количество электрического флюида в теле больше или меньше того, которое должно быть в естественном состоянии.

Эпинус делает предположение: «…определить эти функциональные зависимости я пока что не решаюсь. Впрочем, если быпонадобилось произвести выбор между различными функциями, то я охотно утверждал бы, что эти величины изменяются обратно пропорционально квадратам расстояний. Это можно предположить с некоторым правдоподобием, ибо в пользу такой зависимости, по-видимому, говорит аналогия с другими явлениями природы». По пути Эпинуса пошел Генри Кавендиш (1731–1810), который в своей статье от 1771 года принимает гипотезы Эпинуса с одним изменением: притяжение двух электрических зарядов считается обратно пропорциональным некоторой степени расстояния, пока не уточняемой.

Кавендиш с помощью математических рассуждений делает вывод: если сила взаимодействия электрических зарядов подчиняется закону обратных квадратов, то «почти весь» электрический заряд сосредоточен на самой поверхности проводника. Тем самым намечается косвенный путь установления закона взаимодействия зарядов.

Главная трудность установления «закона электрической силы» состояла в том, чтобы найти экспериментальную ситуацию, в которой пондеромоторные силы совпадали бы с силами, действующими между элементарными зарядами.

Возможно, правильный подход к этой проблеме был найден ранее всего английским естествоиспытателем Дж. Робайсоном (1739–1805).

Экспериментальный метод, использованный Робайсоном, основывался на идее о том, что взаимодействующие заряды можно считать точечными, когда размеры сфер, на которых они локализованы, много меньше расстояния между центрами сфер.

Установка, с помощью которой англичанин проводил измерения, описана в его фундаментальном труде «Система механической философии». Сочинение издано уже после его смерти, в 1822 году.

Учитывая погрешности измерений, Робайсон сделал вывод:

«Действие между сферами в точности пропорционально обратному квадрату расстояния между их центрами».

Однако основной закон электростатики не носит имя Робайсона. Дело в том, что о полученных результатах ученый сообщил лишь в 1801 году, а подробно описал еще позднее. В то время уже повсеместное распространение получили труды французского ученого Кулона.

Шарль Огюстен Кулон (1736–1806) родился в Ангулеме на юго-западе Франции. После рождения Шарля семья переехала в Париж.

Поначалу мальчик посещал Коллеж четырех наций, известный также как Коллеж Мазарини. Вскоре отец разорился и уехал от семьи в Монпелье, на юг Франции. Конфликт между матерью и сыном привел к тому, что Шарль покинул столицу и переехал к отцу.

В феврале 1757 года на заседании Королевского научного общества Монпелье молодой любитель математики прочел свою первую научную работу «Геометрический очерк среднепропорциональных кривых». В дальнейшем Кулон принимал активное участие в работе общества и представил еще пять мемуаров — два по математике и три по астрономии.

В феврале 1760 года Шарль поступил в Мезьерскую школу военных инженеров. В ноябре следующего года Шарль окончил Школу и получил назначение в крупный порт на западном побережье Франции Брест. Затем он попал на Мартинику. За восемь лет, проведенных там, он несколько раз серьезно болел, но каждый раз возвращался к исполнению своих служебных обязанностей. Болезни эти не прошли бесследно. После возвращения во Францию Кулон уже не мог считаться совершенно здоровым человеком.

Несмотря на все эти трудности, Кулон очень хорошо справлялся со своими обязанностями. Его успехи в деле строительства форта на Монт-Гарнье были отмечены повышением в чине: в марте 1770 года он получил чин капитана — по тем временам это можно было рассматривать как очень быстрое продвижение по службе. Вскоре Кулон вновь серьезно заболел и, наконец, подал рапорт с прошением о переводе во Францию.

После возвращения на родину Кулон получил назначение в Бушен. Здесь он завершает исследование, начатое еще во время службы в Вест-Индии. Многие идеи, сформулированные им в первой же научной работе, до сих пор рассматриваются специалистами по сопротивлению материалов как основополагающие.

В 1774 году Кулона переводят в крупный порт Шербур, где он и служил до 1777 года. Там Кулон занимался ремонтом ряда фортификационных сооружений. Эта работа оставляла достаточно много времени для досуга, и молодой ученый продолжил свои научные исследования. Основной темой, которой интересовался в это время Кулон, была разработка оптимального метода изготовления магнитных стрелок для точных измерений магнитного поля Земли. Эта тема была задана на конкурсе, объявленном Парижской академией наук.

Победителями конкурса 1777 года были объявлены сразу двое — шведский ученый ван Швинден, уже выдвигавший работу на конкурс, и Кулон. Однако для истории науки наибольший интерес представляет не глава мемуара Кулона, посвященная магнитным стрелкам, а следующая глава, где анализируются механические свойства нитей, на которых подвешивают стрелки. Ученый провел цикл экспериментов и установил общий порядок зависимости момента силы деформации кручения от угла закручивания нити и от ее параметров: длины и диаметра.

Малая упругость шелковых нитей и волос по отношению к кручению позволяла пренебречь возникающим моментом упругих сил и считать, что магнитная стрелка в точности следует за вариациями склонения. Это обстоятельство и послужило для Кулона толчком к изучению кручения металлических нитей цилиндрической формы. Результаты его опытов были обобщены в работе «Теоретические и экспериментальные исследования силы кручения и упругости металлических проволок», законченной в 1784 году.

Исследование кручения тонких металлических нитей, выполненное Кулоном для конкурса 1777 года, имело важное практическое следствие — создание крутильных весов. Этот прибор мог использоваться для измерения малых сил различной природы, причем он обеспечивал чувствительность, беспрецедентную для XVIII века.

Разработав точнейший физический прибор, Кулон стал искать ему достойное применение. Ученый начинает работу над проблемами электричества и магнетизма.

Важнейшим результатом, полученным Кулоном в области электричества, было установление основного закона электростатики — закона взаимодействия неподвижных точечных зарядов. Ученый так формулирует фундаментальный закон электричества:

«Сила отталкивания двух маленьких шариков, наэлектризованных электричеством одной природы, обратно пропорциональна квадрату расстояния между центрами шариков».

Кулон начал с измерения зависимости силы отталкивания одноименных зарядов от расстояния и провел многочисленные эксперименты. Ученый приводит результаты трех измерений, при которых расстояния между зарядами относились как 36: 18: 172, а соответствующие силы отталкивания — как 36: 144: 5751, т. е. силы почти точно обратно пропорциональны квадратам расстояний. В действительности экспериментальные данные несколько отличаются от теоретического закона. Кулон считает основными причинами расхождения, помимо принятых при расчете некоторых упрощений, утечку электричества за время опыта.

Более трудной оказалась задача измерения силы притяжения, поскольку весьма сложно помешать подвижному шарику весов войти в соприкосновение с другим зарядом противоположного знака. И все-таки Кулону довольно часто удавалось добиться равновесия между силой притяжения двух шариков и противодействующей ей силой действия закрученной нити. Полученные экспериментальные данные указывали на то, что сила притяжения также подчиняется закону обратных квадратов.

Но и этими результатами Кулон не удовлетворился. «Для подтверждения этого закона, который, как он предчувствовал, сыграет фундаментальную роль в учении об электричестве, — пишет М. Льоцци, — Кулон прибег к новому оригинальному методу измерения малых сил, примененному уже ранее для измерения магнитной силы стального острия. Этот метод оказался весьма эффективным и известен сейчас как „метод колебаний“. Он основан на том факте, что, подобно тому как частота колебаний маятника зависит от величины силы тяжести в данном месте, так же и частота колебаний наэлектризованной стрелки, колеблющейся в горизонтальной плоскости, зависит от интенсивности действующей на нее электрической силы, так что по числу колебаний в секунду можно найти эту силу. Для осуществления этого замысла Кулон заставил колебаться изолирующий стерженек, снабженный на конце маленькой вертикальной заряженной пластинкой и находящийся перед изолированным металлическим шаром, заряженным противоположно заряду пластинки и расположенным так, что один из его горизонтальных диаметров проходит через центр пластинки, когда она находится в равновесии. Этим путем также был полностью подтвержден закон обратных квадратов».

Таким образом, Кулон заложил основы электростатики. Им были получены экспериментальные результаты, имеющие как фундаментальное, так и прикладное значение. Для истории физики его эксперименты с крутильными весами имели важнейшее значение еще и потому, что они дали в руки физиков метод определения единицы электрического заряда через величины, использовавшиеся в механике: силу и расстояние, что позволило проводить количественные исследования электрических явлений.

ИНТЕРФЕРЕНЦИЯ

В древности, наблюдая за поведением света, думали, что два световых луча, пересекаясь, продолжают идти своей дорогой как ни в чем не бывало. Подобные наблюдения укрепляли веру в бестелесность, нематериальность света. Но так ли все происходит на самом деле?

Ньютон первым поставил опыт по наблюдению взаимодействия, или, как говорят оптики, интерференции световых лучей между собой.

Он создал клиновидный воздушный зазор, положив тонкую линзу (выпуклой поверхностью вниз) на плоскую стеклянную пластинку.

Затем ученый осветил зазор, причем сначала белым светом, а потом по очереди и другими основными цветными лучами. Ньютон отметил, что лучи, отражаясь от стеклянных границ воздушного клина, очевидно взаимодействовали между собой. При освещении белым светом в зазоре появились чередующиеся цветные и радужные кольца. Когда же пропускались через зазор цветные лучи, предварительно полученные с помощью призмы, то в нем возникали светлые и темные кольца.

Ньютон оставил эти эксперименты без обычных для него детальных выводов. По-видимому, ученый решил, что здесь скрываются явления, требующие дополнительных исследований, которые он не мог провести.

Лишь в XIX веке в науку придут два выдающихся исследователя, Юнг и Френель, и «достроят» заложенное Ньютоном здание классической оптики.

Томас Юнг (1773–1829), разносторонний ученый, врач по профессии, человек с весьма разносторонними интересами — гимнаст и музыкант, а известный также и как египтолог. Рассказывают одну любопытную историю, связанную с ним. В четырнадцать лет Томаса попросили воспроизвести несколько фраз по-английски, чтобы проверить, умеет ли он хорошо писать. Юноша дольше обычного пробыл в комнате для испытаний. Новый учитель Томаса Юнга готов был посмеяться над неумехой. Однако, когда ученик протянул ему листок, там заданные фразы были не только переписаны, но и переведены на девять (!) разных языков.

В первой же своей работе по оптике Юнг показал, что хрусталик человеческого глаза представляет собой линзу с переменной кривизной. Особые мускулы растягивают и сжимают хрусталик, позволяя получать на сетчатке глаза резкое изображение как удаленных, так и близких Предметов.

Юнгу было всего двадцать лет, когда он выполнил это оптико-медицинское исследование. Королевское научное общество тут же избрало его своим членом.

Критическому уму Юнга теория Ньютона представлялась совершенно неудовлетворительной. Особенно неприемлемым он считал постоянство скорости световых частиц независимо от того, испущены ли они таким крошечным источником, как тлеющий уголек, или таким громадным источником, как Солнце. А более всего представлялась ему неясной и недостаточной ньютоновская теория «приступов», с помощью которой Ньютон пытался объяснить окрашивание тонких пластин. Воспроизведя это явление и поразмыслив над ним, Юнг пришел к гениальной мысли о возможности интерпретации этого явления как наложения света, отраженного от первой поверхности тонкой пластины, и света, прошедшего в пластину, отраженного от второй ее поверхности и вышедшего затем через первую. Такое наложение могло привести к ослаблению или к усилению падающего монохроматического света.

Точно не известно, каким образом Юнг пришел к своей идее наложения. Вполне вероятно, это произошло в результате исследования звуковых биений, при которых наблюдается периодическое усиление и ослабление звука, воспринимаемого ухом. Как бы то ни было, в четырех докладах, представленных Королевскому обществу с 1801 по 1803 год, объединенных несколько лет спустя в обобщающей работе «Курс лекций по естественной философии и механическому искусству», вышедшей в Лондоне в 1807 году, Юнг приводит результаты своих теоретических и экспериментальных исследований. Он несколько раз приводит цитату из XXIV предложения третьей книги «Начал» Ньютона, в которой аномальные приливы, наблюдавшиеся Галлеем на Филиппинском архипелаге, объясняются Ньютоном как результат наложения волн. Исходя из этого отдельного примера, Юнг вводит общий принцип интерференции.

«Представьте себе ряд одинаковых волн, бегущих по поверхности озера с определенной постоянной скоростью и попадающих в узкий канал, ведущий к выходу из озера. Представьте себе далее, что по какой-либо иной аналогичной причине возбуждена другая серия волн той же величины, приходящих к тому же каналу с той же скоростью одновременно с первой системой волн. Ни одна из этих двух систем не нарушит другой, но их действия сложатся: если они подойдут к каналу таким образом, что вершины одной системы волн совпадут с вершинами другой системы, то они вместе образуют совокупность волн большей величины; если же вершины одной системы волн будут расположены в местах провалов другой системы, то они в точности заполнят эти провалы и поверхность воды в канале останется ровной. Так вот, я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света».

Для получения интерференции нужно, чтобы оба световых луча исходили из одного и того же источника (чтобы у них был совершенно одинаковый период), после прохождения различного пути они должны попадать в одну и ту же точку, а также идти там почти параллельно.

Значит, продолжает Юнг, когда две части света общего происхождения попадают в глаз по различным путям, идя почти в одинаковом направлении, луч приобретает максимальную интенсивность при условии, что разность путей лучей равна кратному числу некоторой определенной длины, и имеет минимальную интенсивность в промежуточном случае. Эта характерная длина различна для света различных цветов.

В 1802 году Юнг подкрепил свой принцип интерференции классическим опытом «с двумя отверстиями», возможно поставленным под влиянием аналогичного опыта Гримальди, который, однако, не привел к открытию интерференции из-за особенностей применявшейся установки.

Опыт Юнга общеизвестен: в прозрачном экране кончиком булавки прокалываются два близко расположенных одно к другому отверстия, которые освещаются солнечным светом, проходящим через небольшое отверстие в окне. Два световых конуса, образующихся за непрозрачным экраном, расширяясь благодаря дифракции, частично перекрываются, и в перекрывающейся части, вместо того чтобы давать равномерное увеличение освещенности, образуют серию чередующихся темных и светлых полос. Если одно отверстие закрыто, то полосы исчезают и появляются лишь дифракционные кольца от другого отверстия. Эти полосы исчезают и в том случае, когда оба отверстия освещаются (как это было в опыте Гримальди) непосредственно солнечным светом или искусственным источником света. Привлекая волновую теорию, Юнг очень просто объясняет это явление. Темные полосы получаются там, говорит ученый, где провалы волн, прошедших через одно отверстие, налагаются на гребни волн, прошедших через другое отверстие, так что их эффекты взаимно компенсируются; светлые каемки получаются там, где два гребня или два провала волн, прошедших через оба отверстия, складываются. Этот опыт позволил Юнгу измерить длину волны для различных цветов: он получил длину волны 0,7 микрона для красного света и 0,42 микрона для крайнего фиолетового. Это первые в истории физики измерения длины волны света, и следует отметить их поразительную точность.

Из своего принципа интерференции Юнг вывел целый ряд разнообразных следствий. Он рассмотрел явления окрашивания тонких слоев. Ученый объяснил их вплоть до мельчайших деталей. Юнг вывел эмпирические законы, найденные Ньютоном, и, считая неизменной частоту света заданного цвета, объяснил уплотнение колец в опыте Ньютона при замене воздушной прослойки между линзами водой уменьшением скорости света в более преломляющей среде.

Интересно заметить, что Юнгу принадлежит термин «физическая оптика», применяемый для обозначения исследований «…источников света, скорости его распространения, его прерывания и затухания, его расщепления на различные цвета, влияния на него различной плотности атмосферы, метеорологических явлений, относящихся к свету, особенных свойств некоторых веществ по отношению к свету».

Работы Юнга, представляющие собой наиболее существенный вклад в теорию оптических явлений со времен Ньютона, были восприняты физиками того времени с недоверием, а в Англии они подвергались даже грубым насмешкам. Объяснялось это отчасти тем, что Юнг пытался применять принцип интерференции и к явлениям явно не интерференционным, отчасти некоторой неясностью изложения, которая чувствуется и сейчас и которая, должно быть, еще больше чувствовалась в те времена, и отчасти, как упрекал Юнга впоследствии Лаплас, тем, что Юнг иногда удовлетворялся недостаточно строгими, а порой поверхностными экспериментами.

Из представлений о свете как о волновом движении эфира исходил и Огюстен Френель (1788–1827), дорожный инженер, сравнительно поздно начавший интересоваться наукой.

«Добрый гений» Френеля академик Франсуа Араго, вовремя заметивший выдающийся талант ученого и всю жизнь помогавший ему, тем не менее, писал в своих записках-воспоминаниях: «Огюстен Френель учился так медленно, что восьми лет едва умел читать… Он никогда не чувствовал склонности к изучению языков, не любил знаний, основанных на одной памяти, и запоминал то, что было доказано ясно и убедительно».

Первое время Френель работал в сельской глуши. Он и не подозревал об опытах Юнга, поэтому повторил их. И объяснение огибания светом препятствий Френель дал подобное юнговскому.

Позднее, уже работая в Париже, Френель получил математические уравнения, точно описывающие оптические процессы, происходящие на границе двух различных оптических сред.

Различные формулы Френеля так часто применяются в оптических работах, что, несомненно, занимают по этому показателю первое место.

Френель предложил для создания интерференционной картины направлять солнечный свет на экран с помощью двух зеркал, установленных под небольшим углом друг к другу.

Известный ученый, автор многих университетских учебников по физике, Роберт Поль для большой аудитории предложил создавать интерференцию, направив свет на тонкую слюдяную пластинку. Отраженный пластинкой свет попадает на большой экран, на котором хорошо видны интерференционные полосы.

Явление интерференции широко используется в приборах, которые называются интерферометрами.

Интерферометры могут служить самым различным целям, например для контроля чистоты обработки поверхности металла.

ЭЛЕКТРИЧЕСТВО У ЖИВОТНЫХ

Ко второй половине восемнадцатого века изучение электрических явлений уже дало материал для вывода о важной роли электричества в биологии. Опыты Джона Уолша и Ларошеля доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этого животного. Исследования Уолша и Гунтера были опубликованы в 1773 году.

Таким образом, ко времени начала опытов Гальвани в 1786 году не было недостатка в попытках физической трактовки психических и физиологических явлений. Почва для возникновения учения о животном электричестве была вполне подготовлена.

Вся жизнь Гальвани (1737–1798) прошла в итальянском городе Болонье. Жизнь его была небогата событиями. Любопытно, что университет он закончил по специальности богословие и только после защиты диссертации заинтересовался медициной. Это произошло под влиянием общения его с тестем — известным врачом и профессором медицины Карло Галеацци.

Несмотря на ученую степень, Гальвани круто изменил свою профессию и вновь окончил Болонский университет, но уже медицинское отделение. Магистерская работа Гальвани была посвящена строению человеческих костей. После ее успешной защиты Гальвани начал преподавать медицину. В 1785 году, после смерти Галеацци, Гальвани занял его место руководителя кафедры анатомии и гинекологии.

Работая в университете, Гальвани одновременно занимался физиологией: ему принадлежат интересные труды, в которых он доказал, что строение птичьего уха практически не отличается от человеческого.

Открытие, как это часто бывает, произошло случайно. В своем трактате Гальвани пишет: «Я разрезал и препарировал лягушку… и, имея в виду совершенно другое, поместил ее на стол, на котором находилась электрическая машина… Один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки… Другой заметил, что это удается тогда, когда из кондуктора машины извлекается искра. Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями».

Как справедливо указал впоследствии Вольта, в самом факте вздрагивания лапки препарированной лягушки при электрическом разряде с физической точки зрения не было ничего нового. Явление электрической индукции, а именно явление так называемого возвратного удара, было разобрано Магоном в 1779 году. Однако Гальвани подошел к факту не как физик, а как физиолог. Ученого заинтересовала способность мертвого препарата проявлять жизненные сокращения под влиянием электричества.

Он с величайшим терпением и искусством исследовал эту способность, изучая ее локализацию в препарате, условия возбудимости, действие различных форм электричества и в частности атмосферного электричества. Классические опыты Гальвани сделали его отцом электрофизиологии, значение которой в наше время трудно переоценить.

Вместе с тем Гальвани пришел к замечательному открытию. Напрастно ожидая сокращения мышц в ясную погоду, он, «утомленный… тщетным ожиданием… начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке»… «Хотя я, — пишет он далее, — нередко наблюдал сокращения, но ни одно не соответствовало перемене в состоянии атмосферы и электричества… Когда же я перенес животное в закрытую комнату, поместил на железной пластине и стал прижимать к ней проведенный через спинной мозг крючок, то появились такие же сокращения, такие же движения».

Таким образом, Гальвани, осуществив ряд экспериментов, приходит к выводу о существовании нового источника и нового вида электричества. Его привели к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов и лягушечного препарата.

Особенно эффектен и эффективен оказался следующий опыт: «Если держать висящую лягушку пальцами за одну лапку так, чтобы крючок, проходящий через спинной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла бы касаться той же пластинки, то как только эта лапка касается указанной пластинки, мышцы начинают немедленно… сокращаться. При этом лапка встает и поднимается и затем, вновь упав на пластинку, вместе с тем приходит в соприкосновение с последней, снова по той же причине, поднимается вверх, и, таким образом, продолжает далее попеременно подниматься и падать, так что эта лапка, к немалому восхищению и радости наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником».

В такой довольно непростой форме был открыт новый источник электричества, создающий в проводящей замкнутой цепи длительный разряд. По объективным причинам физиолог Гальвани не мог допустить и мысли, что причина явления кроется в контакте разнородных металлов. Ученый предположил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передается по нервам.

Теория животного электричества подводила базу под практическую электромедицину, и открытие Гальвани произвело сенсацию. Среди последователей болонского анатома оказался и Вольта.

Алессандро Вольта (1745–1827) родился в итальянском городе Комо. Уже с 18 лет Алессандро ведет переписку с Нолле по вопросам физики. Еще через год он пишет латинскую поэму о современных физико-химических открытиях. Первая работа 1764 года посвящена лейденской банке, следующая работа 1771 года — «Эмпирические исследования способов возбуждения электричества и улучшение конструкции машины». В 1774 году Вольта становится преподавателем физики в родном городе. В 1777 году он изобретает электрофор, затем конденсатор и электрофор с конденсатором. Но и это не все. На его «счету» изобретение электрического пистолета, водородной лампы, эвдиометра.

В 1777 году Вольта назначается профессором физики в Павий. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба он получил награду от Наполеона и был избран членом Института.

В первых своих статьях, напечатанных в начале девяностых, Вольта разделяет точку зрения Гальвани. Но вскоре намечается будущий отход от этой теории, на первый план выдвигаются физические моменты эффекта. Сначала Вольта устанавливает, что соответствующим образом «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр».

Потом ученый определяет важность контакта разнородных металлов. «Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения…» (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

В дальнейшем Вольта окончательно порывает с теорией животного электричества. Он дает физическую трактовку эффекта. В письме к Кавалло Вольта пишет: «…я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переход электрического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся все время, пока сохраняется сообщение между обеими обкладками, имеет место независимо от того, наложена ли эта обкладка на живое или мертвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, на воду или на смоченные ею тела». А раньше 10 февраля 1794 года в письме к тому же Кавалло Вольта прямо начинает вопросом: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убежден, что все действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде».

Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения тем сильнее, чем дальше отстоят друг от друга примененные два металла в том ряду, в каком они поставлены нами здесь; цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит. Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, «являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики тока, но настоящие двигатели электричества…» В одном из примечаний к этой статье Вольта вновь подчеркивает, что к идее о контактном напряжении он пришел уже более трех лет тому назад и уже в 1793 году дал свой ряд металлов.

Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников «вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою».

«Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами — серебром и железом, свинцом и латунью, серебром и цинком и т. д. — ввести один или более проводников, именно из того класса, который назван классом влажных проводников, так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие и сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате такого соприкосновения».

Так ясно и четко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причем, по крайней мере, один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса. Гальванисты в ответ приводили опыты, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника. На это Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса.

«…Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса…»

В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену в 1795 году и Альдини в 1798 году.

20 марта 1800 года Вольта написал свое знаменитое письмо Бенксу с описанием своего столба — изобретения, произведшего подлинную революцию в науке об электричестве.

П.С. Кудрявцев пишет в своей книге: «Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта — основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашел опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди еще предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в ее существовании уже сомнений не оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться».

ЗАКОН ПРОСТЫХ ОБЪЕМНЫХ ОТНОШЕНИЙ

Открытие Гей-Люссаком закона простых отношений объемов реагирующих газов оказало сильное влияние на развитие теоретической химии. Этот закон вместе с только что открытым Дальтоном законом кратных отношений лег в основу теории химических соединений. Гей-Люссак принадлежит к тем химикам, которые в первой половине XIX века заложили основы классической химии.

Жозеф Луи Гей-Люссак (1778–1850) родился в небольшом городке Сен-Леонар во французском графстве Лимузен. Получив в детстве строгое католическое образование, Гей-Люссак в возрасте пятнадцати лет переехал в Париж. Здесь он стал обучаться в пансионе Сансье, где вскоре раскрылись его незаурядные математические способности. С 1797 по 1800 год Гей-Люссак учился в Париже в Политехнической школе. Преподавал химию в школе известный химик Клод Луи Бертолле. Между Гей-Люссаком и Бертолле возникла дружба, оказавшая большое влияние на становление ученого. По окончании курса Гей-Люссак недолго работал на химических предприятиях. В 1802 году он уже «репетитор» (ассистент) в Политехнической школе.

В том же году Гей-Люссак выступил на заседании Академии наук со своим первым научным сообщением: «Об осаждении оксидов металлов». Воистину 1802 год был счастливым для молодого ученого: независимо от Джона Дальтона, он открыл закон теплового расширения газов. Гей-Люссак нередко проводил исследования совместно с другими видными учеными, что способствовало многим выдающимся открытиям. Вместе с Жаном Батистом Био Гей-Люссак в 1804 году поднялся на воздушном шаре, чтобы определить температуру и содержание влаги в верхних слоях атмосферы. Совместно с Вельтером он открыл дитионовую кислоту. Тесная дружба связывала Гей-Люссака с Луи Жаком Тенаром, парижским профессором химии. Их совместная работа привела к значительному усовершенствованию метода элементного анализа органических веществ.

Гей-Люссак был превосходным экспериментатором и поэтому смог в скромно оборудованной лаборатории открыть многие явления и законы, весьма важные для дальнейшего развития химии.

Уже в 1805 году Гей-Люссак и Александр фон Гумбольдт, изучая отношения объемов реагирующих газов, установили, что один объем кислорода соединяется с двумя объемами водорода. Эта работа была тесно связана с дальнейшими исследованиями газовых реакций Гей-Люссаком.

Поскольку измерять газы по объему гораздо проще, чем по массе, уже Лавуазье пытался определить объемные отношения при реакции между водородом и кислородом. Объемными отношениями между водородом и азотом при разложении аммиака занимался Бертолле. Таковы были сведения об объемных отношениях при некоторых газовых реакциях.

Гей-Люссак продолжил изучение объемных отношений при реакциях газов. Результаты этих работ он опубликовал в 1808 году в статье «О соединении газообразных тел друг с другом». Он хотел «доказать, что газообразные тела соединяются друг с другом в очень простых отношениях и что уменьшение объема, наблюдаемое при реакциях, подчиняется определенному закону».

Гей-Люссак открыл закон чисто опытным путем. Он не стремился при выводе этого закона изучить всевозможные газовые реакции, а ограничился их сравнительно небольшим числом. На основе этих данных ученый сформулировал закон и сделал из него выводы. Так, измерив объемы взаимодействующих газов, Гей-Люссаку удалось правильно установить состав аммиака и пяти оксидов азота.

Ученый, сопоставив формулировку закона с результатами, полученными другим путем, нашел, что его закон подтверждается. Он смог опереться и на материалы, полученные другими исследователями. Например, он использовал известные определения плотности газов и соответственно соединительные веса негазообразных веществ.

Очень важно, что Гей-Люссаку удалось показать, как на основании открытого им закона можно рассчитать еще неизвестные плотности газообразных веществ: «Наблюдение, что разные виды горючих газов соединяются с кислородом в простых отношениях 1:1; 1:2, дает нам в руки средство определять плотность паров горючих веществ или по крайней мере найти ее приближенно. Если мысленно попытаться перевести все применяемые вещества в газообразное состояние, определенный объем каждого из них будет соединяться либо с равным, либо с двойным, либо с половинным объемом кислорода. Теперь, если мы знаем отношения, в которых кислород может соединяться с горючими веществами, находящимися в твердом или жидком состоянии, мы можем вычислять объем кислорода и объем паров горючего вещества, который соединяется с такими же, либо с двойным, либо с половинным объемом газообразного кислорода».

Ясность и последовательность изложения Гей-Люссаком своих мыслей и результатов исследований может служить прекрасным примером для всех естествоиспытателей.

Берцелиус с большим успехом применил закон Гей-Люссака для определения состава и количественных характеристик многих элементов и соединений. Работы французского ученого также существенно помогли укреплению открытого Прустом закона постоянства состава, который оказался применимым не только для твердых, но и для газообразных веществ.

В своих исследованиях Гей-Люссаку необходимо было исходить из качественных наблюдений и принять во внимание количественные исследования в качестве условий и критерия для формулировки закона. Так возникло в химии представление о связи между качеством и количеством. Это существенно способствовало преодолению метафизического понимания природы.

Открыв закон простых объемных отношений, Гей-Люссак оказал значительное влияние на формирование атомно-молекулярного учения.

ЗАКОН ЭРСТЕДА

Идея связи электричества и магнетизма, восходящая к простейшему сходству притяжения пушинок янтарем и железных опилок магнитом, носилась в воздухе, и многие лучшие умы Европы были ею увлечены. В литературе были известны факты намагничивания стальных игл электрической искрой, размагничивания компасов молнией. В трактате по гальванизму Альдини (1804) упоминается о Можоне, намагнитившем стальную иглу вольтовым столбом, и Романьози, наблюдавшего отклонение магнитной стрелки при действии Вольтова столба. Но все эти факты носили характер случайных наблюдений и не только не обобщались, но даже и не описывались сколько-нибудь точно.

Заслуга Эрстеда заключается, прежде всего, в том, что он понял важность и новизну своего открытия и привлек к нему внимание ученого мира.

«Ученый датский физик, профессор, — писал Ампер, — своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом».

Ганс Христиан Эрстед (1777–1851) родился на датском острове Лангеланд в городке Рюдкобинг в семье бедного аптекаря. Семья постоянно испытывала нужду, так что начальное образование братьям Гансу Христиану и Андерсу пришлось получать где придется.

Уже в двенадцать лет Ганс был вынужден стоять за стойкой отцовской аптеки. Здесь медицина надолго пленила его, потеснив химию, историю, литературу, и еще более укрепила в нем уверенность в его научном предназначении. Он решает поступать в Копенгагенский университет, где берется за все — медицину, физику, астрономию, философию, поэзию.

Золотая медаль университета 1797 года была присуждена ему за эссе «Границы поэзии и прозы». Следующая его работа, также высоко оцененная, касалась свойств щелочей, а диссертация, за которую он получил звание доктора философии, была посвящена медицине.

В двадцать лет Эрстед получил диплом фармацевта, а в двадцать два года степень доктора философии. Блестяще защитив диссертацию, Ганс едет по направлению университета на стажировку во Францию, Германию, Голландию. Там Эрстед слушал лекции о возможностях исследований физических явлений с помощью поэзии, о связи физики с мифологией.

В 1806 году Эрстед становится профессором Копенгагенского университета Увлекшись философией Шеллинга, он много думал о связи между теплотой, светом, электричеством и магнетизмом. В 1813 году во Франции выходит его труд «Исследования идентичности химических и электрических сил». В нем он впервые высказывает идею о связи электричества и магнетизма. Он пишет: «Следует испробовать, не производит ли электричество… каких-либо действий на магнит…» Его соображения были простыми: электричество рождает свет — искру, звук — треск, наконец, оно может производить тепло — проволока, замыкающая зажимы источника тока, нагревается. Не может ли электричество производить магнитных действий? Говорят, Эрстед не расставался с магнитом. Тот кусочек железа должен был непрерывно заставлять его думать в этом направлении. Магнит совершил, видимо, немало миль в Эрстедовом сюртуке.

Сегодня любой школьник без труда воспроизведет опыт Эрстеда, продемонстрирует «вихрь электрического конфликта», насыпав на картон, через центр которого проходит проволока с током, железные опилки.

Но обнаружить магнитные действия тока было нелегко. Их пытался обнаружить русский физик Петров, соединяя полюсы своей батареи железными и стальными пластинками. Он не обнаружил никакого намагничивания пластинок после нескольких часов пропускания через них тока. Имеются сведения и о других наблюдениях, однако с полной достоверностью известно, что магнитные действия тока наблюдал и описал Эрстед.

15 февраля 1820 года Эрстед, уже заслуженный профессор химии Копенгагенского университета, читал своим студентам лекцию. Лекция сопровождалась демонстрациями. На лабораторном столе находились источник тока, провод, замыкающий его зажимы, и компас. В то время когда Эрстед замыкал цепь, стрелка компаса вздрагивала и поворачивалась. При размыкании цепи стрелка возвращалась обратно. Это было первое экспериментальное подтверждение связи электричества и магнетизма, того, что так долго искали многие ученые.

Казалось бы, все ясно. Эрстед продемонстрировал студентам еще одно подтверждение давнишней идеи о всеобщей связи явлений. Нопочему же возникают сомнения? Почему вокруг обстоятельств этого события впоследствии разгорелось так много споров? Дело в том, что студенты, присутствовавшие на лекции, рассказывали потом совсем другое. По их словам, Эрстед хотел продемонстрировать на лекции всего лишь интересное свойство электричества нагревать проволоку, а компас оказался на столе совершенно случайно. И именно случайностью объясняли они то, что компас лежал рядом с этой проволокой, и совсем случайно, по их мнению, один из зорких студентов обратил внимание на поворачивающуюся стрелку, а удивление и восторг профессора, по их словам, были неподдельными. Сам же Эрстед в своих позднейших работах писал: «Все присутствовавшие в аудитории свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью, как хотел бы заключить профессор Гильберт из тех выражений, которые я использовал при первом оповещении об открытии».

Случайно ли то, что именно Эрстед сделал открытие? Ведь счастливое сочетание нужных приборов, их взаимного расположения и «режимов работы» могло получиться в любой лаборатории? Да, это так. Но в данном случае случайность закономерна — Эрстед был в числе тогда еще немногих исследователей, изучающих связи между явлениями.

Однако стоит вернуться к сути открытия Эрстеда. Нужно сказать, что отклонение стрелки компаса в лекционном опыте было весьма небольшим. В июле 1820 года Эрстед снова повторил эксперимент, используя более мощные батареи источников тока. Теперь эффект стал значительно сильнее, причем тем сильнее, чем толще была проволока, которой он замыкал контакты батареи. Кроме того, он выяснил одну странную вещь, не укладывающуюся в ньютоновские представления о действии и противодействии. Сила, действующая между магнитом и проволокой, была направлена не по соединяющей их прямой, а перпендикулярно к ней. Выражаясь словами Эрстеда, «магнитный эффект электрического тока имеет круговое движение вокруг него». Магнитная стрелка никогда не указывала на проволоку, но всегда была направлена по касательной к окружностям, эту проволоку опоясывающим. Как будто бы вокруг проволоки вихрились невидимые сгустки магнитных сил, влекущих легкую стрелку компаса. Вот чем был поражен ученый. Вот почему в своем четырехстраничном «памфлете» он, опасаясь недоверия и насмешек, тщательно перечисляет свидетелей, не забывая упомянуть ни об одной из их научных заслуг.

Эрстед, давая, в общем, неправильное теоретическое толкование эксперименту, заронил глубокую мысль о вихревом характере электромагнитных явлений. Он писал: «Кроме того, из сделанных наблюдений можно заключить, что этот конфликт образует вихрь вокруг проволоки». Другими словами, магнитные силовые линии окружают проводник с током или электрический ток является вихрем магнитного поля. Таково содержание первого основного закона электродинамики, и в этом суть открытия ученого. Опыт Эрстеда доказывал не только связь между электричеством и магнетизмом. То, что открылось ему, было новой тайной, не укладывающейся в рамки известных законов.

21 июля 1820 года в Копенгагене вышла на латинском языке брошюра «Опыты, касающиеся действия электрического конфликта на магнитную стрелку» Эрстед разослал ее во все ученые учреждения и физические журналы. Этим он хотел подчеркнуть важность своего открытия. И, действительно, открытие Эрстеда произвело впечатление научной сенсации и вызвало столь мощный резонанс, что можно без преувеличения сказать: произошло второе рождение гальванизма.

В результате открытия Эрстеда удалось установить связь между двумя группами явлений, которые со времен Гильберта считались принципиально различными. Был открыт новый вид взаимодействия. До сих пор физика знала центральные силы. Провод не притягивает и не отталкивает полюсов стрелки, а устанавливает ее перпендикулярно своей длине. «Опыт Эрстеда совершенно противен элементарным правилам механики», — замечает Араго.

Наконец, новое открытие давало в руки физикам средство построить чувствительный и удобный индикатор электрического тока. И уже в сентябре 1820 года Швейггер изобрел мультипликатор, а в 67-м томе «Гильбертовских анналов» за 1821 год появилось описание Поггендорфа конструкции мультипликатора в его современной школьной форме.

И последнее, эффективность и гибкость нового взаимодействия заключали в себе зерно будущих технических приложений электрической силы.

После выхода мемуара Эрстеда дальнейшие события развивались в весьма непривычном для неторопливой тогда науки темпе. Уже через несколько дней мемуар появился в Женеве, где в то время был с визитом Араго. Первое же знакомство с опытом Эрстеда доказало ему, что найдена разгадка задачи, над которой бился и он, и многие другие. Впечатление от опытов было столь велико, что один из присутствующих при демонстрации поднялся и с волнением произнес ставшую впоследствии знаменитой фразу: «Господа, происходит переворот!»

Араго возвращается в Париж потрясенный На первом же заседании Академии, на котором он присутствовал сразу по возвращении, 4 сентября 1820 года он делает устное сообщение об опытах Эрстеда. Записи, сделанные в академическом журнале ленивой рукой протоколиста, свидетельствуют, что академики просили Араго уже на следующем заседании, 22 сентября, показать всем присутствующим опыт Эрстеда, что называется, «в натуральную величину».

Сообщение Араго с особым вниманием слушал академик Ампер. Он, может быть, почувствовал в тот момент, что пришла его пора перед лицом всего мира принять из рук Эрстеда эстафету открытия. Он долго ждал этого часа — около двадцати лет, как Араго и как Эрстед. И вот час пробил — 4 сентября 1820 года Ампер понял, что должен действовать. Всего через две недели он сообщил миру о результатах своих исследований.

ЭЛЕКТРОДИНАМИКА

Сразу же после открытия Эрстеда физикам показалось вполне естественным объяснить его тем, что при прохождении электрического тока через проводник последний становится магнитом. Такое объяснение было принято Араго, оно было принято также и Био.

Последний в 1820 году сделал следующее предположение. Когда прямолинейный ток действует на магнитную молекулу, то природа этого действия та же, что и для намагниченной стрелки, помещенной на периферии проводника в определенном направлении, постоянном по отношению к направлению вольтаического тока. Био и другие физики, разделявшие его мнение, объясняли электродинамическое действие взаимодействием элементарных магнитов, возникающих под действием тока в каждом проводнике: каждый проводник, по которому проходит ток, превращается в магнитную трубку.

Совсем другое объяснение предложил Ампер… Но сначала несколько слов о его биографии.

Андре-Мари Ампер (1775–1836) родился в небольшом поместье Полемье, купленном отцом в окрестностях Лиона.

Исключительные способности Андре проявились еще в раннем возрасте. Он никогда не ходил в школу, но чтению и арифметике выучился очень быстро. Читал мальчик все подряд, что находил в отцовской библиотеке. Уже в 14 лет он прочитал все двадцать восемь томов французской «Энциклопедии». Особый интерес Андре проявлял к физико-математическим наукам. Но как раз в этой области отцовской библиотеки явно не хватало, и Андре начал посещать библиотеку Лионского колледжа, чтобы читать труды великих математиков.

В возрасте 13 лет Ампер представил в Лионскую академию свои первые работы по математике.

В 1789 году началась Великая французская буржуазная революция. Отца Ампера казнили Он остался без средств. Андре пришлось думать о средствах к существованию, и он решил переселиться в Лион, давать частные уроки математики до тех пор, пока не удастся устроиться штатным преподавателем в какое-либо учебное заведение.

Расходы на жизнь неуклонно росли. Несмотря на все старания и экономию, средств, заработанных частными уроками, не хватало. Наконец, в 1802 году Ампера пригласили преподавать физику и химию в Центральную школу старинного провинциального города Буркан-Бреса, в 60 километрах от Лиона. С этого момента началась его регулярная преподавательская деятельность, продолжавшаяся всю жизнь.

4 апреля 1803 года Ампер был назначен преподавателем математики Лионского лицея. В конце 1804 года Ампер покинул Лион и переехал в Париж, где он получил должность преподавателя знаменитой Политехнической школы.

В 1807 году Ампер был назначен профессором Политехнической школы. В 1808 году ученый получил место главного инспектора университетов. В период между 1809 и 1814 годами Ампер опубликовал несколько ценных работ по теории рядов.

Время расцвета научной деятельности Ампера приходится на 1814–1824 годы и связано, главным образом, с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики.

Практически до 1820 года основные интересы ученого сосредоточивались на проблемах математики, механики и химии. К его достижениям в области химии следует отнести открытие, независимо от Авогадро, закона равенства молярных объемов различных газов. Его по праву следует называть законом Авогадро — Ампера. Ученый сделал также первую попытку классификации химических элементов на основе сопоставления их свойств.

Что же касается математики, то именно в этой области он достиг результатов, которые и дали основание выдвинуть его кандидатуру в Академию по математическому отделению. Ампер всегда рассматривал математику как мощный аппарат для решения разнообразных прикладных задач физики и техники.

Вопросами физики в то время он занимался очень мало: известны лишь две работы этого периода, посвященные оптике и молекулярно-кинетической теории газов.

В 1820 году датский физик Г.-Х. Эрстед обнаружил, что вблизи проводника с током отклоняется магнитная стрелка. Так было открыто замечательное свойство электрического тока — создавать магнитное поле. Ампер подробно исследовал это явление. Новый взгляд на природу магнитных явлений возник у него в результате целой серии экспериментов. Уже в конце первой недели напряженного труда он сделал открытие не меньшей важности, чем Эрстед, — открыл взаимодействие токов.

18 сентября 1820 года он сообщил Парижской Академии наук о своем открытии пондеромоторных взаимодействий токов, которые он назвал электродинамическими. Точнее говоря, в этом своем первом докладе Ампер назвал эти действия «вольтаическими притяжениями и отталкиваниями», но потом стал именовать их «притяжениями и отталкиваниями электрических токов». В 1822 году он ввел термин — «электродинамический».

Тогда же он продемонстрировал свои первые опыты и заключил их следующими словами: «В связи с этим я свел все магнитные явления к чисто электрическим эффектам». На заседании 25 сентября он развил эти идеи далее, демонстрируя опыты, в которых спирали, обтекаемые током (соленоиды), взаимодействовали друг с другом как магниты.

Объяснение Ампера является его выдающимся вкладом в науку: не проводник, по которому течет ток, становится магнитом, а, наоборот, магнит представляет собой совокупность токов.

В самом деле, говорит Ампер, если мы предположим, что в магните присутствует совокупность круговых токов, текущих в плоскостях, точно перпендикулярных его оси, в одном и том же направлении, то ток, идущий параллельно оси магнита, окажется направленным под углом к этим круговым токам, что и вызовет электродинамическое взаимодействие, стремящееся сделать все токи параллельными и направленными в одну сторону. Если прямолинейный проводник закреплен, а магнит подвижен, то отклоняется магнит; если же магнит закреплен, а проводник подвижен, то движется проводник.

Как пишет в своей книге Марио Льоцци: «Он (Ампер. — Прим. авт.) подумал, что если магнит понимать как систему круговых параллельных токов, направленных в одну сторону, то спираль из металлической проволоки, по которой проходит ток, должна вести себя как магнит, т. е. должна принимать определенное положение под воздействием магнитного поля Земли и иметь два полюса. Опыт подтвердил предположения относительно поведения такой спирали под действием магнита, но не совсем ясны были результаты опыта, относящиеся к поведению спирали под действием магнитного поля Земли. Тогда Ампер решил взять для выяснения этого вопроса один-единственный виток проводника с током; оказалось, что виток ведет себя точно как магнитный листок.

Таким образом, обнаружилось непонятное явление: один-единственный виток ведет себя как магнитная пластина, а спираль, которую Ампер считал в точности эквивалентной системе магнитных пластинок, вела себя не совсем как магнит. Пытаясь разобраться, в чем тут дело, Ампер с удивлением обнаружил, что в электродинамических явлениях спиральный проводник ведет себя точно как прямолинейный проводник с теми же концами. Из этого Ампер заключил, что в отношении электродинамических и электромагнитных действий элементы тока можно складывать и разлагать по правилу параллелограмма. Поэтому элемент тока можно разложить на две составляющие, из которых одна направлена параллельно оси, а другая — перпендикулярно. Если суммировать результаты действия разных элементов спирали, то результирующая окажется эквивалентной прямолинейному току, идущему по оси, и системе круговых токов, расположенных перпендикулярно оси и направленных в одну сторону. Поэтому, чтобы спираль, по которой проходит ток, вела себя точно как магнит, нужно скомпенсировать действие прямолинейного тока. Этого Ампер, как известно, добился очень просто, выгнув вдоль оси концы проводника. Но все же существовало различие между спиралью, по которой проходит ток, и магнитом: полюса спирали находились только на концах, тогда как полюса магнита — во внутренних точках. Чтобы устранить и это последнее различие, Ампер оставил свою первоначальную гипотезу о токах, прямо перпендикулярных оси магнита, и принял, что они расположены в плоскостях, находящихся под разными углами к оси».

Новые идеи Ампера были поняты далеко не всеми учеными. Не согласились с ними и некоторые из его именитых коллег. Современники рассказывали, что после первого доклада Ампера о взаимодействии проводников с током произошел следующий любопытный эпизод. «Что же, собственно, нового в том, что вы нам сообщили? — спросил Ампера один из его противников. — Само собою ясно, что если два тока оказывают действие на магнитную стрелку, то они оказывают действие и друг на друга». Ампер не сразу нашелся, что ответить на это возражение. Но тут на помощь ему пришел Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на стрелку, однако же, они никак не действуют друг на друга, и потому ваше заключение ошибочно. Ампер открыл, по существу, новое явление, куда большего значения, чем открытие уважаемого мной профессора Эрстеда».

Несмотря на нападки своих научных противников, Ампер продолжал свои эксперименты. Он решил найти закон взаимодействия токов в виде строгой математической формулы и нашел этот закон, который носит теперь его имя. Так шаг за шагом в работах Ампера вырастала новая наука — электродинамика, основанная на экспериментах и математической теории. Все основные идеи этой науки, по выражению Максвелла, по сути дела, «вышли из головы этого Ньютона электричества» за две недели.

С 1820 по 1826 год Ампер публикует ряд теоретических и экспериментальных работ по электродинамике и почти на каждом заседании физического отделения Академии выступает с докладом на эту тему. В 1826 году выходит из печати его итоговый классический труд «Теория электродинамических явлений, выведенная исключительно из опыта».

Эффект взаимодействия проводов с током и магнитных полей сейчас используется в электродвигателях, в электрических реле и во многих электроизмерительных приборах.

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Когда луч солнца проходит через призму, то на экране позади нее возникает спектр. За двести лет к этому явлению привыкли. Если не вглядываться пристально, то кажется, что между отдельными частями спектра нет резких границ: красный непрерывно переходит в оранжевый, оранжевый в желтый и т. д.

Тщательнее других в 1802 году рассмотрел спектр английский врач и химик Уильям Хайд Волластон (1766–1828). Волластон обнаружил при этом несколько резких темных линий, которые без видимого порядка пересекали спектр Солнца в разных местах. Ученый этим линиям особого значения не придал. Он полагал, что их появление вызвано либо особенностями призмы, либо особенностями источника света, либо другими какими-то побочными причинами. Сами линии представляли для него интерес только потому, что они отделяли друг от друга цветные полосы спектра. Позднее эти темные линии назвали фраунгоферовыми, увековечив имя их настоящего исследователя.

Иосиф Фраунгофер (1787–1826) в 11 лет, после смерти родителей, пошел в ученье к шлифовальных дел мастеру. Из-за работы на школу времени оставалось мало. До 14 лет Иосиф не умел ни читать, ни писать. Но не было счастья, да несчастье помогло. Однажды дом хозяина рухнул. Когда же Иосифа извлекали из-под обломков, мимо проезжал наследный принц. Он пожалел юношу и вручил ему значительную сумму денег. Денег хватило юноше, чтобы купить себе шлифовальный станок и начать учиться.

Фраунгофер в заштатном городке Бенедиктбейрене учился шлифовать оптические стекла.

В своем предисловии к собранию сочинений Фраунгофера Э. Лом-мель так подытоживал его вклад в практическую оптику. «Благодаря введению своих новых и усовершенствованных методов, механизмов и измерительных инструментов для вращения и полировки линз… ему удалось получить достаточно большие образцы флинтгласа и кронгласа без всяких прожилок. Особенно большое значение имел найденный им метод точного определения формы линз, который совершенно изменил направление развития практической оптики и довел ахроматический телескоп до такого совершенства, о котором раньше нельзя было и мечтать».

Чтобы произвести точные измерения дисперсии света в призмах, Фраунгофер в качестве источника света использовал свечу или лампу. При этом он обнаружил в спектре яркую желтую линию, известную теперь как желтая линия натрия. Вскоре установили, что эта линия находится всегда в одном и том же месте спектра, так что ее очень удобно использовать для точного измерения показателей преломления. После этого, говорит Фраунгофер в своей первой работе 1815 года: «…я решил выяснить, можно ли видеть подобную светящуюся линию в солнечном спектре. И я с помощью телескопа обнаружил не одну линию, а чрезвычайно большое количество вертикальных линий, резких и слабых, которые, однако, оказались темнее остальной части спектра, а некоторые из них казались почти совершенно черными».

Всего он насчитал их там 574. Фраунгофер дал названия и указал их точное местоположение в спектре. Обнаружилось, что положение темных линий было строго неизменным, в частности, всегда в одном и том же месте желтой части спектра появлялась резкая двойная линия. Ее Фраунгофер назвал линией О. Ученый также обнаружил, что в спектре пламени спиртовки на том же самом месте, где и темная линия О в спектре Солнца, всегда присутствует яркая двойная желтая линия. Лишь много лет спустя стало понятно значение этого открытия.

Продолжая свои исследования темных линий в спектре Солнца, Фраунгофер понял главное: их причина не в оптическом обмане, а в самой природе солнечного света. В результате дальнейших наблюдений он обнаружил подобные линии в спектре Венеры и Сириуса.

Одно открытие Фраунгофера, как выяснилось позднее, оказалось особенно важным. Речь идет о наблюдении над двойной Д-линией. В 1814 году, когда ученый опубликовал свои исследования, на это наблюдение особого внимания не обратили. Однако спустя 43 года Вильям Сван (1828–1914) установил, что двойная желтая линия О в спектре пламени спиртовки возникает в присутствии металла натрия. Увы, как и многие до него, Сван не осознал значения этого факта. Он так и не сказал решающих слов: «Эта линия принадлежит металлу натрию».

В 1859 году к этой простой и важной мысли пришли два ученых: Густав Роберт Кирхгоф (1824–1887) и Роберт Вильгельм Бунзен (1811–1899). В университетской лаборатории Гейдельберга они поставили следующий опыт. До них через призму пропускали либо только луч Солнца, либо только свет от спиртовки. Ученые решили пропустить их одновременно. В результате они обнаружили явление, о котором рассказывает подробно в своей книге Л.И. Пономарев: «Если на призму падал только луч Солнца, то на шкале спектроскопа они видели спектр Солнца с темной линией О на своем обычном месте. Темная линия по-прежнему оставалась на месте и в том случае, когда исследователи ставили на пути луча горящую спиртовку. Но когда на пути солнечного луча они ставили экран и освещали призму только светом спиртовки, то на месте темной линии О четко проявлялась яркая желтая линия О натрия. Кирхгоф и Бунзен убирали экран — линия О вновь становилась темной.

Потом они луч Солнца заменяли светом от раскаленного тела — результат был всегда тот же: на месте ярко-желтой линии возникала темная. То есть всегда пламя спиртовки поглощало те лучи, которые оно само испускало.

Чтобы понять, почему это событие взволновало двух профессоров, проследим за их рассуждениями. Ярко-желтая линия О в спектре пламени спиртовки возникает в присутствии натрия. В спектре Солнца на этом же месте находится темная линия неизвестной природы.

Спектр луча от любого раскаленного тела — сплошной, и в нем нет темных линий. Однако если пропустить такой луч через пламя спиртовки, то его спектр ничем не отличается от спектра Солнца — в нем также присутствует темная линия и на том же самом месте. Но природу этой темной линии мы уже почти знаем, во всяком случае, мы можем догадываться, что она принадлежит натрию.

Следовательно, в зависимости от условий наблюдения линия О натрия может быть либо ярко-желтой, либо темной на желтом фоне. Но в обоих случаях присутствие этой линии (все равно какой — желтой или темной!) означает, что в пламени спиртовки есть натрий.

А поскольку такая линия спектра пламени спиртовки в проходящем свете совпадает с темной линией О в спектре Солнца, то, значит, и на Солнце есть натрий. Причем он находится в газовом внешнем облаке, которое освещено изнутри раскаленным ядром Солнца».

Короткая заметка в две страницы, написанная Кирхгофом в 1859 году, содержала сразу четыре открытия:

— каждый элемент имеет свой линейчатый спектр, а значит строго определенный набор линий;

— подобные линии можно использовать для анализа состава веществ не только на Земле, но и на звездах;

— Солнце состоит из горячего ядра и сравнительно холодной атмосферы раскаленных газов;

— на Солнце есть элемент натрий.

Первые три положения вскоре подтвердились, в частности, гипотеза о строении Солнца. Экспедиция Французской академии наук в 1868 году во главе с астрономом Жансеном побывала в Индии. Она обнаружила, что при полном солнечном затмении, в момент, когда его раскаленное ядро закрыто тенью Луны и светит только корона, — все темные линии в спектре Солнца вспыхивают ярким светом.

Второе положение Киргхоф и Бунзен не только блестяще подтвердили, но и воспользовались им для открытия двух новых элементов: рубидия и цезия.

Так родился спектральный анализ, с помощью которого теперь можно узнавать химический состав далеких галактик, измерять температуру и скорость вращения звезд и многое другое.

Позднее для приведения элементов в возбужденное состояние стали использовать чаще всего электрическое напряжение. Под воздействием напряжения элементы излучают свет, характеризующийся определенными длинами волн, т. е. имеющий определенную окраску. Этот свет расщепляется в спектральном аппарате (спектроскопе), главной частью которого является стеклянная или кварцевая призма. При этом образуется полоса, состоящая из отдельных линий, каждая из которых является характерной для определенного элемента.

Например, и раньше было известно, что минерал клевеит при его нагревании выделяет газ, похожий на азот. Этот газ при его исследовании с помощью спектроскопа оказался новым, еще неизвестным благородным газом. При электрическом возбуждении он испускал линии, которые уже раньше были обнаружены при анализе лучей Солнца с помощью спектроскопа. Это был своеобразный случай, когда элемент, открытый ранее на Солнце, был обнаружен Рамзаем и на Земле. Ему было присвоено название гелий, от греческого слова «гелиос» — Солнце.

Сегодня известно два вида спектров: сплошной (или тепловой) и линейчатый.

Как пишет Пономарев, «тепловой спектр содержит все длины волн, излучается он при нагревании твердых тел и не зависит от их природы.

Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паров (когда малы взаимодействия между атомами), и — что особенно важно — этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов.

То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все, но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году, благодаря работам знаменитого английского астрофизика Нормана Локьера (1836–1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!»

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

Англичанин Гэмфри Дэви (1788–1829) стал профессором в 23 года, заслужил много научных и общественных наград, да к тому же прибавил к своему имени обращение «сэр», был избран президентом Лондонского Королевского общества.

За свою долгую жизнь в науке он провел много удачных экспериментов. В начале девятнадцатого века Дэви удалось расплавить трением лед при температуре ниже нуля. Позднее опыт повторил русский ученый Петров. Бенджамен Томпсон (1753–1814), эмигрировавший из Америки после победоносного завершения Войны за независимость и получивший в Баварии титул графа Румфорда, опубликовал в 1798 году результаты опытов по сверлению пушечных стволов. В одном из его опытов при 960 оборотах бура температура просверливаемого цилиндра поднялась на 37 градусов Цельсия.

Дэви пришел к выводу, что теория теплорода несовместима как с опытами Румфорда, так и с его собственными, и выдвинул кинетическую теорию тепла, согласно которой теплота представляет колебательное движение частиц тела, причем для газов и жидкостей он допускал и вращательное движение частиц. К колебательной теории тепла примкнул и Юнг.

И все же теория теплорода продолжала господствовать. Два наиболее фундаментальных сочинения по теории тепла, относящиеся к рассматриваемому периоду, — сочинения, которые по праву вошли в золотой фонд научной литературы, — основаны на концепции теплорода. Первое из этих сочинений, «Аналитическая теория тепла» Фурье, вышло в 1822 году в Париже и представляет собой итог его многолетних исследований в области математической физики.

Другое сочинение принадлежало сыну известного французского математика Лазара Карно Сади Карно. Николо Леонар Сади Карно (1796–1832) учился в Политехнической школе. С 1814 года он работает военным инженером, а с 1819-го состоит лейтенантом при генеральном штабе. Как сын республиканского министра, находящегося в изгнании, Карно не мог продвигаться по службе и в 1828 году вышел в отставку. Он умер от холеры. Сочинение «Размышление о движущей силе огня», вышедшее в 1824 году, было единственной законченной работой Карно.

Карно пишет: «Тепло — не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает теплота, в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.

Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, то есть вызывает то один род движения, то другой, но никогда не исчезает.

По некоторым представлениям, которые сложились у меня относительно теории тепла, создание единицы силы требует затраты 2,7 единиц тепла».

По поводу этих строк знаменитый французский ученый Анри Пуанкаре восхищенно воскликнет в 1892 году: «Можно ли яснее и точнее высказать закон сохранения энергии?»

Будучи инженером, Карно занимался расчетом и строительством водяных двигателей. Но так как к тому времени по всей Франции стали все чаще применять паровые машины, то молодой инженер увлекся созданием теории тепловых машин.

Тогда еще в науке господствовали взгляды о том, что теплота является веществом. Но Сади Карно решил ответить на один из труднейших вопросов физики; при каких обязательных условиях возможно превращение теплоты в работу? Хорошо знакомый с расчетом водяных двигателей, Карно уподобил теплоту воде.

Он прекрасно знал: для того, чтобы водяная мельница работала, необходимо одно условие — вода должна падать с высокого уровня на низкий. Карно предположил: чтобы теплота могла выполнять работу, она тоже должна переходить с высокого уровня на низкий, и разность высот для воды соответствует разности температур для теплоты.

В 1824 году Сади Карно высказал мысль, благодаря которой он вошел в историю: для производства работы в тепловой машине необходима разность температур, необходимы два источника теплоты с различными температурами. Это утверждение в теории Карно является главным и называется принципом Карно. На основе выведенного им принципа Карно придумал цикл идеальной тепловой машины, которую не может превзойти никакая реальная машина.

Идеальная машина, по Карно, представляла собой простой цилиндр с поршнем. Нижняя стенка цилиндра обладает идеальной теплопроводностью, его можно поставить на горячую поверхность, например, на поверхность нагревателя, наполненного смесью расплавленного и твердого свинца, или на поверхность холодильника, например, со смесью воды и льда. Оба источника теплоты бесконечно велики.

Второй закон термодинамики утверждает, что вечный двигатель второго рода невозможен. Это утверждение является пересказом принципа Карно, и, следовательно, коэффициент полезного действия машины, работающей по циклу Карно, не может зависеть от вещества, используемого в цикле.

Карно описал цикл работы идеальной тепловой машины, показал, как можно рассчитать ее максимальный КПД.

Для этого необходимо лишь знать самую высокую и самую низкую температуру водяного пара (или любого другого теплоносителя, как отметил Карно), используемого в данной машине. Разность между этими температурами, деленная на значение высокой температуры, равна КПД машины. Температуры при этом необходимо выражать в градусах абсолютной шкалы Кельвина. Это уравнение называется вторым началом термодинамики, и ему подчиняется вся техника.

Расчет по формуле Карно показал, что первые тепловые машины не могли иметь КПД выше 7–8 процентов, а если учесть неизбежные утечки тепла в атмосферу, то полученное значение 2–3 процента следует признать значительным достижением…

Довольно быстро наряду с паром, как и предсказывал Карно, в турбинах стали использовать и газ, который можно нагреть до высокой температуры. Если температура горячего газа в турбине 800 градусов Кельвина (527 градусов Цельсия), а холодильник уменьшает ее до 300 градусов Кельвина, то максимальный КПД машины, даже в случае работы по идеальному циклу Карно, не может быть выше 62 процентов. Неизбежные тепловые потери приводят, как всегда, к уменьшению и этой цифры. У лучших образцов турбин, установленных на современных электростанциях, КПД составляет 35–40 процентов.

Карно указал на специфическую особенность теплоты. Теплота создает механическую работу только при тепловом «перепаде», т. е. наличии разности температур. Этой разностью температур определяется коэффициент полезного действия тепловых машин. Поль Клапейрон в 1834 году развил мысли Карно и ввел очень ценный в термодинамических исследованиях графический метод.

В 1850 году вышла первая работа Рудольфа Клаузиуса (1822–1888) «О движущей силе теплоты», в которой вновь после Карно и Клапейрона был поставлен вопрос об условиях превращения тепла в работу. Принцип сохранения энергии, требуя только количественного равенства, никаких условий для качественного превращения энергий не налагает. В этой работе Клаузиус разбирает теорию Карно с новой точки зрения, с точки зрения механической теории тепла.

Работа Карно была незадолго перед этим воскрешена из праха забвения Уильямом Томсоном (Лорд Кельвин) (1824–1907). «Томсон признает, — пишет в своей книге „История физики“ П.С.Кудрявцев, — что взгляд Карно, что теплота в машинах только перераспределяется, но не потребляется, неверен». Но одновременно он указывает, что если отказаться от выводов Карно касательно условий превращения тепла в работу, то встречаются непреодолимые трудности. Томсон делает вывод, что теория тепла требует серьезной перестройки и дополнительного экспериментального исследования. В своей работе Клаузиус полагает, что наряду с первым началом, гласящим, «что во всех случаях, когда теплота производит работу, потребляется количество тепла, пропорциональное полученной работе», следует сохранить в качестве второго начала положение Карно, что работа производится при переходе тепла от более нагретого тела к холодному. Это положение, по мнению Клаузиуса, согласуется с природой тепла, в которой всегда наблюдается переход тепла «сам собою» от горячего тела к холодному, а не наоборот.

В качестве второго начала Клаузиус и выдвигает постулат: «Теплота не может „сама собою“ перейти от более холодного тела к более теплому». Слова «сама собой» не должны означать, что теплоту вообще нельзя перевести от холодного тела к нагретому (иначе не были бы возможны холодильные машины). Они означают, что не может быть таких процессов, единственным результатом которых был бы упомянутый переход, без соответствующих других «компенсационных» изменений.

Вслед за этой работой почти одновременно в 1851 году появились три доклада Томсона. Рассмотрев вопрос о превращении различных форм энергии с количественной стороны, Томсон указывает, что при одинаковой количественной величине не все виды энергии способны к превращению в одинаковой степени. Например, существуют условия, при которых превращение тепла в работу невозможно. Постулат Томсона гласит:

«При посредстве неодушевленного тела невозможно получить механического действия от какой-либо массы вещества путем охлаждения ее температуры ниже температуры самого холодного из окружающих тел».

Развивая это положение, Томсон в работе 1857 года приходит к известному выводу о господствующей в природе тенденции к переходу энергии в теплоту и к выравниванию температур, что приводит в конечном счете к снижению работоспособности всех тел до нуля, к тепловой смерти.

В 1854 году Клаузиус в статье «Об измененной форме второго начала механической теории тепла» доказывает теорему Карно, исходя из своего постулата, и, обобщая ее, дает математическое выражение второго начала в виде неравенства для круговых процессов.

В последующих работах Клаузиус вводит функцию состояния «энтропию» и дает математическую формулировку тенденции, усмотренной Томсоном, в виде положения «Энтропия вселенной стремится к максимуму». Так, в физике наряду с «царицей мира» (энергией) появилась ее «тень» (энтропия). Сам Клаузиус в конце своей работы 1865 года пишет: «Второе начало в том виде, какой я ему придал, гласит, что все совершающиеся в природе превращения в определенном направлении, которое я принял в качестве положительного, могут происходить сами собою, т. е. без компенсации, но в обратном, т. е. в отрицательном, направлении они могут происходить только при условии, если они компенсируются происходящими одновременно с ними положительными превращениями».

Применение этого начала ко всей Вселенной приводит к заключению, на которое впервые указал Уильям Томсон. В самом деле, если при всех происходящих во Вселенной изменениях состояния превращения в одном определенном направлении постоянно преобладают по своей величине над превращениями в противоположном направлении, то «общее состояние Вселенной должно все больше и больше изменяться в первом направлении, и, таким образом, оно должно непрерывно приближаться к предельному состоянию».

ЗАКОН ОМА

Проводник — это просто пассивная составная часть электрической цепи. Такое мнение превалировало вплоть до сороковых годов девятнадцатого столетия. Так зачем зря тратить время на его исследование?

Одним из первых ученых, занявшихся вопросом проводимости проводников, был Стефано Марианини (1790–1866). К своему открытию он пришел случайно, изучая напряжение батарей. Стефано заметил, что с увеличением числа элементов Вольтова столба электромагнитное воздействие на стрелку не увеличивается заметным образом. Это заставило Марианини сразу же подумать, что каждый вольтов элемент представляет собой препятствие для прохождения тока. Он провел опыты с парами «активными» и «неактивными» (т. е. состоящими из двух медных пластинок, разделенных влажной прокладкой) и опытным путем нашел отношение, в котором современный читатель узнает частный случай закона Ома, когда сопротивление внешней цепи не принимается во внимание, как это и было в опыте Марианини.

Ом признавал заслуги Марианини, хотя его труды и не стали непосредственной помощью в работе.

Георг Симон Ом (1789–1854) родился в Эрлангене, в семье потомственного слесаря. Роль отца в воспитании мальчика была огромной, и, пожалуй, он всем тем, чего добился в жизни, обязан отцу. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом и представляла собой учебное заведение, соответствующее тому времени.

Успешно окончив гимназию, Георг весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

Проучившись три семестра, Ом принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта. В 1809 году Георгу было предложено освободить место и принять приглашение на должность преподавателя математики в город Нейштадт. Другого выхода не было, и к Рождеству он перебрался на новое место. Но мечта окончить университет не покидает Ома. В 1811 году он возвращается в Эрланген. Самостоятельные занятия Ома были настолько плодотворными, что он в том же году смог окончить университет, успешно защитить диссертацию и получить степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

Преподавательская работа вполне соответствовала желаниям и способностям Ома. Но, проработав всего три семестра, он по материальным соображениям, которые почти всю жизнь преследовали его, вынужден был подыскивать более оплачиваемую должность.

Королевским решением от 16 декабря 1812 года Ом был назначен учителем математики и физики школы в Бамберге. В феврале 1816 года реальная школа в Бамберге была закрыта. Учителю математики предложили за ту же плату проводить занятия в переполненных классах местной подготовительной школы.

Потеряв всякую надежду найти подходящую преподавательскую работу, отчаявшийся доктор философии неожиданно получает предложение занять место учителя математики и физики в иезуитской коллегии Кельна. Он немедленно выезжает к месту будущей работы.

Здесь, в Кельне, он проработал девять лет. Именно здесь он «превратился» из математика в физика. Наличие свободного времени способствовало формированию Ома как физика-исследователя. Он с увлечением отдается новой работе, просиживая долгие часы в мастерской коллегии и в хранилище приборов.

Ом занялся исследованиями электричества. Он начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока.

Как пишет В.В. Кошманов, «Ом знал о появлении работ Барлоу и Беккереля, в которых были описаны экспериментальные поиски закона электрических цепей. Знал он и о результатах, к которым пришли эти исследователи. Хотя и Ом, и Барлоу, и Беккерель в качестве регистрирующего прибора использовали магнитную стрелку, соблюдали особую тщательность в соединении цепи и источник электрического тока в принципе был одной и той же конструкции, однако полученные ими результаты были различными. Истина упорно ускользала от исследователей.

Необходимо было, прежде всего, устранить самый значительный источник погрешностей, каким, по мнению Ома, была гальваническая батарея.

Уже в своих первых опытах Ом заметил, что магнитное действие тока при замыкании цепи произвольной проволокой уменьшается со временем…

Это снижение практически не прекращалось с течением времени, и ясно было, что заниматься поиском закона электрических цепей при таком положении дел бессмысленно. Нужно было или использовать другой тип генератора электрической энергии из уже имеющихся, или создавать новый, или разрабатывать схему, в которой изменение ЭДС не сказывалось бы на результатах опыта. Ом пошел по первому пути».

После опубликования первой статьи Ома Поггендорф посоветовал ему отказаться от химических элементов и воспользоваться лучше термопарой медь — висмут, незадолго до этого введенной Зеебеком. Ом прислушался к этому совету и повторил свои опыты, собрав установку с термоэлектрической батареей, во внешнюю цепь которой включались последовательно восемь медных проволок одинакового диаметра, но разной длины. Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке,отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении; сила тока считалась пропорциональной углу, на который закручивалась нить.

Ом пришел к выводу, что результаты опытов, проведенных с восемью различными проволоками, могут быть выражены уравнением — частное от а, деленного на х + в, где х означает интенсивность магнитного действия проводника, длина которого равна х, а а и в — константы, зависящие соответственно от возбуждающей силы и от сопротивления остальных частей цепи.

Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к приведенной выше формуле, которая очень просто переходит в известную нам, если заменить х силой тока, а — электродвижущей силой и в + х — общим сопротивлением цепи.

Ом проводит опыты и с четырьмя латунными проволоками — результат тот же. «Отсюда следует важный вывод, — пишет Кошманов, — что найденная Омом формула, связывающая физические величины, характеризующие процесс протекания тока в проводнике, справедлива не только для проводников из меди. По этой формуле можно рассчитывать электрические цепи независимо от материала проводников, используемых при этом…

…Кроме того, Ом установил, что постоянная в не зависит ни от возбуждающей силы, ни от длины включенной проволоки. Этот факт дает основание утверждать, что величина в характеризует неизменяемую часть цепи. А так как сложение в знаменателе полученной формулы возможно только для величин одинаковых наименований, то, следовательно, постоянная в, заключает Ом, должна характеризовать проводимость неизменяемой части цепи.

В последующих опытах Ом изучал влияние температуры проводников на их сопротивление. Он вносил исследуемые проводники в пламя, помещал их в воду с толченым льдом и убеждался, что электрическая проводимость проводников уменьшается с повышением температуры и увеличивается с понижением ее».

Получив свою знаменитую формулу, Ом пользуется ею для изучения действия мультипликатора Швейггера на отклонение стрелки и для изучения тока, который проходит во внешней цепи батареи элементов, в зависимости от того, как они соединены — последовательно или параллельно. Таким образом, он объясняет, чем определяется внешний ток батареи, — вопрос, который был довольно темным для первых исследователей.

Появляется в свет знаменитая статья Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии».

Появление статьи, содержащей результаты экспериментальных исследований в области электрических явлений, не произвело впечатления на ученых. Никто из них даже не мог предположить, что установленный Омом закон электрических цепей представляет собой основу для всех электротехнических расчетов будущего.

В 1827 году в Берлине он опубликовал свой главный труд «Гальваническая цепь, разработанная математически».

Ом вдохновлялся в своих исследованиях работой «Аналитическая теория тепла» (1822) Жана Батиста Фурье (1768–1830). Ученый понял, что механизм «теплового потока», о котором говорит Фурье, можно уподобить электрическому току в проводнике. И подобно тому, как в теории Фурье тепловой поток между двумя телами или между двумя точками одного и того же тела объясняется разницей температур, точно так же Ом объясняет разницей «электроскопических сил» в двух точках проводника возникновение электрического тока между ними.

Ом вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», по выражению самого ученого, электропроводности и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи.

Но теоретические исследования Ома также остались незамеченными Теоретическая работа Ома разделила судьбу работы, содержащей его экспериментальные исследования. Научный мир по-прежнему выжидал. Только в 1841 году работа Ома была переведена на английский язык, в 1847 году — на итальянский, в 1860 году — на французский.

Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом Ом стал лишь вторым ученым Германии, удостоенным такой чести.

Очень эмоционально отозвался о заслугах немецкого ученого его американский коллега Дж Генри «Когда я первый раз прочел теорию Ома, — писал он, — то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак».

О значении исследований Ома точно сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году «Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы. Ом вырвал у природы так долго скрываемую тайну и передал ее в руки современников».

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

Майкл Фарадей (1791–1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет.

Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами. Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности.

Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика. Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока. Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода.

В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики — он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость.

В 1824 году Фарадей сделал несколько открытий в области физики. Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках».

Многие из этих работ могли сами по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.

По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела. На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой — с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но Фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее. Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение. Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились. Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока.

Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа? Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток. Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая — вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи — на этот раз: уже под влиянием магнетизма. Таким образом, здесь впервые магнетизм был превращен в электричество.

Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда возбуждался ток в момент намагничивания и размагничивания железа. Затем Фарадей вносил в проволочную спираль стальной магнит — приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных, токов, действовал совершенно так же, как и гальванический ток.

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на; то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним. В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление. Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток. Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения. Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток. И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра.

Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя». Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804–1861) дал правило для определения направления индукционного тока.

«Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, — отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. — Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания.

Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл — творец законченной математической теории электромагнитного поля.

Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл. При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь — возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле.

Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток — это просто прибор, позволяющий обнаружить электрическое поле. Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения.

А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире…

ЗАКОН МИНИМУМА

Все животные, а также и человек питаются пищей либо растительного, либо животного происхождения. Поэтому вопрос о том, откуда именно растения берут свое питание, принадлежит к вопросам величайшего значения.

«Уже давно над этим вопросом задумывались лучшие исследователи, — пишет З.Шпаусус. — Давно обращало на себя внимание то обстоятельство, что растение в течение своей жизни произрастает из ничтожного зернышка семени до своей нормальной величины и при этом обнаруживается громаднейший привес. Аристотель считал, что растения поглощают из почвы необходимые материалы для своего построения в их окончательной форме, так что не встречается необходимости в каких-либо преобразованиях этих материалов внутри их организма. В 1600 году Ван-Гельмонт своим опытом сумел доказать неправильность этих предположений. Он отвесил в горшки 200 фунтов сухой земли и воткнул в нее ветку вербы, вес которой был равен 5 фунтам. При обильной поливке водой эта ветвь проявляла себя как целая верба: она пустила корни и на протяжении дальнейших пяти, лет выросла в порядочное дерево весом в 164 фунта. Особенно удивило Ван-Гельмонта то обстоятельство, что земля при этом потеряла лишь 60 граммов своего первоначального веса. Таким образом, земля никоим образом не могла быть признана единственным поставщиком питательных материалов для растущего дерева, ибо в этом случае 159 фунтов привеса ветки вербы должны были бы соответствовать равновеликой убыли веса земли.

Ингенгауз и де Соссюр в конце XVIII века были учеными, впервые разработавшими современную теорию питания растений, согласно которой растения поглощают двуокись углерода из воздуха, что и имеет своим результатом более значительное увеличение веса сухого вещества растений, чем этого можно было бы ожидать на основании количеств фактически поглощенной ими двуокиси углерода. Поэтому приходится допустить, что из двуокиси углерода и воды образуется новое органическое вещество. Названные ученые уже в то время считали, что необходимо и присутствие в почве некоторых солей.

Как бы своевременны и правильны во многих отношениях ни были эти выводы, они все же оказались забытыми в начале XIX века и были заменены гумусовой теорией, которая главным образом восходит к Таеру, бывшему ее наиболее усердным защитником».

Точка зрения Таера, основателя учения о севообороте, заключалась в том, что плодородие почвы зависит исключительно от гумуса. Тот является единственным источником, снабжающим растения питательными материалами. В гумусе — рыхлой темной земле — содержится много углерода — главной составной части всех растений. По мнению защитников гумусовой теории, в нем содержатся все необходимые для жизни растений вещества в уже подготовленной форме. Соли не являются, по их мнению, особенно важными, так что относительно их происхождения и значения не стоило особенно задумываться. Гумус и вода — вот источники питания растений.

Это учение было так понятно и убедительно, что в течение длительного времени в его справедливости никто и не сомневался. Один из тех, кто все же усомнился в нем, был молодой профессор химии Юстус Либих (1803–1873). Опираясь на собранные прежде факты и вместе с тем на результаты своих работ, Либих положил начало новой эпохе в сельском хозяйстве.

В своей книге «Сельскохозяйственная химия», выпущенной в 1840 году, прежде всего Либих исследовал, из каких составных частей строит растение свой организм и откуда оно добывает эти вещества. «На основе многочисленных анализов, — пишет З.Шпаусус, — ему удалось установить, что в каждом растении присутствуют десять элементов, которые все имеют величайшее значение для его нормального роста. Это следующие элементы: углерод, водород, кислород, азот, кальций, калий, фосфор, сера, магний и железо. Добавим при этом, что в настоящее время известен целый ряд элементов, присутствующих в растениях лишь в виде следов, но, тем не менее, играющих важную роль в их жизнедеятельности. Естественно, все эти вещества содержатся в организме растений не в той форме, в которой они известны в качестве химических элементов, но они являются составными частями соединений, из которых построено растение. Откуда же растения получают эти вещества?

Мы уже видели, что углерод, поглощаемый листьями в виде двуокиси углерода, поступает из атмосферы, в то время как вода поставляет растению водород и кислород. Но как обстоит дело с азотом, являющимся составной частью необходимых для жизни белков? Правда, в атмосфере азот содержится в колоссальном количестве, ибо она ведь на 78 процентов состоит из этого элемента, но лишь немногие растения способны поглощать и использовать азот из воздуха. К таким растениям относятся так называемые бобовые растения, в том числе бобы, горох и люпин. Легко убедиться в том, что в их корнях можно обнаружить клубеньки, скрывающие внутри себя бактерии. Клубеньковые бактерии обладают способностью переводить азот из воздуха в органические азотистые соединения, которые затем могут усваиваться соответствующими растениями. Растение дает возможность жить бактериям, а они за это готовят для своих хозяев доступный для усваивания азот. Этот процесс взаимопомощи обозначают в биологии как симбиоз.

Однако этот процесс представляет собой только исключение. Подавляющее большинство растений должно черпать азотистые соединения непосредственно из почвы, ибо они не могут усваивать непосредственно азот из воздуха. Либих был того мнения, что газообразного аммиака, образующегося при гниении органических соединений и поэтому всегда присутствующего в ничтожном количестве в атмосфере, вполне достаточно для покрытия потребности растений в азоте. Аммиак растворяется в каплях дождя, вступает во взаимодействие с двуокисью углерода с образованием карбоната аммония и в виде названной соли попадает в почву, из которой он и может быть поглощен корнями растений.

Шесть остальных элементов содержатся в виде солей в почве. Будучи растворены в воде, они могут проникать в растения через их корни. Правда, они присутствуют в почве в ограниченном количестве, однако животные и растения при распаде их остатков возвращают обратно почве те соли, которые они получили из нее во время их роста. После этого соли снова могут служить растениям питательными веществами.

На этом заканчивается круговорот, связывающий мертвую и живую природу. Растение берет из почвы и из воздуха неорганические вещества и строит из них свой организм, состоящий из органических соединений. Это растительное вещество составляет пищу животных и человека и в физиологических выделениях, а также после гибели в виде трупов этих существ поступает в почву и превращается в неорганические исходные вещества. И при этом круговороте растениям принадлежит главная роль, ибо только они способны использовать неорганические строительные материалы».

Таким образом, десять элементов имеют важнейшее значение для жизни растений. Достаточно отсутствие одного, чтобы растение погибло. Плодородие почвы всегда зависит от того элемента, который находится в почве в минимальном количестве. Это — закон, который имеет для практического сельского хозяйства в высшей степени важное значение. Либих назвал этот закон — «законом минимума». Конечно же, не надо забывать, что наряду с питательными солями существует еще и целый ряд других факторов, как водный режим почвы, температура и т. д., которые также оказывают влияние на плодородие почвы.

Но как объяснить постоянно понижающееся плодородие пахотных земель? Либих подробно разъясняет. Если земледелец возвратит обратно в почву в виде навоза все питательные вещества, которые были извлечены из почвы растениями, то содержание питательных солей в почве останется тем же самым и плодородие его участка не понизится.

Однако если он продаст часть своих продуктов в город, то питательные соли окажутся утраченными для его участка и в будущем году они уже не будут находиться в распоряжении произрастающих на этом участке растений. При повторении такого процесса из года в год урожаи должны будут с каждым годом ухудшаться.

Либих утверждал: «Основным принципом земледелия следует считать требование, чтобы почве в полной мере было возвращено все то, что у нее было взято. В какой форме будет осуществлен этот возврат, в виде ли экскрементов животных или в виде золы или костей, — это более или менее безразлично. Наступает время, когда пашня и каждое растение будет обеспечено необходимым для него удобрением, которое будет изготовляться на химических заводах». Эти слова Либиха оправдались за истекшее время тысячу раз, но в его эпоху они неоднократно служили поводом для издевательств и острот.

«Вот что я вам скажу, коллега: я снова убеждаюсь в том, что передо мной лежит самая бесстыдная книга из всех, которые когда-либо попадали ко мне в руки. Знакомы ли вы, собственно говоря, с ее содержанием?» — с великим раздражением оценивал фон Моль, профессор Тюбингенского университета, лежавшую перед ним книгу Либиха. «Оказывается, уже не земле растительный мир обязан своим питанием, нет, растения питаются воздухом, водой и так называемыми питательными солями, которые они разыскивают в почве! Поразительно, как он еще находит хоть какое-нибудь объяснение необходимости обработки земли. Но может быть, он придет даже к тому, что земля вовсе и не нужна земледельцу и что крестьянин сможет выращивать свой хлеб в стеклянных сосудах. Вот, посмотрите, в этой газете он может прочитать единственно правильный ответ на свою чепуху!»

Фриц Рейтер в сочинении «Мой жизненный путь» откровенно издевается над Либихом: «И эта эпоха ознаменовалась значительным развитием сельского хозяйства. Профессор Либих выпустил для крестьян совершенно бессмысленную книгу… Можно было прямо-таки с ума сойти от этих терминов. Однако тот, кто был готов остаться без гроша в кармане, выполняя все советы, содержавшиеся в этой книге, и кто в то же время желал сунуть свой нос в науку, тот приобретал себе эту книгу и сидел над ней до тех пор, пока постепенно голова его не становилась одураченной ее содержанием. И когда он доходил до такого состояния, он начинал раздумывать над тем, является ли гипс веществом раздражающим или питательным (для клевера, а не для человека!) и воняет ли навоз вследствие выделения из него нашатырного спирта или вследствие того, что он по самой своей природе является вонючим веществом».

Если не хватает естественных удобрений, необходимо для покрытия расходов питательных солей вносить в почву минеральные удобрения. Так рассуждал Либих относительно производства своего «патентного удобрения». Углерод, водород и кислород растение добывает себе в достаточном количестве естественным путем. Либих считал возможным утверждать то же самое и относительно азота. В магнии, железе и сере растения нуждаются лишь в незначительной степени, и они имеются в почве в очень значительном количестве. Внесение кальциевых удобрений не составляет больших затруднений, ибо известковые мергеля имеются в исключительном изобилии. Иначе обстоит дело с калием и фосфором. В этом отношении питательные запасы почвы должны быть пополнены удобрительными солями. Оба эти элемента содержатся и в «патентном удобрении» Либиха.

Одна английская фирма взялась за производство этого удобрения в больших масштабах. Однако на полях, удобренных этими солями, не было отмечено существенного повышения урожая. Неужели минеральные соли все же не влияют никак на рост растений, неужели его учение ошибочно? Это были тяжелые времена, которые должны были пережить Либих и его сторонники.

Много лет прошло, прежде чем Либих понял причину неуспеха своего удобрения. При производстве «патентного удобрения» он добивался переведения своих калийных и фосфорных удобрений в форму нерастворимых в воде соединений. Таким образом, Либих хотел избежать того, чтобы его удобрительные соли уже при первом же дожде вымывались из почвы в более глубокие ее слои. Но превращая эти соли в нерастворимые в воде соединения, он лишь добился того, что они стали неусвояемыми для растений, так как растения могут поглощать только растворенные соли. Благодаря этому все удобрения оказались введенными напрасно. Поняв причину отрицательных результатов внесения таких удобрений, ученый исправил ошибку.

Либиху пришлось также признать, что он ошибался, предполагая, что содержание газообразного аммиака в воздухе достаточно для роста растений. Калий, фосфор, азот и известь — вот что должна отныне гласить формула, от которой зависит повышение плодородия почвы.

Еще при своей жизни Либих имел возможность с удовлетворением установить, что его учение об удобрительных солях получило всеобщее признание. Все больше и больше утверждалось убеждение в необходимости вносить в пашню искусственные удобрения. Опыты с несомненностью показывали, что удобренные пашни приносят значительно лучшие урожаи.

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

Важнейшим достижением естествознания является установление закона сохранения энергии. Значение этого закона выходит далеко за рамки частного физического закона. Вместо с законом сохранения масс этот закон образует краеугольный камень научного материалистического мировоззрения, выражая факт неуничтожаемости материи и движения. Собственно, философские предпосылки для такого утверждения уже имелись налицо. Они были и у античных философов, особенно атомистов, и у Декарта, и особенно конкретно и отчетливо просматривались у Ломоносова.

В 1807 году член Парижской Академии наук французский физик и химик Жозеф Луи Гей-Люссак, изучая свойства газов, поставил опыт. До этого уже было известно, что сжатый газ, расширяясь, охлаждается. Ученый предположил, что это может происходить потому, что теплоемкость газа зависит от его объема. Он решил проверить это. Гей-Люссак заставил газ расширяться из сосуда в пустоту, т. е. другой сосуд, из которого был предварительно откачан воздух.

К удивлению всех ученых, наблюдавших за опытом, никакого понижения температуры не произошло, температура всего газа не изменилась. Полученный результат не оправдал предположения ученого, и он не понял смысла опыта. Гей-Люссак сделал крупное открытие и не смог его заметить.

Очень важную роль в развитии учения о превратимости сил природы сыграли исследования русского ученого Эмиля Христиановича Ленца, примыкающие в этом отношении к исследованиям Фарадея. Его замечательные работы по электричеству имеют явную энергетическую направленность и существенным образом содействовали укреплению закона. Поэтому с полным правом Ленц занимает одно из первых мест в плеяде творцов и укрепителей закона сохранения энергии.

Первым точно сформулировал этот великий закон естествознания немецкий врач Роберт Майер.

Роберт Юлий Майер (1814–1878) родился в Гейльбронне в семье аптекаря. По окончании средней школы Майер поступил в Тюбингенский университет на медицинский факультет. Здесь он не слушал математических и физических курсов, но зато основательно изучил химию у Гмелина. Закончить университет в Тюбингене без перерыва ему не удалось. За участие в запрещенной сходке он был арестован. В тюрьме Майер объявил голодовку и на шестой день после ареста был освобожден под домашний арест. Из Тюбингена Майер уехал в Мюнхен, затем в Вену. Наконец, в январе 1838 года ему разрешили вернуться на родину. Здесь он сдал экзамены и защитил диссертацию.

Вскоре Майер принял решение поступить на голландский корабль, отправляющийся в Индонезию, в качестве судового врача. Это путешествие сыграло важную роль в его открытии. Работая в тропиках, он заметил, что цвет венозной крови у жителей жаркого климата более яркий и алый, чем темный цвет крови у жителей холодной Европы. Майер правильно объяснил яркость крови у жителей тропиков: вследствие высокой температуры организму приходится вырабатывать меньше теплоты. Ведь в жарком климате люди никогда не мерзнут. Поэтому в жарких странах артериальная кровь меньше окисляется и остается почти такой же алой, когда переходит в вены.

У Майера возникло предположение: не изменится ли количество теплоты, выделяемое организмом, при окислении одного и того же количества пищи, если организм, помимо выделения теплоты, будет еще производить работу? Если количество теплоты не изменяется, то из одного и того же количества пищи можно получить то больше, то меньше тепла, так как работу можно превратить в тепло, например, путем трения.

Если количество теплоты изменяется, то работа и теплота обязаны своим происхождением одному и тому же источнику — окисленной в организме пище. Ведь работа и теплота могут превращаться одна в другую. Эта идея сразу дала возможность Майеру сделать ясным и загадочный опыт Гей-Люссака.

Если теплота и работа взаимно превращаются, то при расширении газов в пустоту, когда он не производит никакой работы, так как нет никакой силы давления, противодействующей увеличению его объема, газ и не должен охлаждаться. Если же при расширении газа ему приходится производить работу против внешнего давления, то его температура должна понижаться. Но если теплота и работа могут превращаться друг в друга, если эти физические величины сходные, то возникает вопрос о соотношении между ними.

Майер попытался узнать: сколько требуется работы для выделения определенного количества теплоты и наоборот? К тому времени было известно, что для нагревания газа при постоянном давлении, когда газ расширяется, нужно больше тепла, чем для нагревания газа в замкнутом сосуде. То есть что теплоемкость газа при постоянном давлении больше, чем при постоянном объеме. Эти величины были уже хорошо известны. Но установлено, что обе они зависят от природы газа: разность между ними почти одинакова для всех газов.

Майер понял, что эта разность в теплоте обусловлена тем, что газ, расширяясь, совершает работу. Работу одного моля расширяющегося газа при нагревании на один градус определить нетрудно. Любой газ при малой плотности можно считать идеальным — его уравнение состояния было известно. Если нагреть газ на один градус, то при постоянном давлении его объем возрастет на некую величину.

Таким образом, Майер нашел, что для любого газа разность теплоемкости газа при постоянном давлении и теплоемкости газа при постоянном объеме есть величина, называемая газовая постоянная. Она зависит от молярной массы и температуры. Теперь это уравнение носит его имя.

Одновременно с Майером и независимо от него закон сохранения и превращения энергии разрабатывался Джоулем и Гельмгольцем.

Механический подход Гельмгольца, который он сам был вынужден признать узким, дал возможность установить абсолютную меру для «живой силы» и рассматривать всевозможные формы энергии либо в виде кинетической («живых сил»), либо потенциальной («сил напряжения»).

Количество превращенной формы движения можно измерить величиной той механической работы, например, по поднятию груза, которую можно было бы получить, если целиком все исчезнувшее движение затратить на это поднятие. Экспериментальное обоснование принципа и заключается, прежде всего, в доказательстве количественной определенности этой работы. Этой задаче и были посвящены классические опыты Джоуля.

Джемс Прескот Джоуль (1818–1889) — манчестерский пивовар — начал с изобретения электромагнитных аппаратов. Эти приборы и явления, с ними связанные, стали конкретным ярким проявлением превратимости физических сил. В первую очередь Джоуль исследовал законы выделения тепла электрическим током. Так как опыты с гальваническими источниками (1841) не давали возможности установить, является ли теплота, развиваемая током в проводнике, только перенесенной теплотой химических реакций в батарее, то Джоуль решил поставить эксперимент с индукционным током.

Он поместил в замкнутый сосуд с водой катушку с железным сердечником, концы обмотки катушки присоединялись к чувствительному гальванометру. Катушка приводилась во вращение между полюсами сильного электромагнита, по обмотке которого пропускался ток от батареи. Число оборотов катушки достигало 600 в минуту, при этом попеременно четверть часа обмотка электромагнита была замкнута, четверть разомкнута. Тепло, которое выделялось вследствие трения, во втором случае вычиталось из тепла, выделяемого в первом случае. Джоуль установил, что количество тепла, выделяемое индукционными токами, пропорционально квадрату силы тока. Так как в данном случае токи возникали вследствие механического движения, то Джоуль пришел к выводу, что тепло можно создавать с помощью механических сил.

Далее Джоуль, заменив вращение рукой вращением, производимым падающим грузом, установил, что «количество теплоты, которое в состоянии нагреть 1 фунт воды на 1 градус, равно и может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в 1 фут». Эти результаты и были им сведены в работе «О тепловом эффекте магнитоэлектричества и механическом значении тепла», доложенной на физико-математической секции Британской ассоциации 21 августа 1843года.

Наконец, в работах 1847–1850 годов Джоуль разрабатывает свой главный метод, вошедший в учебники физики. Он дает наиболее совершенное определение механического эквивалента тепла. Металлический калориметр устанавливался на деревянной скамейке. Внутри калориметра проходит ось, несущая лопасти или крылья. Крылья эти расположены в вертикальных плоскостях, образующих угол 45 градусов друг с другом (восемь рядов). К боковым стенкам в радиальном направлении прикреплены четыре ряда пластинок, не препятствующие вращению лопастей, но препятствующие движению всей массы воды. В целях тепловой изоляции металлическая ось разделена на две части деревянным цилиндром. На внешнем конце оси имеется деревянный цилиндр, на который наматываются две веревки в одинаковом направлении, покидающие поверхность цилиндра в противоположных точках. Концы веревок прикреплены к неподвижным блокам, оси которых лежат на легких колесиках. На оси намотаны веревки, несущие грузы. Высота падения грузов отсчитывается по рейкам.

Далее Джоуль определял эквивалент, измеряя теплоту, выделяемую при трении чугуна о чугун. На оси в калориметре вращалась чугунная пластинка. Вдоль оси свободно скользят кольца, несущие рамку, трубку и диск, по форме пригнанный к чугунной пластинке. С помощью стержня и рычага можно произвести давление и прижать диск к пластинке. Последние измерения механического эквивалента Джоуль производил уже в 1878 году.

Расчеты Майера и опыты Джоуля завершили двухсотлетний спор о природе теплоты. Доказанный на опыте принцип эквивалентности между теплотой и работой можно сформулировать следующим образом: во всех случаях, когда из теплоты появляется работа, тратится количество тепла, равное полученной работе, и наоборот, при затрате работы получается то же количество тепла. Этот вывод был назван Первым законом термодинамики.

Согласно этому закону, работу можно превратить в тепло и наоборот — теплоту в работу. Причем обе эти величины равны друг другу. Вывод этот справедлив для термодинамического цикла, в котором система должна быть приведена к исходным условиям. Таким образом, для любого кругового процесса совершенная системой работа равна полученной системой теплоте.

Открытие Первого закона термодинамики доказало невозможность изобретения вечного двигателя. Закон сохранения энергии поначалу так и называли — «вечный двигатель невозможен».

ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА

«В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.

В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых».

Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С. Кудрявцев. — Новое содержание — электромагнитные волны — было выражено в старой форме картезианских вихрей.

Несоответствие нового содержания, появившегося в результате развития электромагнетизма, не только старой форме теории дальнодействия, но и механической теории эфира ощущал уже Фарадей, искавший для выражения этого содержания новую форму. Такую форму он усматривал в силовых линиях, которые следовало рассматривать не статически, а динамически. Развитию этой мысли посвящены его работы „Мысли о лучевых вибрациях“ (1846) и „О физических линиях магнитной силы“ (1851).

Открытие Фарадеем в 1845 году связи между магнетизмом и светом явилось новым содержанием в учении о свете и вместе с тем еще раз указывало на строгую поперечность световых колебаний. Все это плохо укладывалось в старую форму механического эфира». Фарадей выдвигает идею силовых линий, в которых происходят поперечные колебания. «Нельзя ли, — пишет он, — предположить, что колебания, которые в известной теории (волновой теории света. — Прим. авт.) принимаются за основу излучения и связанных с ним явлений, происходят в линиях сил, соединяющих частицы, а следовательно, массы материи в одно целое. Эта идея, если ее допустить, освободит нас от эфира, являющегося с другой точки зрения той средой, в которой происходят эти колебания».

Ученый указывает, что колебания, происходящие в линиях сил, представляют собой не механический процесс, а новую форму движения, «некий высший тип колебания». Подобные колебания поперечны и потому могут «объяснить чудесные разнообразные явления поляризации». Они не похожи на продольные звуковые волны в жидкостях и газах. Его теория, как он говорит, «пытается устранить эфир, но не колебания». Эти магнитные колебания распространяются с конечной скоростью:

«…Появление изменения в одном конце силы заставляет предполагать последующее изменение на другом. Распространение света, а потому, вероятно, всех лучистых действий, требует времени, и чтобы колебание линий силы могло объяснить явления излучения, необходимо, чтобы такое колебание также занимало время».

Поиски новой формы привели ученого к становлению важной идеи поперечных магнитных колебаний, распространяющихся, как и свет, с конечной скоростью. Но это и есть центральная идея электромагнитной теории света — мысль, возникшая еще в 1832 году.

Максвелл отмечал в записке к В.Бреггу: «Электромагнитная теория света, предложенная им (Фарадеем) в „Мыслях о лучевых вибрациях“ (май, 1846) или „Экспериментальных исследованиях“, — это по существу то же, что я начал развивать в этой статье („Динамическая теория поля“ (май, 1865), за исключением того, что в 1846 году не было данных для вычисления скорости распространения».

Подобное признание, однако, не принижает заслуг в исследовании электромагнитного поля Джеймса Максвелла.

Джеймс Максвелл (1831–1879) родился в Эдинбурге. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. Сначала приглашали учителей на дом. Потом решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии. Максвелл окончил академию одним из первых, и перед ним распахнулись двери Эдинбургского университета.

Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже. Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он и занял второе место.

Молодой бакалавр был оставлен в Кембридже — Тринити-колледже в качестве преподавателя. Однако его волновали научные проблемы. Помимо его старого увлечения — геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.

20 февраля 1854 года Максвелл сообщает Томсону о своем намерении «атаковать электричество». Результат «атаки» — сочинение «О Фарадеевых силовых линиях» — первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово «поле» впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям, Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе «Динамическая теория электромагнитного поля».

Он публикует две основные работы по созданной им теории электромагнитного поля: «О физических силовых линиях» (1861–1862 годы) и «Динамическая теория электромагнитного поля» (1864–1865 годы). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей, наряду с механикой, термодинамикой и статистической физикой, одним из устоев классической теоретической физики.

«Трактат по электричеству и магнетизму» — главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к «Трактату» датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!

Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света — 300 000 километров в секунду.

Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.

«Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, — пишет А.А. Коробко-Стефанов. — Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д.

Быстропеременные электрические и магнитные поля, распространяющиеся со скоростью света, образуют электромагнитное поле. Электромагнитное поле распространяется в пространстве от точки к точке, создавая электромагнитные волны. Электромагнитное поле в каждой точке характеризуется напряженностью электрического и магнитного полей. Напряженность электрического и магнитного полей — величины векторные, так как характеризуются не только величиной, но и направлением. Векторы напряженности полей взаимно перпендикулярны и перпендикулярны к направлению распространения».

Поэтому электромагнитная волна является поперечной.

Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро.

Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров.

Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».

Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.

Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.

В 1889 году Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей.

Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебники.

ЗАКОН ДЕЙСТВУЮЩИХ МАСС

В научную и учебную литературу закон действующих масс входит как один из основных законов химии. То, что процесс химического взаимодействия зависит от количества действующих масс, подтверждали факты, поступавшие как из области органической, так и неорганической химии. Г. Розе (1851), Р. Бунзен (1853), Д Глэдстон (1855) дали материал для доказательства существования обратимых химических превращений и возможности изменения направления реакции путем подбора соответствующих условий ее протекания. Французский химик Сент-Клер Девиль (1818–1881) в 1857 году доказал, что разложение химических соединений может начинаться и ниже температуры их полного разложения.

Ко времени этого открытия Анри Этьен Сент-Клер Девиль был уже профессором Высшей Нормальной школы в Париже. В 1861 году он становится членом Парижской Академии наук. Именно Сент-Клер Девиль разработал первый промышленный способ получения алюминия (1854). Французский ученый предложил и новый метод плавки и очистки платины. Он же произвел синтез различных минералов. Интересно, что в 1869 году Сент-Клер Девиля избрали членом-корреспондентом Петербургской Академии наук.

Итак, в статье 1857 года «О диссоциации, или самопроизвольном разложении веществ под влиянием тепла» (1857) Сент-Клер Девиль показал, что под влиянием температуры происходит разложение водяного пара на кислород и водород при температуре плавления платины (1750 °C) и при температуре плавления серебра (950 °C).

Позднее в лекциях о диссоциации, прочитанных в 1864 году перед Французским химическим обществом, Сент-Клер Девиль формулирует конечный вывод своих экспериментов: «Превращение водяных паров в смесь водорода и кислорода есть полная перемена состояния, соответствующая определенной температуре, и эта температура является постоянной при переходе из одного состояния в другое, в каком бы направлении эти перемены ни происходили». Это «явление самопроизвольного разложения воды я предлагаю назвать диссоциацией».

Надо отметить, что такое определение охватывало лишь случаи, «в которых разложение имеет место частично и при температуре более низкой, чем температура, которая соответствует абсолютному разрушению соединения».

Французский ученый показал: некоторые соединения, даже самые устойчивые, легко диссоциируют при высоких температурах (1200–1500 °C). Устанавливаемым при этом химическим равновесием можно управлять, изменяя температуру и давление.

Сент-Клер Девиль предложил также метод «закаливания» химических реакций. «Оказалось, — пишет Ю. И. Соловьев, — что если очень быстро охладить какую-либо систему, в которой установилось состояние равновесия при высокой температуре, то эта система как бы застывает в том состоянии, в каком застало ее резкое охлаждение. Этот метод „холодно-горячей трубки“ заключался в следующем. Через нагретую до высокой температуры фарфоровую трубку медленно пропускали исследуемый газ. В центре фарфоровой трубки проходила тонкая серебряная трубочка, через которую протекала холодная вода. При пропускании через горячую фарфоровую трубку в противоположном направлении оксида углерода на серебряной трубочке отлагался углерод; при пропускании хлороводорода получался хлорид серебра. Впоследствии В. Нернст показал, что методом „закаливания“ можно количественно изучать равновесие системы, установившееся при высокой температуре.

Сент-Клер Девиль связывал химическое равновесие с двумя взаимообусловленными процессами: соединением и разложением. Труды его по термической диссоциации имели первостепенное значение для дальнейшего развития учения о химических равновесиях».

«…Исследования Анри Сент-Клер Девиля, посвященные явлению диссоциации, — писал Ж. Дюма, — являются величайшим приобретением не только химии, но и физики. Благодаря открытию этого капитального явления (термической диссоциации. — Прим. авт.) он обнаружил новый путь в науке — путь сближения химических явлений с чисто физическими».

Высоко ценил работы Сент-Клер Девиля по диссоциации его продолжатель русский физико-химик Н. Н. Бекетов. Они составляют не только «историческую эпоху в развитии химии», но и «поворот в направлении изучения химии. С этих пор началось опять (почти заброшенное) изучение химических явлений (вместо почти исключительного изучения состава и строения соединений), т. е. изучение статической химии пошло рядом с изучением химии динамической».

Николай Николаевич Бекетов (1827–1911) в 1848 году окончил Казанский университет. С 1859 по 1887 год был профессором химии Харьковского университета. В 1886 году Николай Николаевич становится академиком Петербургской Академии наук. Главные работы ученого посвящены изучению природы химического сродства, химического равновесия и термохимии. В 1864 году Бекетов организовал на физико-математическом факультете Харьковского университета физико-химическое отделение, где сам читал систематический курс лекций по физической химии.

В 1859–1865 годах Бекетов занимался изучением зависимости явлений вытеснения одних элементов другими от внешних физических условий (температура, давление и т. д.). На примере одной из реакций — вытеснения водородом металлов из растворов их солей — показал, что «это действие водорода зависит от давления газа и крепости металлического раствора, или, другими словами, от химической массы восстанавливаемого тела». Он установил, что «химическое действие газов зависит от давления и, смотря по величине давления, может даже совершаться в обратном направлении». Ученый уточняет положение, говоря, что действие газа пропорционально давлению или массе. Бесспорно, данные исследований русского ученого имели большое значение для развития учения о химическом равновесии и для подготовки открытия закона действующих масс.

В 1862 году появилась работа М. Бертло и Л. Пеан де Сен-Жиля, обобщавшая большой фактический материал о зависимости предела реакций этерификации и омыления от количеств взаимодействующих веществ, — «Исследования о сродстве. Об образовании и разложении эфиров».

Следующий шаг делает Анри Дебре (1827–1888), французский химик, работавший в 1855–1868 годах ассистентом Сент-Клер Девиля в Высшей нормальной школе. В 1867–1868 годах преподаватель в Политехнической школы в Париже делает обобщение, давление газообразной составной части или составных частей, полученных в процессе диссоциации, постоянно при любой определенной температуре и не зависит от количества первоначального вещества, претерпевшего разложение. Дебре показал, что во многих случаях, когда твердое вещество диссоциирует, то давление диссоциации зависит не от количества присутствующих веществ, а только от температуры.

Первоначально делались попытки установить коэффициенты сродства для каждого соотношения взятых масс в отдельности. Однако позднее возникает идея найти общий путь вычисления условий равновесия для любых количеств реагирующих веществ.

Като Максимилиан Гульдберг (1836–1902), норвежский физико-химик, профессор технологии университета в Христиании (ныне Осло), и Петер Вааге (1833–1900), норвежский химик, профессор химии университета в Христиании, в работах 1862–1867 годах представили равновесие обратимой обменной реакции как равенство двух сил сродства, действующих в противоположных направлениях. Авторы математически сформулировали закон действующих масс, построив свою теорию на общем условии равновесия При этом они опирались на экспериментальные данные М. Бертло и Пеан де Сен-Жиля, а также собственные результаты. Они придерживались принятого в шестидесятые годы механического толкования природы сил сродства.

Гульдберг и Вааге писали: «Мы полагаем, что для определения величины химических сил необходимо исследовать химические процессы всегда в таких условиях, чтобы одновременно проявлялись их оба противоположных направления… Если считать, что при данном химическом процессе действуют две противоположные силы: одна, стремящаяся образовать новые вещества, и другая — восстановить первоначальные соединения из новых, то делается очевидным, что, когда эти силы в химическом процессе становятся одинаковыми, система находится в равновесии».

В 1867 году в своей монографии «Исследования сил химического сродства» Гульдберга и Вааге показали, что химические реакции протекают как в прямом, так и в обратном направлении. «Сила, вызывающая образование А и В, возрастает пропорционально коэффициенту сродства для реакции А+В=А'+В', но, сверх того, она зависит от масс А и В. Мы вывели из наших опытов, что сила пропорциональна произведению действующих масс двух тел А и В… „Силы“ прямой и обратной реакций уравновешиваются…» Это и есть закон действующих масс.

Гульдберг и Вааге завершают свой труд так: «Хотя мы и не разрешили проблемы химического сродства, мы надеемся, что высказали общую теорию химических реакций, именно рассмотрение тех реакций, при которых имеет место состояние равновесия между противоположными силами… Целью нашего сочинения было показать, во-первых, что наша теория объясняет химические явления в общем, и, во-вторых, что формулы, основанные на этой теории, согласуются достаточно хорошо с количественными опытами… Все наши желания исполнились бы, если бы посредством этого труда мы успели бы привлечь серьезное внимание химиков на ветвь химии, которой, несомненно, слишком пренебрегали с самого начала нынешнего столетия».

В 1879 году появилась новая статья Гульдберга и Вааге — «О химическом сродстве». Здесь ученые дают молекулярно-кинетическое объяснение химических реакций и равновесий вместо представлений о действии статических «сил». Объясняя процесс равновесия противоположных реакций, авторы полагают, что «недостаточно простого предположения о силах притяжения между веществами или их составными частями… Необходимо принять во внимание движение атомов и молекул… Состояние равновесия, которое наступает при такого рода химических процессах, есть состояние подвижного равновесия, так как одновременно имеют место две противоположные химические реакции: протекает не только образование А'и В', но и обратное образование А и В. Если в единицу времени образуются равные количества каждой из этих пар, существует равновесие».

Опираясь на свою трактовку химического равновесия, Гульдберг и Вааге впервые дают кинетический вывод закона действующих масс. Они делают вывод, что скорость реакции определяется вероятностью столкновения вступающих во взаимодействие частиц.

В 1880 году появляется большое число работ в подтверждение закона действующих масс. В дальнейшем удалось установить неприменимость этого закона к неидеальным системам. «Модернизация» формулы концентраций позволила успешно применять закон действующих масс для изучения равновесия химических реакций. Сегодня закон служит основным уравнением химической кинетики, используемым для расчета технологических процессов.

ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ

В начале девятнадцатого века среди западных химиков безраздельно господствовала электрохимическая теория Дэви — Берцелиуса. Согласно теории Йенса Берцелиуса (1779–1848), в каждом химическом соединении отличали две его части: одну часть, заряженную электроположительно, другую — электроотрицательно. Соответственно сказанному все элементы Берцелиус располагал в ряд, причем кислород самым электроотрицательным элементом, калий самым электроположительным. Наиболее электроотрицательные элементы Берцелиус назвал металлоидами, наиболее электроположительные — металлами.

В тридцатых годах своими работами французский химик Ж. Б. Дюма нанес удар по теории Дэви — Берцелиуса, выдвинув для органических соединений свою, так называемую, теорию типов. Дюма утверждал, что не столько природа сложного тела, сколько расположение в нем атомов, одинаковость типа, обуславливают химические свойства соединения. Однако эти воззрения Дюма скоро в свою очередь натолкнулись на целый ряд затруднений и противоречий.

В дальнейшем огромным шагом вперед в проблеме развития основных химических понятий явилась так называемая унитарная система, или теория французских химиков, Ш. Жерара и О. Лорана. Наиболее существенной чертой этой теории было последовательное приложение к химическим соединениям нового учения. Лорану и Жерару принадлежит заслуга разграничения понятий о частице, атоме и эквиваленте. Однако наиболее принципиальным вопросом, вызвавшим бурные споры между ведущими химиками Запада, был вопрос о возможности выражать формулами строение химических соединений.

Великий реформатор химии, как иногда называли Шарля Фредерика Жерара (1816–1856), пришел к убеждению, что химические явления начинаются лишь тогда, когда вещество изменяется, т. е. перестает существовать как таковое. Поэтому мы можем знать, как выражался Жерар, только прошедшее и будущее вещества, и, следовательно, химические формулы могут выражать не расположение атомов, а лишь известные аналоги веществ. В соответствии с только что сказанным, по Жерару, для каждого вещества можно написать столько рациональных формул, сколько данное вещество может испытывать различных видов превращений.

В 1858 году известный химик Август Кекуле (1829–1896) делает чрезвычайно важный шаг и распространяет положение о четырехатомности углерода на соединения, заключающие в своем составе несколько углеродных атомов, и таким образом приходит к выводу о возможности целесообразного сцепления углеродных атомов во многоуглеродистых соединениях. В дальнейшем это правило сцепления Кекуле распространяет и на случаи соединения углеродных атомов с другими многоатомными элементами, такими, например, как кислород, азот и другие.

Позднее Кекуле подошел вплотную к проблеме строения органических соединений, имея отправным пунктом атомность или валентность элементов, но решительного шага в этом направлении не сделал. Так, в конце своей статьи в 1858 году Кекуле пишет: «В заключение я считаю нужным отметить, что сам я рассуждениям подобного рода придаю лишь второстепенное значение…»

К сказанному следует добавить, что Кекуле еще долгое время остается во власти идей Жерара и в своем известном учебнике органической химии, изданном в 1859–1861 годах, широко пользуется «рациональными» формулами в духе Жерара.

И хотя чувствовалось приближение нового периода в развитии химии, но нужен был гений Бутлерова, чтобы совершить прорыв.

Александр Михайлович Бутлеров (1828–1886) родился в Бутлеровке, небольшой деревушке неподалеку от Казани, где находилось имение отца. Матери своей Саша не помнил, она умерла через одиннадцать дней после его рождения. Воспитанный отцом, человеком образованным, Саша хотел во всем походить на него.

Сначала он учился в пансионе, а затем поступил в Первую казанскую гимназию. После ее окончания Саша поступил на естественнонаучное отделение Казанского университета, правда, пока только как слушатель, он был еще несовершеннолетним. Лишь в следующем, 1845 году, когда юноше исполнилось 17 лет, имя Бутлерова появилось в списке принятых на первый курс.

В 1846 году юноша заболел тифом и чудом выжил, а вот заразившийся от него отец скончался. Осенью вместе с тетей они переехали в Казань.

Молодой Бутлеров занимался с исключительным усердием, но, к своему удивлению, заметил, что самое большое удовольствие доставляют ему лекции по химии. Он стал регулярно ходить и на лекции Николая Николаевича Зинина, которые читались для студентов физико-математического отделения.

Чтобы получить ученую степень кандидата, Бутлеров должен был представить диссертацию по окончании университета. К этому времени Зинин уехал из Казани в Петербург, и не оставалось ничего иного, как заняться естественными науками. Для кандидатской работы Бутлеров подготовил статью «Дневные бабочки Волго-Уральской фауны». Однако обстоятельства сложились так, что Александру все-таки пришлось вернуться к химии.

Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года.

4 июня 1854 года Бутлеров получил подтверждение о присуждении ему ученой степени доктора химии и физики. События разворачивались с невероятной быстротой. Сразу же после получения докторской степени Бутлеров был назначен исполняющим обязанности профессора химии Казанского университета. В начале 1857 года он стал уже профессором, а летом того же года получил разрешение на заграничную командировку.

Бутлеров прибыл в Берлин в конце лета. Затем он продолжил поездку по Германии, Швейцарии, Италии и Франции. Конечной целью его путешествия был Париж — мировой центр химической науки того времени. Его влекла, прежде всего, встреча с Адольфом Вюрцем. Бутлеров проработал в лаборатории Вюрца два месяца, именно здесь он начал свои экспериментальные исследования, которые в течение последующих двадцати лет увенчались открытиями десятков новых веществ и реакций. Многочисленные образцовые синтезы Бутлерова — этанола и этилена, динзобутилена, третичных спиртов, уротропина, триоксиметилена, полимеризации этиленовых углеводородов — лежат у истоков ряда отраслей промышленности и, таким образом, оказали на нее самое непосредственное стимулирующее влияние.

Занимаясь изучением углеводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

17 февраля 1858 года Бутлеров сделал доклад в Парижском химическом обществе, где впервые изложил свои теоретические идеи о строении вещества.

Его доклад вызвал всеобщий интерес и оживленные прения:

«Способность атомов соединяться друг с другом различна. Особенно интересен в этом отношении углерод, который, по мнению Августа Кекуле, является четырехвалентным, — говорил в своем докладе Бутлеров. — Если представить валентность в виде щупальцев, с помощью которых атомы связываются между собой, нельзя не заметить, что способ связи отражается на свойствах соответствующих соединений».

Подобных мыслей никто до сих пор не высказывал. «Может быть, настало время, — продолжал Бутлеров, — когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений».

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию. Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861 года.

Он выступил с докладом перед химической секцией. Тема носила более чем скромное название — «Нечто о химическом строении тел».

В докладе Бутлеров высказывает основные положения своей теории строения органических соединений. Это, прежде всего, определение понятия «химическое строение», которое Бутлеров формулирует следующим образом:

«Исходя из мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу».

«Это определение Бутлерова настолько глубоко, — пишет в своей книге академик А. Е. Арбузов, — настолько содержательно, что в основном оно не расходится с тем, что мы разумеем в настоящее время под химическим строением в свете новейших научных представлений о строении химической частицы (молекулы).

В высшей степени важным, особенно для того времени, является также то место доклада, где Бутлеров говорит о возможности судить о строении молекул вещества химическими методами и, прежде всего, методами синтеза органических соединений.

По этому вопросу Бутлеров в своем докладе говорит: „Заключения о химическом строении веществ, по всей вероятности, можно всего лучше будет основывать на изучении способов их синтетического образования — и преимущественно — на таких синтезах, которые совершаются при температуре мало возвышенной и — вообще — при условиях, где можно следить за ходом постепенного усложнения химической частицы“.

Однако наиболее ответственным местом доклада Бутлерова является вопрос о возможности выражать формулами строение того или иного вещества.

По этому принципиальному вопросу научная позиция Бутлерова резко отличалась от взглядов и убеждений всех его предшественников. Именно A.M. Бутлеров, в противоположность Жерару, Кекуле, Кольбе и другим химикам, считал возможным и необходимым выражать строение определенного соединения лишь одной формулой Это место доклада и знаменует, как я выразился, Рубикон, который перешагнул Бутлеров, оно-то и дает нам право утверждать, что Бутлеров является истинным творцом теории химического строения».

Итак, теория заявила свое право на существование. Она требовала дальнейшего развития и экспериментальных доказательств.

В 1863 году Бутлеров, воздействуя диметилцинком на хлористый ацетил, получил впервые в истории химии самый простой третичный спирт — третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов. Теперь уже ни о каком споре и речи быть не могло — существовало четыре различных бутиловых спирта. И все они — изомеры.

Какой это был триумф структурной теории! И как счастлив был ее автор. Триумфом теории химического строения органических соединений Бутлерова явилось правильное объяснение на основе этой теории явлений изомерии. В статье «О различных способах объяснения некоторых случаев изомерии», опубликованной в 1863 году на немецком и в 1864 году на французском языках, Бутлеров сделал вывод: «Если при одинаковом составе вещества отличаются свойствами, то они должны также отличаться и своим химическим строением». Лучшим подтверждением учения Бутлерова об изомерии послужил синтез теоретически предсказанных изомеров — изобутана и изобутилена.

В 1862–1865 годах Бутлеров высказал основное положение теории обратимой изомеризации — таутомерии, механизм которой, по Бутлерову, заключается в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками в 1864–1866 годах.

Появление этого учебника имело огромное значение для распространения нового учения среди химиков. Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке.

Издание Бутлеровым на русском и немецком языках руководства по органической химии, где впервые теория химического строения была последовательно проведена через все тогда известные классы органических соединений, наряду с его блестящими синтезами, способствовали широкому признанию и укреплению его теории среди химиков всего мира.

Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой в громадном большинстве исследований в области органической химии».

В своих исследованиях Бутлеров продолжал развивать структурную теорию. Он задался целью доказать, что разветвленную и прямую углеродные цепи могут иметь все типы органических соединений. Это вытекало непосредственно из теории, но теоретические положения надо было доказать на практике. Разве нельзя получить углеводород — например, бутан, — четыре углеродных атома которого были бы связаны друг с другом не последовательно, а так, как они связаны в триметил-карбиноле? Но чтобы найти правильный метод его синтеза, требовалось множество опытов.

И вот, наконец, усилия Бутлерова увенчались успехом. В большой колбе был долгожданный изобутилен. Доказано существование разветвленной цепи углеводородов!

Сегодня, между прочим, получение углеводородов и спиртов, которыми занимался Бутлеров, достигло колоссальных промышленных масштабов, их получают в миллионах тонн.

ОРГАНИЧЕСКИЙ СИНТЕЗ

В 1834 году Т. Пелуз приготовил цианистые алкилы действием цианистого калия на алкилсернокислые соли. В том же году Ж. Б. Дюма удалось установить, что из хлороформа под действием едкого кали образуется муравьиная кислота. Таким образом, Дюма открыл общий способ получения кислот гидролизом галогенопроизводных.

В 1842 году Л. Мельзенсом был предложен способ восстановления галогенопроизводных амальгамами щелочных металлов.

Еще через пять лет Ж.Б. Дюма, Ф. Малагути, Ф. Леблан, Э. Франкланд, а также Г. Кольбе в 1848 году предложили общий метод получения кислот из соединений с меньшим содержанием углерода через нитрилы. В это же время Э. Митчерлих стал первым химиком, применившим смесь концентрированных азотной и серной кислот для получения нитробензола из бензола.

Ю. Либих и Ф. Велер еще 1832 году наблюдали переход бензальдегида в бензойную кислоту в присутствии щелочи, а в 1853 году С. Канниццаро установил, что при этом образуется соответствующий спирт.

Стоит отметить и открытие явления каталитического окисления спиртов и углеводов в кислоты в присутствии платиновой черни.

Эти и другие примеры свидетельствовали о достижениях в области получения и превращений органических соединений. Все с большей уверенностью можно было говорить о возможности осуществления органического синтеза.

«В 1854 году Г. Кольбе указывал, — пишет Е.П. Никулина, — что после синтеза мочевины упала естественная граница, разделявшая органические и неорганические соединения, и прежняя классификация веществ на органические и неорганические, исходившая из невозможности искусственного получения первых, потеряла основание».

Новый этап в развитии органического синтеза связан с именем Бертло. «Изучение работ Бертло в области органического синтеза показало, — продолжает Никулина, — что ему принадлежит значительная роль в развитии этого направления органической химии. До работ Бертло синтез как самостоятельный раздел органической химии не существовал. Отдельные методы его были разработаны различными химиками, но эти достижения не были связаны в единую систему».

Сам Бертло так оценивал деятельность своих предшественников: «До работ, изложенных в моей книге „Органическая химия, основанная на синтезе“ (1860), в этом направлении не было проведено ни одного систематического исследования. Можно привести только два примера полного синтеза природных веществ из элементов: синтез мочевины Велера и синтез уксусной кислоты Кольбе. Эти синтезы чрезвычайно интересны; но вследствие самой природы этих веществ, они оставались единичными и без последствий. Действительно, мочевина относится к ряду циана, ряду, который почти в равной степени принадлежит неорганической и органической химии и который не имеет никаких общих свойств с другими рядами, в том числе ни со спиртами, ни с углеводородами. Уксусная кислота также занимает особое место; до проведения новых опытов и появления новых методов, разработанных после 1860 года, эта кислота оставалась „изолированным телом в ряду органических соединений“ (Ж. Б. Дюма). История науки подтверждает также, что эти два синтеза не положили начало ни одному общему методу и даже не привели ни к какому другому частичному синтезу природных веществ».

В отношении частичных синтезов Бертло отметил, что отдельные удачные синтезы, выполненные до него, не привели к осознанию важности проблемы синтеза в целом.

Марселен Бертло (1827–1907) родился и вырос в Париже в небогатой семье врача. В лицее он был одним из лучших учеников. Следующая ступень в обучении — Коллеж де Франс, где он слушает лекции Клода Бернара, Антуана Жерома Балара, Мишеля Эжена Шевреля и других видных ученых.

Осенью 1848 года Бертло с успехом сдал экзамен настепень бакалавра и поступил в университет. После долгих колебаний по совету родителей Бертло стал изучать медицину. Однако занятия не удовлетворяли его, он испытывал потребность в более широких знаниях. В конце первого учебного года он становится лиценциатом физики. Одновременно Марселен начал изучать химию как одну из основных дисциплин в общей подготовке врачей. В конце концов, он решил найти химическую лабораторию, в которой мог бы приобрести опыт экспериментатора.

Такой лабораторией стала новая частная химическая лаборатория Жюля Пелузо. Бертло с энтузиазмом приступил к исследовательской работе. Через некоторое время он становится ассистентом Пелузо.

Бертло приступил к своим первым исследованиям, которые, поскольку он занимался в основном физикой, носили скорее физический характер, нежели касались области химии. Его привлекали явления, связанные со сжижением газов. Результаты своих исследований молодой ученый опубликовал в 1850 году. В течение шести десятилетий Бертло написал около 2800 научных работ, охватывающих почти все отрасли человеческого знания. Большую часть этих материалов составляли труды по химии, кроме того, им были написаны труды по биологии, агрохимии, истории, археологии, лингвистике, философии, педагогике и т. д.

Бертло с самого начала глубоко верил в возможность синтеза органических веществ без участия живых клеток. Наряду с научной работой в лаборатории, Бертло регулярно посещал лекции в Коллеж де Франс, где можно было узнать о самых последних достижениях науки Профессор Антуан Балар, обратив внимание на способности молодого Бертло, предложил ему работать при лаборатории Коллеж де Франс.

Первым успехом стало получение камфоры, но настоящий успех к ученому пришел в 1853 году. Бертло удалось синтезировать жир.

Статья Бертло произвела настоящую сенсацию в ученом мире. Парижская Академия наук дала высокую оценку этому достижению. Бертло был удостоен степени доктора физических наук.

Бертло ставит перед собой более трудную задачу — получить этиловый спирт из этилена и воды. Для этого он решает пропускать этилен через водный раствор кислоты или основания.

Вот что пишет об этом К.Р. Манолов: «Первые опыты не дали желаемых результатов. Этилен проходил через раствор, не вызывая никаких заметных изменений. Еертло всячески менял условия синтеза. При проведении опыта с концентрированной серной кислотой он заметил, что при температуре около 70 градусов Цельсия началось интенсивное поглощение этилена. После окончания реакции ученый разбавил реакционную смесь водой и подверг ее перегонке. Этиловый спирт! Дистиллят был этиловым спиртом. Бертло был поистине счастлив. Он избрал правильный путь. Органические вещества в принципе ничем не отличаются от неорганических и могут быть получены тем же способом. Необходимо, чтобы ученые убедились, что никакой „жизненной силы“ не существует, что человек может по своему желанию направлять ход химических реакций. Но это следовало еще доказать, нужны были факты… И Бертло продолжал работу…»

В шестидесятые годы девятнадцатого века Бертло добивается в области органического синтеза воистину фантастических результатов. Неудачи не смущали его. Реакцию взаимодействия водорода с углеродом не удалось провести даже в печах Девилля. Тогда Бертло прибегает к помощи электричества.

«Электрические искры не решили проблемы, — отмечает Манолов, — но электрическая дуга между двумя угольными электродами, находящимися в сосуде с водородом, оказалась эффективной: газ, выходивший из сосуда, содержал ацетилен. Воодушевленный, Бертло приступил к новой серии синтезов. Присоединяя водород к ацетилену, он получил этилен, а затем и этан.

„Соотношение углерода и водорода в ацетилене такое же, как и в бензоле, — размышлял Бертло, и эта мысль побудила молодого ученого заняться синтезом бензола. — Этим будет переброшен мост между жирными и ароматическими соединениями“. Для синтеза Бертло решил опять прибегнуть к высоким температурам и повторить опыт, как он проводился для получения окиси углерода. Стеклянную реторту наполнили ацетиленом, запаяли и стали постепенно нагревать. Лишь при температуре 550–600 градусов Цельсия ацетилен начал полимеризоваться. Когда охладили реторту, на ее дне собралось небольшое количество желтоватой жидкости.

Теперь нужно было только терпение и упорство для того, чтобы провести опыт десятки раз и собрать достаточное для анализа количество жидкости.

В полученной жидкости Бертло обнаружил бензол, толуол и другие ароматические соединения. Параллельно он осуществил еще один синтез, который тоже подтвердил, что ароматические соединения можно получить из углеводородов жирного ряда. Бертло подверг продолжительному нагреванию метан в сосудах из специального стекла. Он повысил температуру настолько, что стекло начало размягчаться. После охлаждения в сосудах образовалось белое кристаллическое вещество.

Как только ученый открыл сосуд, лаборатория наполнилась характерным запахом нафталина. Дополнительные исследования подтвердили, что полученное вещество — действительно нафталин.

Началась новая серия синтезов и анализов. Рождались идеи, и почти каждый день осуществлялся новый синтез. Казалось, возможности беспредельны, Бертло мог синтезировать все, достаточно лишь правильно поставить задачу…

…Бертло добился больших успехов в изучении углеводородов, углеводов, спиртового брожения; он предложил универсальный метод восстановления органических соединений йодистым водородом и многое другое. За выдающиеся достижения в органической химии в 1867 году Бертло получил вторично награду „Жакер“. Семь лет назад первая награда была присуждена ему за успехи в области органического синтеза».

Важнейшие синтетические работы Бертло можно разделить на три группы. Первая — синтезы природных соединений — жиры, горчичное масло. Вторая группа — элементные синтезы простейших органических веществ. Третья — пирогенные синтезы углеводородов.

Помимо этого Бертло удалось разработать способы гидрирования органических соединений различных классов йодистым водородом. Он исследовал также свойства и получил различные производные многих органических соединений. Кроме того, Бертло изучал процессы их окисления и восстановления.

В 1860–1864 годах Бертло решил обобщать собственные многочисленные синтетические исследования, а также работы других химиков в книгах «Органическая химия, основанная на синтезе» и «Лекции по общим методам синтеза в органической химии».

Е.П. Никулина так описывает его творческие искания: «Получение более сложных веществ путем соединения двух более простых, или частичный синтез, М. Бертло считал первым шагом на пути к полному синтезу. Осуществление такого синтеза является ближайшим следствием аналитического исследования, так как анализ природного вещества часто показывает возможность его разложения на две более простые части, которые, соединяясь, дают исходное вещество…

М. Бертло считал, что анализ и синтез являются двумя сторонами химической науки, и подчеркивал, что синтез стал возможен именно благодаря успехам анализа, так как можно синтезировать только те вещества, которые удалось аналитически разложить на составляющие, из которых они вновь могут быть получены, или полностью разложить путем последовательного отщепления элементов по примеру „лестницы сгорания“. В связи с этим невозможность синтезировать в то время множество природных веществ, таких, как белки и алкалоиды, он объяснял тем, что они еще недостаточно хорошо изучены аналитически, т е. граница синтеза, по Бертло, определяется возможностями анализа».

Сегодня синтез — основа промышленной химии. Достаточно назвать синтетический каучук, синтетическое волокно, синтетическое топливо, синтетические моющие средства.

БЕНЗОЛ

Изучение ароматических соединений начало развиваться только после того, как основные принципы теории химического строения были признаны химиками-органиками. В середине девятнадцатого столетия в области ароматических соединений большинство химиков рассматривали группу из шести атомов углерода как нечто целое, даже не высказываясь о ее химическом строении. Для ароматических соединений характерным считалось присутствие особой углеродной группы из шести атомов, например, в бензоле. Что касается бензола, то ошибочно принималось, что существуют две его разновидности: обыкновенный с температурой кипения 80 градусов Цельсия и парабензол с температурой кипения 97 градусов. Подобная теория еще более затрудняла ответ на вопрос, сколько же изомеров может получиться при замещении одного водорода в бензольном ядре.

«Г Кольбе считал, что, кроме бензойной кислоты, существует изомерная ей — салидовая кислота, — пишет Г.В. Быков. — Подобные „факты“, пока они не были опровергнуты, заставляли ученых очень осторожно подходить к выдвижению гипотез о строении ароматических соединений. A.M. Бутлеров в 1864 году ограничился только предположением, что в бензоле „и его производных по крайней мере некоторые из паев углерода соединены между собою большим количеством сродства, чем в углеводороде С6Н14…“ Подобным же образом Кекуле в том же 1864 году относил ароматические соединения и нафталин к соединениям, в которых углеродные атомы соединены предположительно „двумя или, быть может, тремя единицами сродства“.

В первой половине шестидесятых годов стали появляться новые интересные факты, особенно те, которые касались числа заместителей. В 1864 году была показана идентичность метилфенила с толуолом, что уже говорило о равноценности шести атомов углерода в бензоле. Накапливались сведения относительно строения двузамещенных производных бензола: в 1863 году К. Зайцевым была получена третья оксибензойная кислота; в том же году Г. Фишер выделил третью нитробензойную кислоту; в 1864 году Г. Глазивец и Л. Барт синтезировали резорцин, третий представитель двухатомных ароматических спиртов, и т. д. На основании изучения свойств оксибензойных кислот A.M. Бутлеров пришел к выводу, что „химическое строение их отличается только различным помещением алкогольного водяного остатка относительно углерода фенильной группы“. Так, в радикале фениле, соединенном с карбоксильной группой, он различал три атома водорода; при замещении каждого из них гидроксилом получаются три различные оксибензойные кислоты. Таким образом, уже была подготовлена почва для успешного обобщения имеющегося материала.

В 1865 году с таким именно обобщением выступил А. Кекуле, приняв, что атомы углерода в бензольном ядре образуют замкнутую цепь, соединяясь друг с другом попеременно: то при помощи одной пары, то двух пар единиц сродства…»

Август Кекуле (1829–1896) родился в Германии. Мальчик оказался поразительно одаренным. Еще в школе он мог свободно говорить на четырех языках, обладал литературными способностями. По проекту гимназиста Кекуле было построено три дома! После окончания школы Август уехал в Гиссен учиться в университете.

В университете Август впервые услышал имя Юстуса Либиха. Кекуле решил посещать лекции прославленного ученого, хотя и не интересовался химией.

Первая научная работа Кекуле об амилсерной кислоте получила высокую оценку профессора Билля. За нее в июне 1852 года Ученый совет университета присудил ему степень доктора химии.

После окончания университета молодой ученый некоторое время работал в Швейцарии у Адольфа фон Планта, а затем переехал в Лондон, где ему рекомендовали лабораторию Джона Стенхауза.

Вопрос о валентности чрезвычайно занимал Кекуле, и у него постепенно вызревали идеи экспериментальной проверки некоторых теоретических положений, которые он решил изложить в своей статье. В ней Кекуле сделал попытку обобщить и расширить теорию типов, разработанную Жераром.

Весной 1855 года Кекуле покинул Англию и вернулся в Дармштадт. Он посетил университеты Берлина, Гиссена, Геттингена и Гейдельберга, но вакантных мест там не было. Тогда он решил просить разрешения определиться в качестве приват-доцента в Гейдельберге.

Все свободное время Кекуле посвятил исследовательской работе. Свое внимание он сосредоточил на гремучей кислоте и ее солях, строение которых оставалось еще не выясненным.

Ему удалось расширить и дополнить теорию типов. К основным Кекуле добавил еще один — тип метана. Свои выводы он изложил в статье «О конституции гремучей ртути». В статье «О теории многоатомных радикалов» Кекуле сформулировал основные положения своей теории валентности. Он обобщил выводы Франкланда, Уильямсона, Одлинга и разработал вопрос о соединительной способности атомов.

В статье «О составе и превращениях химических соединений и о химической природе углерода» Кекуле обосновал четырехвалентность углерода в органических соединениях. Он также отмечал, что попытка Жерара подвести все химические реакции под один общий принцип — двойной обмен — не оправдана, так как существуют реакции прямого соединения нескольких молекул в одну.

Кекуле выдвинул совершенно новые идеи, идеи об углеродных цепях. Это была революция в теории органических соединений. Это были первые шаги в теории структуры органических соединений.

В конце 1858 года Кекуле уехал в Гент, где продолжил исследовательскую работу.

«…Кекуле принялся за изучение структуры бензола и его производных, требовавшее, прежде всего, отыскания подходящих средств для изложения учебного материала в разделе ароматических соединений, — пишет К. Манолов. — Он хорошо знал книгу Лошмидта, вышедшую в 1861 году, в которой впервые формулы органических соединений были представлены согласно атомной теории. Знал и теорию Бутлерова, которую еще полностью не принимал, но и не мог отвергнуть… Атомы в молекуле взаимно влияют друг на друга, и свойства молекулы зависят от расположения атомов. Кекуле представлял себе углеродные цепи в виде змей. Они извивались, принимали самые различные положения, отдавали или присоединяли атомы, превращаясь в новые соединения. Кекуле обладал большим даром воображения, и, закрывай глаза, он реально представлял картину чудесных превращений одной молекулы в другую. И все-таки представить структуру бензола ему пока не удавалось. Как расположены шесть углеродных и шесть водородных атомов в его молекуле? Кекуле делал десятки предположений, но, поразмыслив, отбрасывал.

Утомленный работой, Кекуле отложил исписанные листы и подвинул кресло к камину. Приятная теплота постепенно окутала тело, и ученый забылся в полудреме. И снова в его сознании возникли шесть углеродных атомов, образуя причудливые фигуры. Шестиатомная „змея“ непрерывно „извивалась“ и вдруг, будто разозленная чем-то, она с ожесточением начала кусать себя за хвост, потом крепко ухватила его за кончик и так замерла. Нет, не змея, это же перстень графини Герлиц, который протягивал Кекуле Юстус Либих. Да, на его ладони лежит перстень — платиновая змея, переплетенная с золотой. Кекуле вздрогнул и очнулся. Какой странный сон! И длился-то всего мгновенье. Но атомы и молекулы не исчезали перед его глазами, он продолжал наяву вспоминать порядок расположения атомов в молекуле, увиденный во сне. Может быть, это и есть решение? Кекуле поспешно набросал на листке бумаги новую форму цепи. Первая кольцевая формула бензола…

Идея бензольного кольца дала новый толчок для экспериментальных и теоретических исследований. Статью „О строении ароматических соединений“ Кекуле послал Вюрцу, который представил ее Парижской Академии наук. Статья была напечатана в „Бюллетене Академии“ в январе 1865 года. Наука обогатилась еще одной новой, исключительно плодотворной теорией строения ароматических соединений.

Дальнейшие исследования в этой области привели к открытию различных изомерных соединений, многие ученые стали проводить опыты по выяснению строения ароматических веществ, предлагали другие формулы бензола… Но теория Кекуле оказалась наиболее правомерной и вскоре утвердилась повсеместно. На основе своей теории Кекуле предсказал возможность существования трех изомерных соединений (орто, мета и пара) при наличии двух заместителей в бензольном кольце. Перед учеными открылось еще одно поле деятельности, появилась возможность синтеза новых веществ. В Германии над этим работали Гофман, Байер, во Франции — Вюрц, в Италии — Канниццаро, в России — Бутлеров и другие».

Формула бензола Кекуле вызвала и многочисленные возражения. Как пишет Г.В. Быков: «А. Клаус в 1867 году обратил внимание на то, что бензол по своим свойствам несходен с этиленом, на который он должен был бы походить судя по формуле Кекуле, и предложил свои формулы с перекрещивающимися связями. А. Ладенбург в 1869 году отметил, что по формуле Кекуле должны существовать два изомера для продуктов замещения при соседних углеродах, и предложил свою, призматическую, формулу.

А. Кекуле еще в 1869 году писал, что он считает эти возражения „не слишком вескими“, и привел ряд реакций, хорошо объяснимых его формулой, которая кажется ему к тому же „элегантней и симметричней“ других. В 1872 году он попытался вообще снять выдвинутые возражения, предложив так называемую осцилляционную гипотезу, согласно которой углеродный атом в какой-то момент соударяется один раз с одним и два раза с другим соседним атомом, а в следующий момент — наоборот. Эти удары, по представлениям Кекуле, соответствуют одинарной и двойной связям.

Дискуссия о строении бензольного ядра продолжалась еще многие годы. Была экспериментально опровергнута призматическая формула А. Ладенбурга, были выдвинуты известные формулы Г. Армстронга и А. Байера, физический смысл которых был еще менее ясен, и т. д. Но для установления строения огромного большинства ароматических соединений это и не имело существенного значения; важны были лишь следующие положения: атомы углерода расположены симметрично (в углах правильного шестиугольника), и все они равноценны друг другу».

ПЕРИОДИЧЕСКИЙ ЗАКОН

В истории развития науки известно много крупных открытий. Но немногие из них можно сопоставить с тем, что сделал Менделеев — крупнейший химик мира. Хотя со времени открытия его закона прошло много лет, никто не может сказать, когда будет до конца понято все содержание знаменитой «таблицы Менделеева».

По словам самого Дмитрия Ивановича Менделеева, открытию периодического закона способствовало накопление «к концу 60-х годов таких новых сведений о редких элементах, которые открыли их разносторонние связи между собой и другими элементами». Можно перечислить и ряд других данных, которые дополняли представления о сходстве элементов и их свойствах: изучение изоморфизма, введение понятия о валентности, разработка новых способов определения атомных масс, обсуждение гипотезы Праута и др. И действительно, уже в пятидесятые—шестидесятые годы появилось свыше десятка заслуживающих внимания попыток найти систему элементов.

Все чаще в некоторых работах появляются мысли о необходимости классификации химических элементов. Так, в работе А. Беренфельда указывается, что серьезное значение имеет изучение редких элементов: «…они все более и более пополняют пробелы между известными… телами природы и помогают составить из этих тел непрерывный ряд, в котором всякий элемент имел бы свое определенное место».

Особенно интересна в этом отношении диссертация Н. Алышевского (1865), который писал: «В последнее время при громадном обилии материалов в химии все более и более пробивается стремление систематизировать, группировать выработанные факты. Современные химики пришли к заключению, что многие химические элементы, весьма различные по своим наружным физическим свойствам, в своих химических функциях очень сходны, даже тождественны между собой». И еще: «Если… естественные группы установятся в неорганической химии для всех, пока еще разрозненных, химически неделимых тел, тогда изучение реакций этих облегчится в высшей степени, а с тем вместе представится возможность сделать те выводы, установить такие законы, которые до сих пор были уделом только одной органической химии».

Сам Н. Алышевский провел сравнение некоторых свойств на основе положения элементов в их естественных группах.

Но если уровень знаний эпохи объективно определил возможность научного решения проблемы, то от уровня знаний ученого и его мировоззрения зависело превратить эту возможность в действительность. Это не случайно удалось осуществить Менделееву.

Дмитрий Менделеев (1834–1907) родился в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. Воспитывала его мать, поскольку отец будущего химика ослеп вскоре после рождения своего сына.

Осенью 1841 года Митя поступил в Тобольскую гимназию. Он был принят в первый класс с условием, что останется там два года, пока ему не исполнится восемь лет.

Несчастья преследовали семью Менделеевых. Осенью 1847 года умер отец, а через три месяца — сестра Аполлинария. Весной 1849 года Митя окончил гимназию, и Марья Дмитриевна, распродав имущество, вместе с детьми отправилась сначала в Москву, а затем в Петербург. Ей хотелось, чтобы младший сын поступил в университет.

Лишь по ходатайству матери 9 августа 1850 года Дмитрий был зачислен студентом Главного педагогического института в Петербурге по физико-математическому факультету.

Первый научный труд Менделеева «Химический анализ ортита из Финляндии» был опубликован в 1854 году, на следующий год он окончил институт. В мае 1855 года Ученый совет присудил Менделееву титул «Старший учитель» и наградил золотой медалью. Врачи рекомендовали ему сменить нездоровый петербургский климат и уехать на юг.

В Одессе Менделеева назначили преподавателем математики, физики и естественных наук в гимназию при Ришельевском лицее. Много времени он отдавал работе над магистрской диссертацией, в которой рассматривал проблему «удельных объемов» с точки зрения унитарной теории Жерара, полностью отбросив дуалистическую теорию Берцелиуса. Эта работа показала удивительную способность Менделеева к обобщению и его широкие познания в химии.

Осенью Менделеев блестяще защитил диссертацию, с успехом прочел вступительную лекцию «Строение силикатных соединений» и в начале 1857 года стал приват-доцентом при Петербургском университете.

В 1859 году он был командирован за границу. Два года Менделеев провел в Германии, где организовал собственную лабораторию. В конце февраля 1861 года Менделеев приехал в Петербург. Найти преподавательскую работу в середине учебного года было невозможно. И он решается написать учебник органической химии. Вышедший вскоре в свет учебник, а также перевод «Химической технологии» Вагнера принесли Менделееву большую известность.

1 января 1864 года Менделеев получил назначение на должность штатного доцента органической химии Петербургского университета. Одновременно с этой должностью Менделеев получил место профессора в Петербургском технологическом институте. Теперь забот о материальном обеспечении семьи стало меньше, и Менделеев приступил к работе над докторской диссертацией.

Защита диссертации состоялась 31 января 1865 года. Через два месяца Менделеев был назначен экстраординарным профессором по кафедре технической химии Петербургского университета, а в декабре — ординарным профессором.

В то время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал современный уровень развития химической науки. Эта идея захватила Менделеева. Одновременно он начал собирать материал для второго выпуска учебника, куда должно было войти описание химических элементов.

Менделеев тщательно изучил описание свойств элементов и их соединений. Но в каком порядке их проводить? Никакой системы расположения элементов не существовало. Тогда ученый сделал картонные карточки. На каждую карточку он заносил название элемента, его атомный вес, формулы соединений и основные свойства. Постепенно корзина наполнялась карточками, содержащими сведения обо всех известных к этому времени элементах. И все равно долгое время ничего не получалось. Говорят, что периодическую таблицу элементов ученый увидел во сне, оставалось ее лишь записать и обосновать.

Но, конечно же, открытие было совершено им не случайно, так как в его деятельности органически сочетались теория и практика, знание физической стороны явления, математическая интуиция и философское осмысление. Кроме того, Менделеев умел критически относиться к работам своих предшественников и современников. Не пересыщая себя информацией, он как бы пропускал полученные уже данные через призму еще не сформировавшейся до конца концепции и, подобно скульптору, отсек все лишнее.

Постепенно Менделеев понял, что с изменением атомного веса меняются и свойства элементов. Приближался к концу февраль 1869 года. Через несколько дней рукопись статьи, содержащей таблицу элементов, была закончена и сдана в печать.

1 марта 1869 года Д.И. Менделеев отправил в типографию листок, на котором был записан его «Опыт системы — элементов, основанной на их атомном весе и химическом сходстве». Через две недели он представил в Русское химическое общество статью «Соотношение свойств с атомным весом элементов». Сообщение об открытии Менделеева было сделано редактором «Журнала Русского химического общества» профессором Н.А. Меншуткиным на заседании общества 6 марта 1869 года. Сам Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества он обследовал сыроварни Тверской и Новгородской губерний.

С того дня, когда за простыми рядами символов химических элементов Менделеев увидел проявление закона природы, другие проблемы отошли на задний план. Он забросил работу над учебником «Основы химии», не занимался и исследованиями. Распределение элементов в таблице казалось ему несовершенным. По его мнению, атомные веса во многих случаях были определены неточно, и поэтому некоторые элементы не попадали на места, соответствующие их свойствам. Взяв за основу периодический закон, Менделеев изменил атомные веса этих элементов и поставил их в один ряд со сходными по свойствам элементами.

В статье, вышедшей на немецком языке в «Анналах», издаваемых Либихом, Менделеев отвел большое место разделу «Применение периодического Закона для определения свойств еще не открытых элементов». Он предсказал и подробно описал свойства трех неизвестных еще науке элементов — эка-бора, эка-алюминия и эка-кремния.

Казалось, для Менделеева вопрос о периодическом законе был исчерпан. Но однажды осенью 1875 года, когда Менделеев просматривал доклады Парижской Академии наук, взгляд его упал на сообщение Лекока де Буабодрана об открытии нового элемента, названного им галлием. Однако французский исследователь указал удельный вес галлия — 4,7, а по вычислениям Менделеева у эка-алюминия получалось 5,9. Менделеев решил написать ученому, указав, что, судя по свойствам открытого им галлия, это не что иное, как предсказанный в 1869 году эка-алюминий.

И, действительно, более точные определения удельного веса галлия дали значение 5,94. Открытие галлия вызвало настоящую сенсацию среди ученых. Имена Менделеева и Лекока де Буабодрана сразу стали известны всему миру. Ученые, воодушевленные первым успехом, начали искать остальные, еще не открытые элементы, которые были предсказаны Менделеевым. В десятках лабораторий Европы закипела работа, сотни ученых мечтали о необыкновенных открытиях.

И успехи не заставили себя долго ждать. В 1879 году профессор Ларе Фредерик Нильсон, работавший в Упсальском университете (Швеция), открыл новый элемент, полностью соответствующий описанному Менделеевым эка-бору. Он назвал его скандием. Повторное доказательство предсказаний Менделеева вызвало настоящий триумф. Вскоре стали поступать сообщения об избрании Менделеева почетным членом различных европейских университетов и академий.

Прекрасным подтверждением менделеевского закона явилась и открытая Рамзаем группа инертных газов, давшая возможность включить в систему «нулевую» группу — пограничную между щелочными металлами и металлоидами. Сам Менделеев писал об «укрепителях» закона: «Писавши в 1871 году статью о приложении периодического закона к определению свойств еще неоткрытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: эка-бор, эка-алюминий и эка-силиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми и получившими свои имена от тех трех стран, где найдены редкие минералы, их содержащие, и где сделано их открытие: галлия, скандия и германия. Л. де Буабодрана, Нильсона и Винклера, их открывших, я, с своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне в такой же мере я считаю Рамзая утвердителем справедливости периодического закона…» Сегодня ясно, что в менделеевском открытии слились воедино три линии развития химии: поиски систематики различных объектов химии (от атомов до кристаллов) в их взаимосвязи — понятие «химический элемент» их объединило; изучение индивидуальности элементов, особенно мало применявшихся тогда редких элементов, что позволило раскрыть понятие элемент-аналогии; изучение взаимосвязи свойств с составом и строением соединений, что привело к формированию целостного учения о периодичности.

СТЕРЕОХИМИЯ

«Идеи относительно пространственного устройства мельчайших частиц материи стали высказываться с тех пор, как в науке появилось само представление о молекулах и составляющих их атомах, — пишет В.М. Потапов. — Так, еще Дж. Дальтон в начале XIX века говорил о возможных шарообразных, тетраэдрических, гексаэдрических формах в атомистике».

Примерно в то же самое время В. Волластон обращал внимание на необходимость рассматривать расположение атомов в пространстве и указывал, что «устойчивое равновесие» при соединении атомов двух видов в соотношении 1:4 достигается при тетраэдрическом их расположении. Однако на возможность познать «геометрическое расположение первичных частичек» Волластон смотрел пессимистично. Мысли о возможности различного расположения атомов в молекулах неоднократно высказывались в начале XIX века рядом ученых в связи с обсуждением проблем изомерии…

Так, в 1831 году Я. Берцелиус писал, что «существуют тела, составленные из одинакового числа атомов тех же элементов, но расположенных неодинаковым образом и поэтому имеющих неодинаковые химические свойства и неодинаковую кристаллическую форму».

Уже в конце сороковых годов Л. Гмелин отмечал: «Атомы не располагаются, как это выражается формулой, в одном ряду… а приближаются, на основании сродства, по возможности ближе друг к другу, вследствие чего они образуют более или менее регулярные фигуры. Поэтому чрезвычайно важно определить это расположение атомов… ибо от этого, может быть, прольется больше света на кристаллическую форму, изомерию… на конституцию органических соединений».

Знаменитый русский химик A.M. Бутлеров в ряде своих ранних работ также высказывал интересные мысли о пространственном строении молекул: «…я не верю, что невозможно, как это думает Кекуле, представить на плоскости положение атомов в пространстве».

Это высказывание 1864 года, а двумя годами ранее Бутлеров говорил о тетраэдрическом расположении заместителей вокруг углеродного атома: «…возьмем грубый пример и, предположив, что у четырехатомного пая углерода все 4 единицы сродства различны, представим его себе в виде тетраэдра, у которого каждая из 4-х плоскостей способна связать 1 пай водорода…» Тем не менее нет оснований причислять Бутлерова к основателям стереохимии.

П.И. Вальден рассуждает: «Почему, спрашивается, потребовалось еще 25 лет, чтобы лишь в 1874 году возникла стереохимия?.. Ответ может быть легко дан: идея появилась ранее фактов! Факты, наблюдения — вот та питательная среда, в которой существует и развивается, а по мере надобности, в зависимости от накопления фактов, трансформируется идея».

Явления, непосредственно послужившие толчком для зарождения стереохимии, были открыты в одной из пограничных областей физики и химии при исследовании взаимодействия света и вещества.

Сначала был открыт поляризованный свет. Дальнейшие его исследования выполнил французский ученый и политический деятель Доминик Франсуа Араго (1786–1853). В 1811 году ему удалось обнаружить, что кварц обладает способностью вращать плоскость поляризации света. Араго назвал подобное явление оптической активностью. Становилось все более очевидным, что такая способность связана с кристаллическим состоянием. Ведь стоит растворить кварц, и он теряет оптическую активность.

Через четыре года следующий шаг сделал Ж. Б. Био, установивший, что оптической активностью обладает и целый ряд органических жидкостей. Ясно, что здесь объяснение надо было искать уже не в особенностях кристалла, а в свойствах самого вещества.

Дальнейший прогресс связан с работами Луи Пастера. Отправной точкой стереохимических работ Пастера стали кристаллографические исследования солей винной кислоты.

В.М. Потапов так описывает этот процесс: «На первом этапе исследований оптически активных веществ считали, что кристаллы их всегда гемиэдричны, т. е. могут существовать в двух формах, относящихся друг к другу как предмет к своему зеркальному изображению. Единственным кажущимся исключением из этого правила явились кристаллы правовращающей винной кислоты, которые, по данным немецкого химика Э. Митчерлиха, оказались негемиэдричными, полностью совпадающими по форме с кристаллами оптически неактивного изомера — виноградной кислоты.

В 1848 году Л. Пастер повторил эксперимент Э. Митчерлиха и обнаружил гемиэдрию в кристаллах натриевоаммониевой соли виноградной (оптически неактивной) кислоты. При этом оказалось, что одновременно встречаются кристаллы двух зеркальных форм. Отделив их пинцетом Друг от друга и отдельно растворив в воде, Пастер обнаружил, что оба раствора оптически активны, причем один вращает плоскость поляризации вправо, как природная винная кислота, а другой — влево. Таким образом, впервые было показано, что оптически неактивное вещество — виноградная кислота — является смесью двух оптически активных компонентов: право- и левовращающей винной кислоты».

Все приведенные выше достижения подготовили триумф Якоба Генри Вант-Гоффа (1852–1911). Он родился в Голландии в Роттердаме в семье врача. Окончив школу, Генри поступил в семнадцать лет в Политехнический институт в Дельфте. В конце второго курса он сдает экзамены уже за третий.

Вант-Гофф считает, что высшего образования недостаточно, и решает работать над докторской диссертацией. Для этого он решает продолжить образование в университете в Лейдене. Однако ему там решительно не понравилось, и Генри едет в Бонн к знаменитому химику Кекуле.

После открытия молодым ученым пропионовой кислоты Кекуле порекомендовал своему ученику поехать в Париж к профессору Вюрцу, специалисту по органическому синтезу.

В Париже Генри сблизился с французским химиком-технологом Жозефом Ашилем Ле Белем (1847–1930). Оба заинтересованно следили за исследованиями в области оптической изомерии, которые проводил Пастер.

А далее… Вот что пишет в своей книге «Великие химики» К. Манолов: «В Утрехтском университете была богатая библиотека. Здесь Генри познакомился со статьей профессора Иоганнеса Вислиценуса о результатах исследования молочной кислоты.

Он взял листок бумаги и начертил формулу молочной кислоты. В центре молекулы — опять один асимметрический углеродный атом. В сущности, если четыре различных заместителя заменить атомами водорода, получится молекула метана. Представим, что атомы водорода в молекуле метана расположены в одной плоскости с атомом углерода. Вант-Гофф был поражен неожиданно возникшей мыслью. Он оставил статью недочитанной и вышел на улицу. Вечерний ветерок теребил его белокурые волосы, он ничего не замечал вокруг — перед глазами стояла только что изображенная им формула метана.

Но насколько вероятно, что все четыре водорода расположены в одной плоскости? В природе все стремится к состоянию с минимальной энергией. В данном случае это происходит лишь тогда, когда атомы водорода располагаются в пространстве равномерно вокруг углеродного атома. Вант-Гофф мысленно представил, как могла бы выглядеть молекула метана в пространстве. Тетраэдр! Конечно же, тетраэдр! Это наиболее выгодное расположение! А если атомы водорода заменить четырьмя различными заместителями? Они могут занять два различных положения в пространстве. Неужели это и есть решение загадки? Вант-Гофф бросился назад, в библиотеку. Как такая простая мысль до сих пор не пришла ему в голову? Различия в оптических свойствах веществ связаны прежде всего с пространственным строением их молекул.

На листке бумаги возле формулы молочной кислоты появилось два тетраэдра, причем один был зеркальным отображением другого.

Вант-Гофф ликовал. Молекулы органических соединений имеют пространственное строение! Это же так просто… Как это никто до сих пор не догадался? Он должен немедленно изложить свою гипотезу и опубликовать статью. Не исключена ошибка, но если его догадка окажется верной… Вант-Гофф достал чистый лист бумаги и написал заголовок будущей статьи: „Предложение применять в пространстве современные структурно-химические формулы вместе с примечанием об отношении между оптической вращательной способностью и химической конструкцией органических соединений“. Название получилось довольно длинным, но оно точно отражало поставленную цель и основной вывод.

„Я позволю себе в этом предварительном сообщении выразить кое-какие мысли, которые могут вызвать дискуссию“, — начал свою статью Вант-Гофф.

Намерения автора были самыми прекрасными, идеи оригинальными и многообещающими, но небольшая статья, напечатанная на голландском языке, осталась не замеченной европейскими учеными. Один только Бюи Балло, профессор физики в Утрехтском университете, оценил ее по достоинству».

Прошло лишь два месяца, как друг Вант-Гоффара — Ж.Ле Бель опубликовал свою работу. В ней появление оптической активности он объяснял пространственными особенностями строения молекул примерно так же, как это сделал ранее голландский ученый. Но работы не были совсем идентичны. «Наиболее существенное отличие заключалось в том, — пишет Потапов, — что Вант-Гофф говорил о направленности валентностей углеродного атома, пользуясь четкой геометрической картиной тетраэдра, а Ле Бель представлял валентности как некую неориентированную центростремительную силу. Возникающая вокруг углеродного атома группировка заместителей может быть, по Ле Белю, различной в зависимости от природы этих заместителей, но не обязательно тетраэдрической. В приложении к объяснению причин оптической активности при наличии так называемого асимметрического атома оба подхода давали одинаковый результат, однако более четко сформулированная теория Вант-Гоффа оказалась значительно плодотворнее при объяснении ряда других факторов».

Саму идею пространственного строения молекул голландец развил не только для того, чтобы объяснить явления оптической изомерии. «В своей статье, — продолжает Манолов, — он дал простое объяснение и геометрической изомерии. Рассмотрев строение фумаровой и малеиновой кислот, он схематически показал, что две их карбоксильные группы могут находиться с одной или с двух противоположных сторон относительно плоскости двойной связи между атомами углерода».

Новая статья Вант-Гоффа «Химия в пространстве», где он высказал все эти соображения, послужила началом нового этапа в развитии органической химии. Вскоре после ее выхода из печати, в ноябре 1875 года, Вант-Гофф получил письмо от профессора Вислиценуса, который преподавал органическую химию в Вюрцбурге и был одним из известнейших специалистов в этой области. «Я хотел бы получить согласие на перевод Вашей статьи на немецкий язык моим ассистентом доктором Германом, — писал Вислиценус. — Ваша теоретическая разработка доставила мне большую радость. Я вижу в ней не только чрезвычайно остроумную попытку объяснить до сих пор непонятные факты, но верю также, что она в нашей науке… приобретет эпохальное значение».

Перевод статьи вышел в свет в 1876 году. К этому времени Вант-Гоффу удалось получить место ассистента физики в Ветеринарном институте в Утрехте.

Особая «заслуга» в популяризации новых взглядов Вант-Гоффа принадлежала профессору Герману Кольбе из Лейпцига, который высказался против статьи, и притом в довольно резком тоне. В своих замечаниях по поводу статьи Вант-Гоффа он написал: «Какой-то доктор Я. Г. Вант-Гофф из Ветеринарного института в Утрехте, видимо, не имеет вкуса к точным химическим исследованиям. Ему значительно удобнее воссесть на Пегаса (вероятно, взятого напрокат в Ветеринарном институте) и провозгласить в своей „Химии в пространстве“, что, как ему показалось во время смелого полета к химическому Парнасу, атомы расположены в межпланетном пространстве». Естественно, каждого, кто прочел эту резкую отповедь, заинтересовала теория Вант-Гоффа. Так началось ее быстрое распространение в научном мире. Теперь Вант-Гофф мог бы повторить слова своего кумира Байрона: «Однажды утром я проснулся знаменитостью». Через несколько дней после опубликования статьи Кольбе Вант-Гоффу была предложена должность преподавателя в Амстердамском университете, а с 1878 года он становится профессором химии.

«АШ-ТЕОРЕМА»

Людвиг Больцман, автор «аш-теоремы», без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

ЛюдвигЭдуард Больцман родился в Вене 20 февраля 1844 года.

Людвиг учился блестяще, а мать поощряла его разнообразные интересы, дав ему всестороннее воспитание. В 1863 году Больцман поступил в Венский университет, где изучал математику и физику.

Тогда максвелловская электродинамика представляла собой новейшее достижение теоретической физики. Неудивительно, что и первая статья Людвига была посвящена электродинамике. Однако уже во второй своей работе, опубликованной в 1866 году в статье «О механическом значении второго начала термодинамики», где он показал, что температура соответствует средней кинетической энергии молекул газа, определились научные интересы Больцмана.

Осенью 1866 года, за два месяца до получения докторской степени, Больцман был принят в Институт физики на должность профессора-ассистента. В 1868 году Больцману было присвоено право чтения лекций в университетах, а годом позже он стал ординарным профессором математической физики в университете в Граце. В этот период он помимо разработки своих теоретических идей занимался и экспериментальными исследованиями связи между диэлектрической постоянной и показателем преломления с целью получить подтверждение максвелловской единой теории электродинамики и оптики. Для своих экспериментов он дважды брал в университете краткий отпуск, чтобы поработать в лабораториях Бунзена и Кенигсбергера в Гейдельберге и Гельмгольца и Кирхгофа в Берлине. Результаты этих исследований были опубликованы в 1873–1874 годах.

Больцман принимал также активное участие в планировании новой Физической лаборатории в Граце, директором которой он стал в 1876 году.

Еще в 1871 году Больцман указал, что второй закон термодинамики может быть выведен из классической механики только с помощью теории вероятности. В 1877 году в «Венских сообщениях о физике» появилась знаменитая статья Больцмана о соотношении между энтропией и вероятностью термодинамического состояния. Ученый показал, что энтропия термодинамического состояния пропорциональна вероятности этого состояния и что вероятности состояний могут быть рассчитаны на основании отношения между численными характеристиками соответствующих этим состояниям распределений молекул.

Необратимые процессы в природе, по Больцману, есть процессы перехода из менее вероятного состояния в более вероятное. Обратимые переходы не возможны, а маловероятны. Поэтому и энтропия должна быть связана с вероятностью данного состояния системы. Эта связь была установлена Больцманом в его так называемой Н-теореме.

«Аш-теорема» стала вершиной учения Больцмана о мироздании. Формула этого начала была позднее высечена в качестве эпитафии на памятнике над его могилой. Эта формула очень схожа по своей сути с законом естественного отбора Чарлза Дарвина. Только «Аш-теорема» Больцмана показывает, как зарождается и протекает «жизнь» самой Вселенной.

«Точно так же, как дифференциальные уравнения представляют лишь математический метод вычисления и их подлинный смысл, — пишет Больцман, — можно понять только с помощью представлений, основанных на большом конечном числе элементов, наряду с общей термодинамикой, и не умаляя ее важности, которая никогда не может поколебаться, развитие механических представлений, делающих ее наглядной, способствует углублению нашего познания природы, причем не вопреки, а именно благодаря тому, что они не во всех пунктах совпадают с общей термодинамикой, они открывают возможности новых точек зрения». Эти новые точки зрения заключаются в том, что переходы системы из одного состояния в другое подчиняются законам теории вероятностей.

«Введение теории вероятностей в рассмотрение механических систем (а частицы тела в теории Больцмана подчиняются законам механики), — пишет в своей книге П.С. Кудрявцев, — кажется противоречием. Динамическая закономерность, с которой имеет дело механика, представлялась настолько определенной, что уже Лаплас считал, что если бы уму было доступно знание расположения всех частиц Вселенной в данный момент и сил, действующих между ними, то он при наличии у него способности к математической обработке этих данных смог бы с достоверностью предвидеть будущее Вселенной, равно как и усмотреть ее прошедшее. Каким же образом законы механики в кинетической теории приводят к статистике? Больцман отвечает на этот вопрос: причина статистики заключена в самой механике, в начальных условиях. Ничтожные шероховатости стенок сосуда, о которые ударяются молекулы газа, достаточны, чтобы внести хаос в первоначальный порядок, если бы он имел место. Законы сохранения при соударении двух молекул оставляют полный простор для направлений скоростей после удара. Все это приводит к тому, что именно вследствие механических взаимодействий молекул упорядоченное их движение становится невероятным, а хаотическое наиболее вероятным».

Развитие этого хода мыслей привело Больцмана к новой точке зрения на второй закон термодинамики. Этот закон Больцман формулирует следующим образом: «Когда произвольная система тел будет предоставлена самой себе и не подвержена действию других тел, то всегда может быть указано направление, в котором будет происходить каждое изменение состояния». Это направление может быть характеризовано изменением некоторой функции состояния — энтропией, которая изменяется с изменением состояния системы в сторону возрастания. Отсюда вывод, «что всякая замкнутая система тел стремится к определенному конечному состоянию, для которого энтропия будет максимум!»

Как же примирить эту направленность с обратимостью уравнений механики? Действительно ли природа неумолимым роком приближается к своему естественному концу — «тепловой смерти»?

Больцман впервые дал статистическую интерпретацию второго закона, вскрыл его вероятностный характер. Противоречия между обратимостью уравнений механики и необратимостью процессов в замкнутой механической системе нет. Представим себе барабан, заполненный наполовину белыми и наполовину черными шарами, лежащими одни поверх других. Если привести барабан во вращение, то в силу механических законов шары будут перемешиваться и, в конце концов, белые и черные шары перемешаются равномерно, дадут во всем объеме одинаковую «пестроту». Совокупность шаров перешла из менее вероятного состояния в более вероятное.

Немецкий физик Клаузиус сделал выводы из второго начала термодинамики о неизбежности тепловой смерти. Эти мысли были взяты на вооружение не только многими физиками, главным образом к ним обратились философы, получившие мощные, казалось, неоспоримые аргументы в пользу идеалистических концепций о начале и конце мира, в том числе и в пользу эмпириокритицизма, учения Э. Маха и «энергетического» учения В. Оствальда.

Своей «Аш-теоремой» неукротимый Людвиг Больцман заявил: «Тепловая смерть — блеф. Никакого конца света не предвидится. Вселенная существовала и будет существовать вечно, ибо она состоит не из наших „чувственных представлений“, как полагают эмпириокритики, и не из разного рода энергий, как полагают оствальдовцы, а из атомов и молекул, и второе начало термодинамики надо применять не по отношению к какому-то „эфиру“, духу или энергетической субстанции, а к конкретным атомам и молекулам».

Вокруг «Аш-теоремы» Людвига Больцмана мгновенно разгорелись не меньшие по накалу дискуссии, чем по тепловой смерти. «Аш-тео-рема» и выдвинутая на ее основе флуктуационная гипотеза были препарированы со всей тщательностью и скрупулезностью и, как и следовало ждать, обнаружили в себе зияющие, непростительные, казалось бы, для такого великого ученого, как Больцман, изъяны.

Оказалось, что если принять за истину гипотезу Больцмана, то надо принять за веру и такое чудовищное, не укладывающееся ни в какие рамки здравого смысла допущение: рано или поздно, а точнее уже сейчас, где-то во Вселенной должны идти процессы в обратном второму началу направлении, то есть тепло должно переходить от более холодных тел к более горячим! Это ли не абсурд.

Больцман этот «абсурд» отстаивал, он был глубоко убежден, что такой ход развития Вселенной наиболее естественный, ибо он является неизбежным следствием ее атомного строения.

Вряд ли «Аш-теорема» получила бы такую известность, если бы была выдвинута каким-нибудь другим ученым. Но ее выдвинул Больцман, умевший не только увидеть за занавесом скрытый от других мир, но умевший защищать его со всей страстью гения, вооруженного фундаментальными знаниями, как физики, так и философии.

Кульминацией драматических событий между физиком-материалистом и махистами, видимо, следует считать съезд естествоиспытателей в Любеке в 1895 году, где Людвиг Больцман своим друзьям-врагам дал генеральное сражение. Он одержал победу, но в результате после съезда ощутил еще большую пустоту вокруг себя. В 1896 году Больцман написал статью «О неизбежности атомистики в физических науках», где выдвинул математические возражения против оствальдовского энергетизма.

Вплоть до 1910 года самое существование атомистики все время оставалось под угрозой. Больцман боролся в одиночку и боялся, что дело всей его жизни окажется в забвении. В конце концов, Больцман не выдержал колоссального напряжения, впал в глубокую депрессию и 5 сентября 1906 года покончил жизнь самоубийством.

Весьма прискорбно, что он не дожил до воскрешения атомизма и умер с мыслью, что о кинетической теории все забыли. Однако многие идеи Больцмана уже нашли свое разрешение в таких поразительных открытиях, как ультрамикроскоп, эффект Доплера, газотурбинные двигатели, освобождение энергии атомного ядра. И это все лишь отдельные следствия атомного строения мира.

ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

История возникновения теории электролитической диссоциации связана с именем шведского физико-химика Сванте Аррениуса (1859–1927). В 1882 году он окончил университет в Упсале. В 1895 году становится профессором физики Стокгольмского университета. С 1896 по 1905 год Аррениус был ректором этого университета. Его перу принадлежит 200 научных работ в области химии, физики, геофизики, метеорологии, биологии, физиологии.

Интересно, что идея, ставшая основой этой теории, возникла на основе опытов, поставленных для решения совершенно иной проблемы.

Как рассказывает Ю.И. Соловьев, «еще студентом Упсальского университета С. Аррениус, слушая лекции своего учителя профессора П. Т. Клеве, узнал, что определить молекулярную массу таких веществ, которые, подобно тростниковому сахару, не переходят в газообразное состояние, невозможно. Чтобы принести химии „большую пользу“, молодой ученый принимает решение определить электропроводность солей в растворах, содержащих наряду с водой большое количество неэлектролитов. При этом он исходил из принципа, что сопротивление раствора электролита тем больше, чем больше молекулярная масса растворителя. Таков был первоначальный план работы.

Но в результате первых наблюдений С. Аррениус теряет интерес к задуманной теме. Его увлекает новая мысль. Что происходит с молекулой электролита в растворе? Молодой ученый сознавал, что успешное решение этого вопроса позволит пролить яркий свет на темную область растворов. Так вместо определения молекулярной массы растворенного неэлектролита С. Аррениус начинает интенсивно изучать состояние молекулы электролита в растворе.

Работа в новом направлении уже вскоре дала прекрасные результаты. Данные, полученные при измерении электропроводности водных растворов электролитов различной концентрации, позволили С. Аррениусу сделать смелый вывод: молекулы электролита диссоциируют на ионы без воздействия тока, причем степень диссоциации растет с разбавлением. Как сейчас нам представляется, это был, казалось бы, очевидный и простой вывод из экспериментальных данных. Но совершенно не простым он был для С. Аррениуса, ибо этот вывод разрушал твердые, „как гранит“, традиционные представления о состоянии молекул солей, кислот и оснований в растворе».

Аррениус не мог не понимать, что он, молодой химик, поднимает руку на химические «устои». Но это не смутило его. В своей докторской диссертации (1883) он делает исключительный по своему значению вывод: «Коэффициент активности электролита указывает на фактически имеющееся в растворе число ионов, отнесенное к тому числу ионов, которое было бы в растворе в случае, если электролит полностью расщеплен на простые электролитические молекулы…

Соль расщепляется полностью, когда количество воды в растворе бесконечно велико».

Однако до создания полноценной теории электролитической диссоциации оставалось еще четыре года.

Большое значение для дальнейшего развития теории диссоциации имела известная работа Вант-Гоффа «Химическое равновесие в системах газов и разбавленных растворов» (1885), в которой было установлено, что реальное понижение температуры плавления, давления пара и осмотического давления солей, кислот и оснований меньше, чем рассчитанное теоретически по закону Рауля. Эти несоответствия подтверждали положения теории диссоциации, согласно которым электролит в водном растворе распадается на свободно перемещающиеся ионы.

Весной 1887 года Аррениус работал в Вюрцбурге у Ф. Кольрауша. «Незадолго до того как я покинул Вюрцбург (март 1887 года), — вспоминал Аррениус, — я получил напечатанную Шведской Академией наук работу Вант-Гоффа. Я просмотрел ее в один вечер, закончив ежедневную работу в институте. Мне сразу стало ясно, что отклонение электролитов в водном растворе от законов Вант-Гоффа — Рауля о понижении точки замерзания является самым веским доказательством их распада на ионы. Теперь передо мной было два пути для вычисления степени диссоциации: с одной стороны, посредством понижения точки замерзания, с другой — из проводимости. Оба они в подавляющем большинстве случаев дали один и тот же результат, и я мог открыто говорить о диссоциации электролитов».

В письме к Вант-Гоффу в марте 1887 года шведский ученый писал: «Обе теории находятся еще в самом начале своего развития, и я надеюсь живейшим образом, что в ближайшем будущем между обеими областями будет перекинут не один, а несколько мостов». Так и случилось.

В 1887 году появилась знаменитая статья Аррениуса «О диссоциации растворенных в воде веществ». Она вызвала восторг у одних и негодование у других. Здесь ученый с уверенностью заявляет, что молекулы электролитов (соли, кислоты, основания) распадаются в растворе на электрически заряженные ионы.

Аррениус нашел формулу для определения степени электролитической диссоциации. Тем самым он превратил чисто качественную гипотезу в количественную теорию, которая могла быть проверена экспериментально.

После того как были созданы основные положения этой теории, Аррениус показал ее применимость в различных областях естествознания. За разработку теории электролитической диссоциации Аррениус в 1903 году был удостоен Нобелевской премии.

После 1887 года исследования С. Аррениуса, В. Оствальда, Н. Нернста, М. Леблана и других ученых не только подтвердили справедливость основных положений теории электролитической диссоциации, но и значительно расширили число отдельных фактов, которые можно обосновать теорией.

В 1888 году Вальтер Фридрих Нернст (1864–1941), профессор физической химии в Геттингене и Берлине, лауреат Нобелевской премии по химии 1920 года за открытие третьего закона термодинамики, сравнив скорость диффузии ионов со скоростью движения ионов при электролизе, показал, что эти числа совпадают. В 1889 году на основе теории осмотического давления и теории электролитической диссоциации Нернст разработал осмотическую теорию возникновения гальванического тока.

Согласно этой теории, при концентрации ионов металла (электрода) выше, чем их концентрация в растворе ионы переходят в раствор. При концентрации ионов выше в растворе, они осаждаются на электроде и отдают свой заряд. Но в обоих случаях на пути ионов встречаются двойные электрические слои. Их заряд тормозит осаждение ионов или растворение данного металла.

«В этих простых положениях, — заметил Оствальд, — заключается вся теория осадков, и все явления как уменьшения, так и ненормального увеличения растворимости находят свое объяснение и наперед могут быть предсказаны в каждом отдельном случае».

Вильгельм Фридрих Оствальд (1853–1932) родился в Риге в семье немецкого ремесленника-бондаря. Мальчик учился в реальной гимназии, а затем поступил в университет Дерпта. После завершения химического образования Оствальд был оставлен там ассистентом А. Эттин-гена (1875). В 1878 году Оствальд защитил докторскую диссертацию «Объемно-химические и оптико-химические исследования», в которой начал систематически применять физические методы для решения химических проблем.

В 1881 году он стал профессором Рижского политехнического училища. Оствальд занимался измерением химического сродства, проводил калориметрические исследования, изучал химическую динамику. Проблемы теории растворов и электрохимии вышли на первый план в творчестве Оствальда уже в начале его исследовательской деятельности.

В 1885–1887 годах Оствальд опубликовал двухтомный «Учебник общей химии», где изложил основные положения учения об ионах, от признания которого тогда отказывалось большинство химиков, и подчеркнул значение физической химии как самостоятельной науки. Появление этого учебника и основание совместно с Аррениусом и Вант-Гоффом в 1887 году «Журнала физической химии» не только обеспечило самостоятельность новой научной дисциплины, но и подготовило путь проникновения физики во все области химии.

Исследуя электропроводность кислот при различных разбавлениях, Аррениус еще в 1884–1886 годах установил, что электропроводность кислот увеличивается с разбавлением — асимптотически приближается к некоторой предельной величине. Им было найдено, что для растворов слабых кислот (янтарной и др.) и оснований увеличение молекулярной электропроводности с разбавлением гораздо заметнее, чем для кислот сильных, например серной и др.

В 1888 году он предложил способ определения основности кислот по величине электропроводности их растворов и показал, что скорость химической реакции в растворах зависит только от диссоциированной части растворенного вещества (от концентрации ионов).

В том же году Оствальд вывел для бинарных слабых электролитов зависимость, которую назвал законом разбавления. В этом частном случае закона действующих масс сформулированы соотношения между константой диссоциации электролита, электропроводностью и концентрацией раствора. Новый закон стал основным для химии водных растворов. В одной из работ Оствальд дал математическую формулировку закона разбавления.

«Закон разбавления В. Оствальда, — пишет Ю.И. Соловьев, — подтверждал теорию электролитической диссоциации и позволял определять зависимость степени диссоциации молекул электролита от концентрации раствора. В дальнейшем этот закон подвергался неоднократно проверке. Было найдено, что для сильных электролитов и концентрированных растворов он неприменим. Потребовались многочисленные исследования ученых конца XIX и начала XX века, чтобы объяснить причину неподчинения сильных электролитов закону разбавления. Плодотворность теории электролитической диссоциации особенно ярко проявилась в том, что она с успехом была использована для объяснения механизма многих химических реакций и природы различных соединений, например комплексных».

В 1889 году ученый, рассматривая результаты анализов минеральных вод, заметил несоответствие этих данных с теорией электролитической диссоциации.

Поскольку все эти соли — электролиты, Оствальд полагает, что они диссоциированы на ионы. Это стало поводом для него пересмотреть материал аналитической химии и создать учебное руководство «Научные основания аналитической химии» (1894), сыгравшее большую роль в развитии современной аналитической химии.

Теория электролитической диссоциации смогла объединить и теорию растворов, и электрохимическую теорию. Как и предполагал Аррениус, оба потока слились в единый.

«После основания механической теории теплоты, — писал Оствальд в 1889 году, — в физических науках не было ни одного столь многообъемлющего ряда идей, как теория растворов Вант-Гоффа и Аррениуса».

Возражения против теории основывались главным образом на том, что предложенная Аррениусом годилась только для объяснения свойств слабых электролитов. Для преодоления этого недостатка Аррениус провел многочисленные эксперименты, стремясь доказать применимость теории для всех электролитов. Но дальнейшее развитие эти гениальные основы теории электролитической диссоциации получили в работах следующего поколения ученых.

Теория электролитической диссоциации впоследствии была усовершенствована благодаря работам, прежде всего, Н. Бьеррума, П. Дебая и Э. Хюккеля. Они развили высказанные ранее И. Ван Лааром представления, что необычное поведение сильных электролитов можно объяснить действием кулоновских сил.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось, не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген — жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

Немецкий физик Вильгельм Конрад Рентген (1845–1923) родился в Леннепе, небольшом городке близ Ремшейда в Пруссии, и был единственным ребенком в семье преуспевающего торговца текстильными товарами Фридриха Конрада Рентгена и Шарлотты Констанцы (в девичестве Фровейн) Рентген.

В 1862 году Вильгельм поступил в Утрехтскую техническую школу. В 1865 году Рентгена зачислили студентом в Федеральный технологический институт в Цюрихе, поскольку он намеревался стать инженером-механиком. Через три года Вильгельм получил диплом, а еще через год защитил докторскую диссертацию в Цюрихском университете. После этого Рентген был назначен Кундтом первым ассистентом в лаборатории.

Получив кафедру физики в Вюрцбургском университете (Бавария), Кундт взял с собой и своего ассистента. Переход в Вюрцбург стал для Рентгена началом «интеллектуальной одиссеи». В 1872 году он вместе с Кундтом перешел в Страсбургский университет и в 1874 году начал там свою преподавательскую деятельность в качестве лектора по физике.

В 1875 году Рентген стал полным (действительным) профессором физики Сельскохозяйственной академии в Гогенхейме (Германия), а в 1876 году вернулся в Страсбург, чтобы приступить там к чтению курса теоретической физики.

Экспериментальные исследования, проведенные Рентгеном в Страсбурге, касались разных областей физики и, по словам его биографа Отто Глазера, снискали Рентгену репутацию «тонкого классического физика-экспериментатора». В 1879 году Рентген был назначен профессором физики Гессенского университета, в котором он оставался до 1888 года, отказавшись от предложений занять кафедру физики последовательно в университетах Иены и Утрехта. В 1888 году он возвращается в Вюр-цбургский университет в качестве профессора физики и директора Физического института.

В 1894 году, когда Рентген был избран ректором университета, он приступил к экспериментальным исследованиям электрического разряда в стеклянных вакуумных трубках. Вечером 8 ноября 1895 года Рентген, как обычно, работал в своей лаборатории, занимаясь изучением катодных лучей. Около полуночи, почувствовав усталость, он собрался уходить, Окинув взглядом лабораторию, погасил свет и хотел было закрыть дверь, как вдруг заметил в темноте какое-то светящееся пятно. Оказывается светился экран из синеродистого бария. Почему он светится? Солнце давно зашло, электрический свет не мог вызвать свечения, катодная трубка выключена, да и вдобавок закрыта черным чехлом из картона. Рентген еще раз посмотрел на катодную трубку и упрекнул себя: оказывается, он забыл ее выключить. Нащупав рубильник, ученый выключил трубку. Исчезло и свечение экрана; включил трубку вновь — и вновь появилось свечение. Значит, свечение вызывает катодная трубка! Но каким образом? Ведь катодные лучи задерживаются чехлом, да и воздушный метровый промежуток между трубкой и экраном для них является броней. Так началось рождение открытия.

Оправившись от минутного изумления, Рентген начал изучать обнаруженное явление и новые лучи, названные им икс-лучами. Оставив футляр на трубке, чтобы катодные лучи были закрыты, он с экраном в руках начал двигаться по лаборатории. Оказывается, полтора-два метра для этих неизвестных лучей не преграда. Они легко проникают через книгу, стекло, станиоль… А когда рука ученого оказалась на пути неизвестных лучей, он увидел на экране силуэт ее костей! Фантастично и жутковато! Но это только минута, ибо следующим шагом Рентгена был шаг к шкафу, где лежали фотопластинки: надо увиденное закрепить на снимке. Так начался новый ночной эксперимент. Ученый обнаруживает, что лучи засвечивают пластинку, что они не расходятся сферически вокруг трубки, а имеют определенное направление…

Утром обессиленный Рентген ушел домой, чтобы немного передохнуть, а потом вновь начать работать с неизвестными лучами. Большинство ученых немедленно опубликовали бы такое открытие. Рентген же считал, что сообщение произведет большее впечатление, если удастся привести какие-то данные о природе открытых им лучей, измерив их свойства. Поэтому он пятьдесят дней напряженно работал, проверяя все предположения, которые только приходили ему в голову. Рентген доказал, что лучи исходили от трубки, а не от какой-либо другой части аппаратуры.

Перед самым Новым годом, 28 декабря 1895 года, Рентген решил познакомить своих коллег с проделанной работой. На тридцати страницах он описал выполненные опыты, отпечатал статью в виде отдельной брошюры и разослал ее вместе с фотографиями ведущим физикам Европы.

«Флюоресценция видна, — писал Рентген в своем первом сообщении, — при достаточном затемнении и не зависит от того, подносить ли бумагу стороной, покрытой или не покрытой платино-синеродистым барием. Флюоресценция заметна еще на расстоянии двух метров от трубки».

«Легко убедиться, что причины флюоресценции исходят именно от разрядной трубки, а не от какого-нибудь места проводника». Рентген сделал предположение, что флюоресценция вызывается какими-то лучами (он назвал их Х-лучами), проходящими через непроницаемый для обычных световых видимых и невидимых лучей черный картон чехла трубки. Поэтому он, прежде всего, исследовал поглощательную способность различных веществ по отношению к Х-лучам. Он нашел, что все тела проницаемы для этого агента, но в различной степени.

Лучи проходили через переплетенную книгу в 1000 страниц, через двойную колоду игральных карт. Еловые доски от 2 до 3 сантиметров толщиной поглощали лучи очень мало. Алюминиевая пластинка толщиной около 15 миллиметров хоти и сильно ослабляла лучи, но не уничтожала их полностью.

«Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки». Лучи действуют на фотографическую пластинку, причем «можно производить снимки в освещенной комнате, пользуясь пластинкой, заключенной в кассету или в бумажную оболочку».

Рентген не мог, однако, обнаружить ни отражения, ни преломления рентгеновских лучей. Однако он установил, что, если правильное отражение «не имеет места, все же различные вещества по отношению к Х-лучам ведут себя так же, как и мутные среды по отношению к свету».

Таким образом, Рентген установил важный факт рассеяния рентгеновских лучей веществом. Однако все его попытки обнаружить интерференцию рентгеновских лучей дали отрицательный результат. Отрицательный результат дали и попытки отклонения лучей магнитным полем. Отсюда Рентген сделал вывод, что Х-лучи не идентичны с катодными лучами, но возбуждаются ими в стеклянных стенках разрядной трубки. В заключение своего сообщения Рентген обсуждает вопрос о возможной природе открытых им лучей:

«Если поставить вопрос, чем собственно являются Х-лучи (катодными лучами они быть не могут), то, судя по их интенсивному химическому действию и флюоресценции, можно отнести их к ультрафиолетовому свету. Но в таком случае мы сейчас же сталкиваемся с серьезными препятствиями. Действительно, если Х-лучи представляют собой ультрафиолетовый свет, то этот свет должен иметь свойства:

а) при переходе из воздуха в воду, сероуглерод, алюминий, каменную соль, стекло, цинк и т. д. не испытывать никакого заметного преломления;

б) не испытывать сколько-нибудь заметного правильного отражения от указанных тел;

в) не поляризоваться всеми употребительными средствами;

г) поглощение его не зависит ни от каких свойств тела, кроме плотности.

Значит, нужно было бы принять, что эти ультрафиолетовые лучи ведут себя совсем иначе, чем известные до сих пор инфракрасные, видимые и ультрафиолетовые лучи.

На это я не мог решиться и стал искать другое объяснение. Некоторое родство между новыми лучами и световыми лучами, по-видимому, существует. На это указывают теневые изображения, флюоресценция и химические действия, получающиеся при обоих видах лучей.

Давно известно, что, кроме поперечных световых колебаний, в эфире возможны и продольные колебания. Некоторые физики считают, что они должны существовать. Существование их, конечно, пока не доказано с очевидностью, и свойства их поэтому экспериментально еще не изучены.

Не должны ли новые лучи быть приписаны продольным колебаниям в эфире?

Я должен признаться, что все больше склоняюсь к этому мнению, и я позволяю себе высказать здесь это предположение, хотя знаю, конечно, что оно нуждается в дальнейших обоснованиях».

В марте 1896 года Рентген выступил со вторым сообщением. В этом сообщении он описывает опыты по ионизирующему действию лучей и по изучению возбуждения Х-лучей различными телами. В результате этих исследований он констатировал, что «не оказалось ни одного твердого тела, которое под действием катодных лучей не возбуждало бы Х-лучей». Это привело Рентгена к изменению конструкции трубки для получения интенсивных рентгеновских лучей. «Я несколько недель с успехом пользуюсь разрядной трубкой следующего устройства. Катодом ее является вогнутое зеркало из алюминия, в центре кривизны которого под углом 45 градусов к оси зеркала помещается платиновая пластинка, служащая анодом».

«В этой трубке Х-лучи выходят из анода. Основываясь на опытах с трубками различных конструкций, я пришел к заключению, что для интенсивности Х-лучей не имеет значения, является ли место возбуждения лучей анодом или нет». Тем самым Рентгеном были установлены основные черты конструкции рентгеновских трубок с алюминиевым катодом и платиновым антикатодом.

Открытие Рентгена вызвало огромный резонанс не только в научном мире, но и во всем обществе. Несмотря на скромное название, которое дал своей статье Рентген: «О новом роде лучей. Предварительное сообщение», она вызвала огромный интерес в разных странах. Венский профессор Экспер сообщил об открытии новых невидимых лучей в газету «Новая свободная пресса» В Санкт-Петербурге уже 22 января 1896 года опыты Рентгена были повторены во время лекции в физической аудитории университета.

Лучи Рентгена быстро нашли практическое применение в медицине и в технике, но проблема их природы оставалась одной из важнейших в физике. Рентгеновские лучи вновь возбудили спор между сторонниками корпускулярной и волновой природы света, и ставилось множество экспериментов с целью решить проблему.

В 1905 году Чарльз Баркла, Нобелевский лауреат 1917 года за исследование рентгеновских лучей (1877–1944), провел измерения этих рассеянных лучей, воспользовавшись способностью лучей Рентгена разряжать наэлектризованные тела. Интенсивность лучей удавалось определить, измерив скорость, с которой под их действием разряжался электроскоп, скажем, с золотыми листочками. Баркла в блестящем эксперименте исследовал свойства рассеянного излучения, вызвав вторичное его рассеяние. Он нашел, что излучение, рассеянное на 90 градусов, не удавалось снова рассеять на 90 градусов. Это убедительно свидетельствовало о том, что лучи Рентгена представляют собой поперечные волны.

Сторонники корпускулярной точки зрения тоже не бездействовали. Уильям Генри Брэгг (1862–1942) считал свои данные доказательством того, что лучи Рентгена представляют собой частицы. Он повторил наблюдения Рентгена и убедился в способности рентгеновских лучей разряжать заряженные тела. Было установлено, что этот эффект обусловлен образованием ионов в воздухе. Брэгг установил, что отдельным газовым молекулам передается слишком большая энергия, чтобы передача ее могла осуществляться лишь малой частью непрерывного волнового фронта.

Этому периоду явных противоречий — ибо результаты Баркла и Брэгга невозможно было согласовать друг с другом — внезапно положил в 1912 году конец один-единственный эксперимент. Этот эксперимент осуществлен благодаря счастливой комбинации идей и людей и может считаться одним из величайших достижений в физике.

Первый шаг был сделан, когда аспирант Эвальд обратился к физику-теоретику Максу Лауэ (1879–1960). Идея Эвальда, заинтересовавшая Лауэ, заключалась в следующем. Чтобы проверить, являются ли рентгеновские лучи волнами, нужно провести дифракционный опыт. Однако любая искусственная дифрагирующая система заведомо слишком груба. А вот кристалл является естественной дифракционной решеткой, значительно более мелкой, чем любая изготовленная искусственно. Не может ли происходить дифракция рентгеновских лучей на кристаллах?

Лауэ не был экспериментатором и нуждался в помощи. Он обратился за советом к Зоммерфельду (1868–1951), но тот не поддержал его, сказав, что тепловое движение должно сильно нарушать правильную структуру кристалла Зоммерфельд отказался разрешить одному из своих ассистентов, Фридриху, тратить время на подобные бессмысленные опыты. К счастью, Фридрих придерживался иного взгляда и с помощью своего друга Книппинга (1883–1935) втайне провел этот эксперимент. Они выбрали кристалл сульфата меди — эти кристаллы имелись в большинстве лабораторий — и собрали установку.

Первая экспозиция не дала никакого результата; пластинка располагалась между трубкой — источником рентгеновских лучей — и кристаллом, поскольку считалось, что кристалл должен действовать как отражательная дифракционная решетка. Во втором опыте Книппинг настоял на том, чтобы расположить фотографические пластинки со всех сторон вокруг кристалла: в конце концов, следовало учитывать любую возможность.

На одной из пластинок, расположенной за кристаллом на пути пучка рентгеновских лучей, был обнаружен эффект, который они искали. Так была открыта дифракция рентгеновских лучей. В 1914 году за это открытие Лауэ был удостоен Нобелевской премии.

В 1913 году Г. В. Вульф в России, отец и сын Брэгги в Англии повторили опыты Лауэ и его друзей с одним существенным изменением: они направили рентгеновские лучи на кристаллы под разными углами к их поверхности. Сравнение рентгеновских изображений, полученных при этом на фотопластинках, позволило исследователям точно определить расстояния между атомами в кристаллах. Брэгги были удостоены Нобелевской премии за 1915 год.

Так в физику пришли два фундаментальных научных факта: рентгеновские лучи обладают такими же волновыми свойствами, как и световые лучи; с помощью рентгеновских лучей можно исследовать не только внутреннее строение человеческого тела, но и заглянуть в глубь кристаллов.

По рентгеновским снимкам ученые теперь могли легко отличить кристаллы от аморфных тел, обнаружить сдвиги цепочек атомов в глубине непрозрачных для света металлов и полупроводников, определить, какие изменения в структуре кристаллов происходят при сильном нагревании и глубоком охлаждении, при сжатии и растяжении.

Рентген не взял патента, подарив свое открытие всему человечеству. Это дало возможность конструкторам разных стран мира изобретать разнообразные рентгеновские аппараты.

Врачи хотели с помощью рентгеновских лучей узнать как можно больше о недугах своих пациентов. Вскоре они смогли судить не только о переломах костей, но и об особенностях строения желудка, о расположении язв и опухолей. Обычно желудок прозрачен для рентгеновских лучей, и немецкий ученый Ридер предложил кормить больных перед фотографированием… кашей из сернокислого бария. Сернокислый барий безвреден для организма и значительно менее прозрачен для рентгеновских лучей, чем мускулы или внутренние ткани. На снимках стали видны любые сужения или расширения пищеварительных органов человека.

В более поздних рентгеновских трубках поток электронов излучает раскаленная вольфрамовая спираль, против которой расположен антикатод из тонких пластинок железа или вольфрама. Из антикатода электроны выбивают сильный поток рентгеновских лучей.

Мощные источники лучей Рентгена были найдены вне пределов Земли. В недрах новых и сверхновых звезд идут процессы, во время которых возникает рентгеновское излучение большой интенсивности. Измеряя приходящие к Земле потоки рентгеновского излучения, астрономы могут судить о явлениях, происходящих за многие миллиарды километров от нашей планеты. Возникла новая область науки — рентгеноастрономия…

Техника XX века не могла бы без рентгеновского анализа получить в свое распоряжение то великолепное созвездие разнообразных материалов, которыми она располагает сегодня.

ЭЛЕКТРОН

Ясные и четкие идеи об атомном строении электричества появились у В. Вебера, которые он развивал их в ряде работ, начиная с 1862 года: «При всеобщем распространении электричества можно принять, что с каждым весомым атомом связан электрический атом». Он развивает в связи с этим воззрения на проводимость тока в металлах, которые отличаются от электронных только тем, что он считает подвижными атомы положительного электричества. Им была высказана и мысль о молекулярном истолковании тепла Джоуля—Ленца:

«Живая сила всех содержащихся в проводнике молекулярных токов увеличивается при прохождении тока пропорционально сопротивлению и пропорционально квадрату силы тока».

Эти и подобные им высказывания Вебера дали повод А.И. Ба-чинскому назвать Вебера одним из творцов электронной теории, а О.Д. Хвольсону поместить его имя в начальном параграфе главы об электронной теории проводимости металлов. Но надо заметить, что Вебер еще не связывает своего «электрического атома» с конкретными фактами электролиза. Эта связь впервые была установлена Максвеллом в первом томе его «Трактата». Но Максвелл не стал развивать этой важной идеи. Наоборот, он утверждал, что идея молекулярного заряда не удержится в науке.

В 1874 году ирландский физик Стоней на заседании Британской ассоциации обратил внимание на существование в природе трех «естественных единиц»: скорости света, постоянной тяготения и заряда «электрического атома». По поводу этой последней единицы он сказал:

«Наконец природа одарила нас в явлениях электролиза вполне определенным количеством электричества, не зависимым от тел, с которыми оно связано». Стоней дал оценку этого заряда, разделив количество электричества, выделяемое при разложении кубического сантиметра водорода, на число его атомов по тогдашним данным, и получил значение порядка 10 в минус двадцатой степени электромагнитных единиц. Этот электрический атом Стоней предложил назвать «электроном».

5 апреля 1881 года Гельмгольц в своей известной речи заявил: «Если мы допускаем существование химических атомов, то мы принуждены заключить отсюда далее, что также и электричество, как положительное, так и отрицательное, разделяется на определенные элементарные количества, которые играют роль атомов электричества».

В 1869 году Гитторф, получив в разрядной трубке вакуум со степенью разрежения ниже одного миллиметра, заметил, что темное катодное пространство быстро распространяется по всей трубке, вследствие чего стенки трубки начинают сильно флюоресцировать. Он подметил, что свечения трубки смещаются под действием магнита.

Через десять лет после наблюдений Гитторфа появились работы В. Крукса. По предположениям Крукса, частичка лучистой материи выбрасывается из электродов с огромной скоростью. Темное катодное пространство — это пространство, в котором свободно движутся отрицательные молекулы газа, летящие от катода и задерживаемые на его границе встречными положительными молекулами. Однако немецкие физики не приняли точку зрения Крукса. Э. Гольдштейн в 1880 году показал, что отождествление размеров темного катодного пространства с длиной свободного пробега неправильно. Он показал, что катодные лучи вовсе не заканчиваются на границе темного слоя, они при больших разрежениях пронизывают и светящееся пространство анода.

Австрийский ученый В.Ф. Гинтль в том же году высказал гипотезу, что катодные лучи представляют собой поток металлических частиц, вырываемых из катода электрическим током, которые движутся прямолинейно. Эту точку зрения поддержал и развил далее Пулуа. В том же 1880 году Э. Видеман отождествил катодные лучи с эфирными колебаниями столь короткой длины волны. По его мнению, они не производят светового действия; однако, падая на весомую материю, замедляются и превращаются в видимый свет.

Решающее значение в укреплении эфирной волновой теории катодных лучей сыграли опыты Ленарда. Он убедительно доказал, что катодные лучи могут выйти наружу при сохранении вакуума в трубке, т. е. эти лучи не могут быть частичками газа, как предполагал Крукс. Но этого мало. Катодные лучи в воздухе производят люминисцирую-щее и фотографическое действие. Ленарду удалось получить в выпущенном им потоке фотографию предмета, закрытого герметически алюминиевой коробочкой с тонкими стенками. Наблюдая отклонение выпущенного пучка магнитом, он установил, что это отклонение не зависит от рода газа, а главное, что остается часть лучей, не отклоненных магнитом.

Ленард был первым физиком, наблюдавшим действие рентгеновских лучей и даже получившим первую рентгенограмму. Но он не сумел понять в должной мере своего открытия и характеризовал его как доказательство волновой природы катодных лучей. Его эксперимент таил в себе большие возможности, которые ученый не использовал.

Теория Видемана — Герца — Ленарда была сильно поколеблена в 1895 году опытом Перрена (1870–1942), который попытался обнаружить заряд катодных лучей. С этой целью он в разрядной трубке поместил против катода фарадеевский цилиндр, соединенный с электрометром. При прохождении разряда цилиндр зарядился отрицательно. Отсюда Перрен сделал вывод, что «перенос отрицательных зарядов неотделим от катодных лучей».

Перрен с несомненностью установил перенос заряда катодными лучами и полагал, что этот факт трудно совместить с теорией вибраций, тогда как с теорией истечения он согласуется очень хорошо. Поэтому он полагал, что «если теория истечения может опровергнуть все возражения, которые она вызвала, она должна быть признана действительно пригодной».

Однако для того чтобы опровергнуть все возражения, необходимо было коренным образом изменить взгляды на строение материи и допустить в природе существование частиц меньших атомов.

В историю науки английский физик Джозеф Томсон (1856–1940) вошел как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

Джозеф Джон Томсон родился в Манчестере. Здесь, в Манчестере, он окончил Оуэнс-колледж, а в 1876–1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал выпускные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы.

Томсон был одержим экспериментальной физикой. Одержим в лучшем смысле этого слова. Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона.

С 1884 по 1919 год Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские, ученые.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей…

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо.

В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной. То есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей. Но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электроннолучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны.

Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?

Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов.

«После длительного обсуждения экспериментов — пишет в своих воспоминаниях Томпсон, — оказалось, что мне не избежать следующих заключений:

1. Что атомы не неделимы, так как из них могут быть вырваны отрицательно заряженные частицы под действием электрических сил, удара быстро движущихся частиц, ультрафиолетового света или тепла.

2. Что эти частицы все одинаковой массы, несут одинаковый заряд отрицательного электричества, от какого бы рода атомов они ни происходили, и являются компонентами всех атомов.

3. Масса этих частиц меньше, чем одна тысячная массы атома водорода. Я вначале назвал эти частицы корпускулами, но они теперь называются более подходящим именем „электрон“».

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют. Результаты расчетов показали: сомнений нет, неизвестные частицы не что иное, как мельчайшие электрические заряды — неделимые атомы электричества, или электроны.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялся его доклад. Слушатели были в восторге. Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов.

Теперь стали видны и дальнейшие, самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона. Это позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций.

В 1903 году в той же Кавендишской лаборатории у Томсона Г. Вильсон внес важное изменение в метод Томсона. В сосуде, в котором производится быстрое адиабатическое расширение ионизируемого воздуха, помещены пластинки конденсатора, между которыми можно создавать электрическое поле и наблюдать падение облака, как при наличии поля, так и в его отсутствии. Измерения Вильсона дали значение для заряда электрона как 3,1 умноженную на 10 в минус десятой степени абс. эл. ед.

Метод Вильсона был использован многими исследователями, в том числе и студентами Петербургского университета Маликовым и Алексеевым, которые нашли заряд равным 4,5 умноженную на 10 в минус десятой степени абс. эл. ед.

Это был наиболее приближающийся к истинному значению результат из всех полученных до того, как Милликен начал с 1909 года измерения с отдельными каплями.

Так был открыт и измерен электрон — универсальная частица атомов, первая из открытых физиками так называемых «элементарных частиц».

Это открытие дало возможность физикам, прежде всего, по-новому поставить вопрос об изучении электрических, магнитных и оптических свойств вещества.

РАДИОАКТИВНОСТЬ

Открытие Рентгена замечательно не только появившейся возможностью понять строение вещества и многочисленными практическими применениями. Это открытие взбудоражило мысль ученых, уже было решивших, что здание физики построено и в природе больше нет ничего не известного человеку.

Взволнован был сообщением об обнаружении рентгеновских лучей и член Французской Академии Беккерель. Анри Беккерель (1852–1908) сначала работал дорожным инженером, но вскоре увлекся, подобно своему отцу и деду, научными исследованиями. В 35 лет Анри Беккерель защищает докторскую диссертацию, в 40 лет становится профессором. Он изучает явление флуоресценции. Ему очень хочется разгадать природу таинственного свечения некоторых веществ под влиянием солнечного излучения. Беккерель собирает огромную коллекцию светящихся химических веществ и природных минералов.

В своем докладе на конгрессе Беккерель указывал, что ему казалось очень маловероятным, чтобы рентгеновские лучи могли существовать в природе только в тех сложных условиях, в каких они получаются в опытах Рентгена.

Беккерель, близко знакомый с исследованиями своего отца по люминесценции, обратил внимание на тот факт, что катодные лучи в опытах Рентгена производили при ударе одновременно и люминесценцию стекла и невидимые Х-лучи. Это привело его к идее, что всякая люминесценция сопровождается одновременно испусканием рентгеновских лучей.

Эту идею впервые высказал А. Пуанкаре. В своей докторской диссертации М. Кюри-Склодовская пишет по этому поводу «Первые рентгеновые трубки не имели металлического антикатода: источником рентгеновских лучей служила подвергнутая действию катодных лучей стеклянная стенка; при этом она сильно флуоресцировала. Можно было задаться вопросом, не является ли испускание рентгеновских лучей непременным спутником флоуресценции, независимо от причины последней».

Несколько дней Беккерель обдумывает намеченный им эксперимент, затем выбирает из своей коллекции двойную сернокислую соль урана и калия, спрессованную в небольшую лепешку, кладет соль на фото-пластинку, спрятанную от света в черную бумагу, и выставляет пластинку с солью на солнце. Под влиянием солнечных лучей двойная соль стала ярко светиться, но на защищенную фотопластинку это свечение не могло попасть. Беккерель едва дождался момента, когда фотопластинку можно было достать из проявителя. На пластинке явственно проступало изображение лепешки из соли. Неужели все верно, и соль в ответ на облучение солнечными лучами испускает не только свет, но и рентгеновские лучи?

Беккерель проверяет себя еще и еще раз. 26 февраля 1896 года настали пасмурные дни, и Беккерель с сожалением прячет приготовленную к эксперименту фотопластинку с солью в стол. Между лепешкой соли и фотопластинкой на этот раз он положил маленький медный крестик, чтобы проверить, пройдут ли сквозь него рентгеновские лучи.

Вероятно, немногие открытия в науке обязаны своим происхождением плохой погоде. Если бы конец февраля 1896 года в Париже был солнечный, не было бы обнаружено одно из самых важных научных явлений, разгадка которого привела к перевороту в современной физике.

1 марта 1896 года Беккерель, так и не дождавшись появления солнца на небе, вынул из ящика ту самую фотопластинку, на которой несколько дней пролежали крестик и соль, и на всякий случай проявил ее. Каково же было его удивление, когда он увидел на проявленной фотопластинке четкое изображение и крестика, и лепешки с солью! Значит, солнце и флуоресценция здесь ни при чем?

Как первоклассный исследователь, Беккерель не поколебался подвергнуть серьезному испытанию свою теорию и начал исследовать действие солей урана на пластинку в темноте. Так обнаружилось, и это Беккерель доказал последовательными опытами, что уран и его соединение непрерывно излучают без ослабления лучи, действующие на фотографическую пластинку и, как показал Беккерель, способные также разряжать электроскоп, т. е. создавать ионизацию. Открытие это вызвало сенсацию.

Особенно поражала способность урана излучать спонтанно, без всякого внешнего воздействия. Рамзай рассказывает, что когда осенью 1896 году он вместе с лордом Кельвином (В. Томсоном) и Д. Стоксом посетил лабораторию Беккереля, то «эти знаменитые физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Лорд Кельвин склонялся к предположению, что уран служит своего рода западней, которая улавливает ничем другим не обнаруживаемую лучистую энергию, доходящую до нас через пространство, и превращает ее в такую форму, в виде которой она делается способной производить химические действия».

Первое в мире сообщение о существовании радиоактивности было сделано Анри Беккерелем на заседании Парижской академии наук 24 февраля 1896 года Открытие явления радиоактивности Беккерелем можно отнести к числу наиболее выдающихся открытий современной науки. Именно благодаря ему человек смог значительно углубить свои познания в области структуры и свойств материи, понять закономерности многих процессов во Вселенной, решить проблему овладения ядерной энергией. Учение о радиоактивности оказало колоссальное влияние на развитие науки, причем за сравнительно небольшой промежуток времени.

Изучая свойства новых лучей, Беккерель попытался объяснить их природу. Однако он не мог прийти к четким выводам и долгое время придерживался ошибочной точки зрения, согласно которой радиоактивность, возможно, является формой длительной фосфоресценции.

Вскоре в исследование нового явления включились другие ученые, и, прежде всего, супруги Пьер и Мария Кюри.

Молодая польская исследовательница Мария Склодовская (1867–1934), проявив выдающиеся способности и огромное трудолюбие, в 1894 году получает два диплома лиценциата — по физике и математике — в знаменитой Сорбонне, Парижском университете. Поначалу она берет тему для исследования у профессора Г. Липпмана, и начинает изучать магнитные свойства закаленной стали. Разработка темы приводит ее в Парижскую школу индустриальной физики и химии. Там она знакомится с Пьером Кюри (1859–1906) и продолжает эксперименты в его лаборатории. В июле 1895 года Пьер и Мария стали супругами. После рождения дочери в сентябре 1897 года Мария Склодовская-Кюри решает приступить к работе над докторской диссертацией. Важно было четко сформулировать задачу исследования. В это время она и узнает об открытии Беккереля.

Мария Кюри начала свои исследования с терпеливого изучения большого числа химических элементов: не являются ли некоторые из них, подобно урану, источниками «лучей Беккереля»?

Исследование радиоактивности урановых соединений привело ее к выводу, что радиоактивность является свойством, принадлежащим атомам урана, независимо от того, входят ли они в химическое соединение или нет. При этом она «измеряла напряженность урановых лучей, пользуясь их свойством сообщать воздуху электропроводность». Этим ионизационным методом она и убедилась в атомной природе явления.

«Тогда я занялась изысканиями, не существует ли других элементов, обладающих тем же свойством, и с этой целью изучила все известные в то время элементы, как в чистом виде, так и в соединениях. Я нашла, что среди этих лучей только соединения тория испускают лучи, подобные лучам урана».

Опыты Марии Склодовской-Кюри по изучению руд показали, что некоторые урановые и ториевые руды обладают «аномальной» радиоактивностью: их радиоактивность оказалась гораздо сильнее того, что можно было ожидать от урана и тория. «Тогда я выдвинула гипотезу, — писала Мария Склодовская-Кюри, — что минералы с ураном и торием содержат небольшое количество вещества, гораздо более радиоактивного, чем уран и торий; это вещество не могло принадлежать к известным элементам, потому все они уже были исследованы; это должен был быть новый химический элемент».

Понимая важность проверки этой гипотезы, Пьер Кюри оставил свои исследования кристаллов и присоединился к работе, задуманной Марией. Для своих опытов они выбрали урановую смолку, добывавшуюся в городе Сент-Иоахимстале в Богемии.

Несмотря на трудности, исследования продвигались успешно. Хотя зарплаты Пьера Кюри с трудом хватало для покрытия разнообразных расходов, они все же решили взять помощника для проведения химических исследований. Им стал молодой Жак Бемон. Главные усилия ученых были направлены на выделение радия из отходов урановой смолки, так как было показано, что его легче отделить. Четыре года ушло на эту трудную работу, проводившуюся в неблагоприятных условиях и потребовавшую массы труда и сил. В результате Марии и Пьеру удалось получить из 8 тонн отходов иоахимстальской урановой смолки первый в мире дециграмм радия, оценившийся тогда в 75 800 золотых франков (15 600 долларов).

Напряженный труд принес щедрые результаты. 18 июля 1898 года Пьер и Мария Кюри на заседании Парижской Академии наук выступили с сообщением «О новом радиоактивном веществе, содержащемся в смоляной обманке». Ученые заявили: «Вещество, которое мы извлекли из смоляной обманки, содержит металл, еще не описанный и являющийся соседом висмута по своим аналитическим свойствам. Если существование нового металла подтвердится, мы предлагаем назвать его полонием, по имени родины одного из нас».

В этой работе впервые изучаемое явление названо радиоактивностью, а лучи — радиоактивными. Активность нового элемента — полония — оказалась в 400 раз выше активности урана.

В результате химического анализа из урановой смолки удалось также выделить элемент барий, который обладал относительно сильной радиоактивностью. При выделении хлорида бария из водного раствора в кристаллическом виде радиоактивность переходила из маточного раствора в кристаллы. Спектральный анализ этих кристаллов показал наличие новой линии, «которая, по-видимому, не принадлежит ни одному из известных элементов».

26 декабря 1898 года появляется следующая статья супругов Кюри и Ж. Бемона- «Об одном новом, сильно радиоактивном веществе, содержащемся в смоляной руде» Авторы сообщили, что им удалось выделить из урановых отходов вещество, содержащее некоторый новый элемент, сообщающий ему свойство радиоактивности и очень близкий по своим химическим свойствам к барию. Новый элемент они предложили назвать радием. Активность выделенного хлорида радия в 900 раз превышала активность урана.

Открытием полония и радия начинается новый этап в истории радиоактивности. В конце января 1899 года Склодовская-Кюри высказала предположение о сущности радиоактивного излучения, о его материальном характере. Она полагала, что радиоактивность может оказаться свойством, присущим лишь тяжелым элементам.

В том же году А. Дебьерн, проверяя гипотезу Марии Кюри о наличии в урановой смолке других радиоактивных элементов кроме радия и полония, сделал очередное открытие: из смолки можно выделить высокорадиоактивное вещество, отделяющееся при фракционировании с редкоземельными элементами и титаном. Химические свойства нового вещества отличались от свойств радия и полония, а его активность в 100 000 раз превышала активность урана. В 1900 году А. Дебьерн сообщил о выделении этого нового радиоактивного элемента, названного актинием. Таким образом, к началу XX века было известно пять радиоактивных веществ: уран, торий, полоний, радий, актиний.

Мария и Пьер Кюри не были единственными учеными, изучавшими явление радиоактивности. Анри Беккерель продолжал исследования урана в Париже. Г. Шмидт в Германии одновременно с Кюри обнаружил радиоактивность тория. В 1899 году немецкие ученые С. Мейер, Э. Швейдлер и независимо от них Ф. Гизель продемонстрировали отклонение «лучей Беккереля» в магнитном поле. В Германии же Ю. Эльстер и Г. Гейтель в 1899 году сообщили о первом наблюдаемом случае химической неотделимости радиоэлементов и подтвердили атомарный характер радиоактивности. В Англии новое явление стало центром внимания в лабораториях У. Крукса и У. Рамзая. Изучали радиоактивность и в других научных центрах Европы.

В 1906 году Пьер Кюри погиб в результате несчастного случая. Мария Кюри, оправившись от этого потрясения, продолжала работать над изучением явления радиоактивности, которая скоро стала одной из важнейших областей современной науки и привлекла внимание многих талантливых исследователей.

КВАНТЫ

Ученые долго пытались найти формулу, которая точно и в полном согласии с экспериментом описывала бы спектр излучения черного тела.

Экспериментаторы давно установили, что спектр черного тела напоминает остроконечный холм или горб верблюда. Вершина горба, где излучение максимально, находится при определенной длине волны, значение которой зависит от температуры, причем влево — в направлении коротких длин волн и вправо — в длинноволновую сторону интенсивность излучения резко убывает.

В 1892 году русский физик Голицын в своей диссертации «Исследования по математической физике» рассматривал проблему лучистой энергии. В этой работе Голицын приходит к результату, который можно сформулировать следующего закона:

Абсолютная температура обусловливается совокупностью всех электрических смещений, и именно четвертая степень абсолютной температуры прямо пропорциональна сумме квадратов всех электрических смещений.

Таким образом, он близко подошел к идеям будущей квантовой теории — фотонному газу Эйнштейна. И немудрено, что его мысли не были поняты современниками.

В девяностые годы девятнадцатого века Вильгельм Вин (1864–1927) получает формулу, которая хорошо согласовывалась с опытом в области коротких волн, но не годилась в длинноволновой части спектра.

В 1900 году Джон Уильям Релей (1842–1919) сделал попытку применить к излучению закон о равномерном распределении энергии по степеням свободы. Об этой попытке Вин рассказывает так:

«Лорд Релей первый подошел к этому вопросу с совершенно иной стороны: он попытался применить к вопросу о лучеиспускании один весьма общий закон статистической механики, а именно закон о равномерном распределении энергии между степенями свободы системы, находящейся в состоянии статистического равновесия…

Излучение, находящееся в пустом пространстве, также можно представить так, что оно будет обладать определенным числом степеней свободы. Дело в том, что когда волны отражаются от стен туда и обратно, то возникают системы стоячих волн, помещающихся в промежутках между двумя стенками… Отдельные возможные стоячие волны представляют и здесь соответствующие элементы происходящих явлений и соответствуют степеням свободы. Если каждой степени свободы сообщить приходящееся на ее долю количество энергии, то получится закон излучения Релея, согласно которому испускание лучистой энергии определенной длины волны прямо пропорционально абсолютной температуре и обратно пропорционально четвертой степени длины волны. Закон этот согласуется с данными опыта как раз там, где рассмотренный выше закон перестаёт быть справедливым, и поэтому его сначала считали законом с ограниченною справедливостью».

Таким образом, были две формулы: одна для коротковолновой части спектра (формула Вина), другая для длинноволновой (формула Релея). Задача состояла в том, чтобы состыковать их.

«Ультрафиолетовой катастрофой» назвали исследователи расхождение теории излучения с экспериментом. Расхождение, которое никак не удавалось устранить. Логичные и обоснованные математические расчеты неизменно приводили к формулам, выводы из которых совершенно расходились с экспериментом. Из этих формул следовало, что раскаленная печь должна с течением времени отдавать все больше тепла в окружающее пространство и яркость ее свечения должна все больше возрастать!

Современник «ультрафиолетовой катастрофы», физик Лоренц грустно заметил: «Уравнения классической физики оказались неспособными объяснить, почему угасающая печь не испускает желтых лучей наряду с излучением больших длин волн…»

«Сшить» эти формулы Вина и Релея и вывести формулу, совершенно точно описывающую спектр излучения черного тела, удалось Максу Планку.

Немецкий физик Макс Карл Эрнст Людвиг Планк (1858–1947) родился в прусском городе Киле, в семье профессора гражданского права. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 году, в течение трех лет Планк изучал математику и физику в Мюнхенском и год — в Берлинском университетах.

В бытность свою в Берлине Планк приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы Планка надолго сосредоточивались на термодинамике — области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии.

Ученую степень доктора Планк получил в 1879 году, защитив в Мюнхенском университете диссертацию «О втором законе механической теории тепла». В 1885 году он стал адъюнкт-профессором Кильского университета.

Работы Планка по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 году он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики.

За это же время Планк опубликовал ряд работ по термодинамике физико-химических процессов. Особую известность получила созданная им теория химического равновесия разведенных растворов. В 1897 году вышло первое издание его лекций по термодинамике. К тому времени Планк был уже ординарным профессором Берлинского университета и членом Прусской Академии наук.

С 1896 года Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Проводя свои исследования, Планк обратил внимание на новые физические закономерности. Он установил на основе эксперимента закон теплового излучения нагретого тела. При этом он столкнулся с тем, что излучение имеет прерывный характер. Планк смог обосновать свой закон лишь с помощью замечательного предположения, что энергия колебания атомов не произвольная, а может принимать лишь ряд вполне определенных значений. Планк установил, что свет с частотой колебания должен испускаться и поглощаться порциями, причем энергия каждой такой порции равна частоте колебания умноженной на специальную константу, получившую название постоянной Планка.

Вот как пишет об этом сам Планк:

«Именно в ту пору все выдающиеся физики обратились, как с экспериментальной, так и теоретической стороны, к проблеме распределения энергии в нормальном спектре. Однако ее они искали в направлении представления интенсивности излучения в ее зависимости от температуры, тогда как я подозревал более глубокую связь в зависимости энтропии от энергии. Так как значение энтропии тогда еще не нашло подобающего ему признания, то я нисколько не волновался за используемый мною метод и мог свободно и основательно проводить свои расчеты, не опасаясь вмешательства или опережения с чьей-либо стороны.

Так как для необратимости обмена энергии между осциллятором и возбужденным им излучением имеет особое значение вторая производная его энтропии по его энергии, то я вычислил значение этой величины для случая, стоявшего тогда в центре всех интересов винов-ского распределения энергии, и нашел замечательный результат, что для этого случая обратная величина такого значения, которую я здесь обозначил К, пропорциональна энергии. Эта связь так ошеломляюще проста, что я долгое время признавал ее совершенно общей и трудился над ее теоретическим обоснованием. Однако шаткость такого понимания скоро обнаружилась перед результатами новых измерений. Именно, в то время как для малых значений энергии, или для коротких волн, закон Вина отлично подтвердился также и впоследствии, для больших значений энергии, или для больших волн, установили сперва Люммер и Прингсгейм заметное отклонение, а проведенные Рубенсом и Ф.Курлбаумом совершенные измерения с плавиковым шпатом и калийной солью обнаружили совершенно иное, однако опять-таки простое отношение, что величина К пропорциональна не энергии, а квадрату энергии при переходе к большим значениям энергии и длин волн.

Так прямыми опытами были установлены для функции две простые границы: для малых энергий пропорциональность (первой степени) энергии, для больших квадрату энергии. Понятно, что так же как любой принцип распределения энергии дает определенное значение К, так и всякое выражение приводит к определенному закону распределения энергии, и речь идет теперь о том, чтобы найти такое выражение И, которое давало бы установленное измерениями распределение энергии. Но теперь ничего не было естественнее, как составить для общего случая величину в виде суммы двух членов: одного первой степени, а другого второй степени энергии, так что для малых энергий будет решающим первый член, для больших — второй; вместе с тем была найдена новая формула излучения, которую я предложил на заседании Берлинского физического общества 19 октября 1900 года и рекомендовал для исследования.

…Последующими измерениями формула излучения также подтверждалась, а именно, тем точнее, чем к более тонким методам измерения переходили. Однако формула измерения, если предполагать ее абсолютно точную истинность, была сама по себе только счастливо угаданным законом, имеющим только формальное значение».

14 декабря 1900 года Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне именуется «физика до Планка».

В 1906 году вышла монография Планка «Лекции по теории теплового излучения». Она переиздавалась несколько раз. Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 году, опираясь на экспериментальные данные по излучению черного тела, Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с высочайшей точностью найти электрический заряд электрона.

Из формулы Планка в виде частных случаев могли быть получены и закон Вина, и соотношение Стефана — Больцмана, показывающее, что общая энергия излучения тела пропорциональна его абсолютной температуре в четвертой степени.

Физики облегченно вздохнули: «ультрафиолетовая катастрофа» закончилась вполне благополучно.

Планк отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия «квант». Для Планка квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно.

Вот как описывал Планк сомнения, мучившие его: «…или квант действия был фиктивной величиной — тогда весь вывод закона излучения был принципиально иллюзорным и представлял собой просто лишенную содержания игру в формулы, или при выводе этого закона в основу была положена правильная физическая мысль — тогда квант действия должен был играть в физике фундаментальную роль, тогда появление его возвещало нечто совершенно новое, дотоле неслыханное, что, казалось, требовало преобразования самых основ нашего физического мышления…»

Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно.

Позиции квантовой теории укрепились в 1905 году, когда Альберт Эйнштейн воспользовался понятием фотона — кванта электромагнитного излучения. Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна, и как частица. В 1907 году Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел. Еще одно подтверждение потенциальной мощи введенной Планком новации поступило в 1913 году от Нильса Бора, применившего квантовую теорию к строению атома.

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

В 1905 году в немецком научном журнале «Аннален дер физик» появилась небольшая статья объемом 30 печатных страниц двадцатишестилетнего Альберта Эйнштейна «К электродинамике движущихся тел», в которой почти полностью была изложена специальная теория относительности, сделавшая вскоре молодого эксперта патентного бюро знаменитым. В этом же году в том же журнале появилась статья «Зависит ли инерция тела от содержащейся в нем энергии?», дополняющая первую.

Специальная теория относительности появилась не на пустом месте, она выросла из решения электродинамической проблемы движущихся тел, над которой начиная с середины XIX века работали многие физики. Они стремились обнаружить существование эфира-среды, в которой распространялись электромагнитные волны. Предполагалось, что эфир проникает через все тела, но в их движении участия не принимает. Строились различные модели светоносного эфира, выдвигались гипотезы относительно его свойств. Казалось, что неподвижный эфир мог служить той абсолютно покоящейся системой отсчета, относительно которой еще Ньютон рассматривал «истинные» движения тел. Согласно воззрению Ньютона, существуют во Вселенной «нормальные часы», которые отсчитывают ход «абсолютного времени» с любой точки. Кроме того, существует «абсолютное движение», т. е. «перемещение тела из одного абсолютного места в другое абсолютное место». В течение двухсот лет принципы Ньютона считались верными и незыблемыми. Ни один физик не подвергал их сомнению.

Первым, кто начал открыто критиковать принципы Ньютона, был Эрнст Мах. Он начал свою научную карьеру на кафедре экспериментальной физики, имел в Австрии свою лабораторию. Мах проводил эксперименты со звуковыми волнами, изучал явление инерции. Мах пытался опровергнуть понятия «абсолютное пространство», «абсолютное движение», «абсолютное время». Эйнштейн был знаком с работами Маха, и это знакомство сыграло не последнюю роль в его работе над теорией относительности.

В экспериментальной физике ньютоновские догмы также были поставлены под сомнение. Земля движется по своей орбите вокруг Солнца. В свою очередь, Солнечная система летит в мировом пространстве. Следовательно, если световой эфир покоится в «абсолютном пространстве», а небесные тела проходят через него, то их движение по отношению к эфиру должно вызывать заметный «эфирный ветер», который можно было бы обнаружить с помощью чувствительных оптических приборов.

Опыт по обнаружению «эфирного ветра» был поставлен в 1881 году американцем Альбертом Майкельсоном по идее, высказанной за 12 лет до этого Максвеллом. Майкельсон рассуждал следующим образом: если земной шар движется сквозь абсолютно неподвижный эфир, тогда луч света, пущенный с поверхности Земли, при определенных условиях будет отнесен назад «эфирным ветром», который дует навстречу движению Земли. «Эфирный ветер» должен возникать только благодаря перемещению Земли относительно эфира.

Первая экспериментальная установка была построена и испытана Майкельсоном в Берлине, все приборы были смонтированы на каменной плите и могли поворачиваться как одно целое. Затем опыты были перенесены в Америку и выполнялись при участии близкого друга и сотрудника Майкельсона Эдуарда Морлея. Учеными был создан зеркальный интерферометр, который мог зарегистрировать даже самый слабый «эфирный ветер». Результаты всех опытов, проведенных и в 1881 и в 1887 годах, отрицали существование какого бы ни было «эфирного ветра». Опыт Майкельсона и на сегодняшний день можно считать одним из самых знаменитых и выдающихся в истории физики. По словам самого Эйнштейна, он имел огромное значение для рождения теории относительности.

Но не все физики были согласны с тем, что эфир не существует и что принципы Ньютона должны быть не только поставлены под сомнение, но и отброшены навсегда. Голландский физик Хендрик Лоренц в 1895 году попытался «спасти» эфир. Он высказал предположение о том, что быстро движущиеся тела испытывают сокращение. Еще до Лоренца в 1891 году ирландский физик Джордж Фицджеральд сделал подобное предположение, о котором Лоренц не знал. Лоренц и Фицджеральд писали о том, что все предметы «под давлением» эфира сплющиваются, укорачиваются. Укорачивается и плита, на которой расположены все приборы, и сами приборы. Укорачивается и земной шар, и люди, находящиеся на его поверхности, причем величина всех этих укорочений и сплющиваний равна такой величине, чтобы уравновесить действие «эфирного ветра». Ученые вводили также поправку на время распространения «эфирного ветра». Эти идеи были лишь предположениями, почти ничем не подкрепленными.

Осенью 1904 года Анри Пуанкаре также попытался «спасти» абсолютно неподвижный эфир. Он попытался вычисления Лоренца оформить в виде более-менее стройной теории, но «теория» эта была лишь формальностью. Величайшие умы загрустили, казалось, выхода из создавшейся ситуации нет. Но выход был найден Альбертом Эйнштейном, он вывел физику из тупика и направил ее в новое русло.

Еще во время учебы в школе в Аарау Эйнштейн частенько проводил мысленный эксперимент: что мог бы видеть человек, движущийся за световой волной со скоростью света. Именно этот вопрос послужил началом размышлений над тем, что впоследствии было названо теорией относительности.

О начале своих рассуждений Эйнштейн писал так: «Необходимо было составить себе ясное представление о том, что означают в физике пространственные координаты и время некоторого события». Эйнштейн начал с изучения понятия одновременности. Так, ньютоновская механика утверждает, что в принципе возможно распространение взаимодействий (т. е. передача сигналов, информации) с бесконечной скоростью. А согласно теории Эйнштейна, скорость света, представляющая собой максимальную скорость передачи сигналов, все же конечна и притом имеет одну и ту же величину для всех наблюдателей триста тысяч километров в секунду. Поэтому понятие «абсолютной одновременности» лишено всякого физического смысла и не может применяться. Эйнштейн приходит к выводу, что одновременность пространственно разделенных событий относитедьна. Причиной относительности одновременности является конечность скорости распространения сигналов. Правда, представить себе это наглядно мы не можем, так как скорость света намного больше тех скоростей, с которыми движемся мы.

Если невозможна «абсолютная одновременность», то не может существовать и «абсолютное время», одинаковое во всех системах отсчета. Представление об «абсолютном времени», которое течет раз и навсегда заданным темпом, совершенно независимо от материи и ее движения, оказывается неправильным.

Каждая система отсчета имеет свое собственное «локальное время». Учение Эйнштейна о времени было совершенно новым шагом в науке. «Абсолютное время» было отброшено, а так как время и движение теснейшим образом связаны между собой, то возникла необходимость устранить ньютоновское понятие «абсолютного движения». Это Эйнштейном и было сделано.

Первый и главный постулат теории Эйнштейна — принцип относительности — гласит, что во всех системах отсчета, движущихся по отношению друг к другу равномерно и прямолинейно, действуют одни и те же законы природы. Таким образом, принцип относительности классической механики экстрополируется на все процессы в природе, в том числе и электромагнитные. Если же необходим переход от одной системы отсчета к другой, то надо воспользоваться преобразованиями Лоренца. Эти уравнения Эйнштейн назвал так в знак глубокого уважения к трудам своего предшественника. Эйнштейн в своей теории относительности заменил световой эфир электромагнитным полем. Многие ученые очень болезненно отнеслись к такому повороту, они никак не могли смириться с тем, что эфира не существует. Даже великий голландец Лоренц до самой смерти верил в существование эфира.

Второй постулат Эйнштейна гласит, что скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала. Скорость света — это верхний предел для всех процессов, протекающих в природе. Скорость света — предельная скорость, ни один из процессов в природе не может иметь скорость, большую, чем скорость света.

Из постоянства скорости света вытекают два знаменитых парадокса или следствия: относительность расстояний и относительность промежутков времени.

Относительность расстояний заключается в том, что расстояние не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчета. Размеры быстродвижущихся тел сокращаются по сравнению с длиной покоящихся тел. При приближении скорости тела к скорости света его размеры будут приближаться к нулю! Нечто похожее высказывал и Лоренц, пытаясь «спасти» эфир в опыте Майкельсона.

Относительность промежутков времени заключается в замедлении хода часов в быстродвижущейся системе по сравнению с часами, находящимися в покоящейся системе отсчета относительно первой.

Эффекты, описанные выше, физики называют релятивистскими, т. е. они наблюдаются при скоростях движения, близких к скорости света.

Что же произойдет, если на самом деле попытаться ускорить материальное тело до скоростей, близких к скорости света?

Теория относительности утверждает эквивалентность массы и энергии всоответствии с теперь уже знаменитой формулой, которую словами можно выразить так: «Энергия равна массе, умноженной на квадрат скорости света».

Вначале увеличение энергии тела сопровождается едва уловимым увеличением массы и, следовательно, инерции тела. Поэтому становится чуть-чуть труднее ускорить его дальше. По мере приближения скорости к скорости света этот эффект, становясь все внушительнее, делает невозможным преодоление скорости света.

Формула Эйнштейна получила в конце тридцатых годов блестящее подтверждение в реакциях деления урана. При этом одна тысячная часть полной массы исчезала, чтобы вновь целиком обнаружиться в виде атомной энергии. Даже в обычных химических реакциях соблюдается энштейновское соотношение, но количества вещества, появляющиеся или исчезающие во время реакции, меньше одной десятимиллиардной части всей массы, поэтому обнаружить их невозможно даже с помощью очень точных весов.

Важно подчеркнуть, что в специальной теории относительности рассматривается равномерное движение, т. е. движение с постоянной скоростью, при котором не изменяется направление движения. Если движение происходит с ускорением, обусловленным внешними силами, например гравитационным притяжением, то специальную теорию относительности уже нельзя применять.

То, что открыл и внес в физику Эйнштейн, было поистине революционно, поэтому немногие физики поняли сразу, что специальная теория относительности — это гениальное открытие. Среди тех, кто понял, был Макс Планк, который писал: «Эйнштейновская концепция времени превосходит по смелости все, что до этого времени было создано в умозрительном естествознании и даже в философской теории познания».

В 1908 году немецкий математик Герман Минковский, учивший Эйнштейна в Цюрихском политехникуме, создал для специальной теории относительности математический аппарат. В своем знаменитом докладе на съезде немецких естествоиспытателей и врачей 21 сентября 1908 года Минковский сказал: «Представления о пространстве и времени, которые я собираюсь развить перед вами, выросли на почве экспериментальной физики. В этом заключается их сила. Они приведут к радикальным следствиям. Отныне пространство само по себе и время само по себе полностью уходят в царство теней, и лишь своего рода союз обоих этих понятий сохраняет самостоятельное существование».

С тех пор «мир Минковского» стал неотъемлемой частью специальной теории относительности.

Эйнштейн сказал однажды Джеймсу Франку: «Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребенок с нормальными наклонностями». У Эйнштейна не было «взрослой» уверенности в том, что глобальные проблемы мира уже решены. Это ощущение не было вытеснено при накоплении специальных знаний и интересов. Он думал о понятии движения и вернулся к идее, свойственной детству человечества, — к античной идее относительности, которую заслонило потом понятие эфира как абсолютного тела отсчета. Когда же понятие эфира было отброшено, то Эйнштейн сделал вывод, что движение не может быть абсолютным.

СВЕРХПРОВОДИМОСТЬ

Еще в древности было отмечено, что агрегатное состояние вещества зависит от внешних условий. Самый яркий и наглядный пример — превращение воды в лед и пар. Впервые газ (аммиак) был сжижен в 1792 году голландским физиком М. ван Марумом. Майкл Фарадей, начиная с 1823 года, перевел в жидкое состояние сразу несколько газов: хлор, сернистый и углекислый газы.

Процесс не был сложным, ведь промежуточные газы сжижаются при довольно высокой температуре. Другое дело истинные газы. Прошло более пятидесяти лет, пока удалось перевести их в жидкое состояние. В 1877 году Р. Пикте и Л. Кальете получили жидкий кислород и жидкий азот. В промышленных масштабах сжижение воздуха осуществил немецкий инженер К. Линде только в 1895 году.

Теперь, казалось, по уже отработанной схеме легко удастся перевести в жидкое состояние любой другой газ. Но не тут-то было. Действительно, подавляющее большинство газов при расширении охлаждаются. Однако строптивые водород, неон и гелий ведут себя «нечестно» — при расширении они нагреваются.

Выход был найден к концу девятнадцатого века. Выяснилось, чтобы получить жидкий водород и гелий, нужно лишь предварительно охладить их до сравнительно низкой температуры.

Получить жидкий водород одновременно пытались Ольшевский в Кракове, Камерлинг-Оннес в Голландии и Дьюар в Англии. В этом состязании победил Дьюар: 10 мая 1898 года он получил 20 кубических сантиметров жидкого водорода. Еще через несколько месяцев он сумел получить твердый водород. От абсолютного нуля его отделяло всего 14 градусов.

Блестящий ум, великолепное искусство экспериментатора и отменная эрудиция помогли стать Джемсу Дьюару одним из пионеров криогенной техники. Примечательно, что и сам термин (от греческого «kryos» — холод), и знаменитый «сосуд Дьюара» принадлежат ему.

Но гелий упорно не хотел покоряться. Лишь 9 июля 1908 года пришло известие, что доктор Хейке Камерлинг-Оннес (1853–1926) из Лейденского университета осуществил сжижение гелия. Интуиции и мастерству Дьюара он противопоставил систему, способности великолепного организатора. Знаменитую лабораторию Камерлинга-Оннеса в Лейдене, директором которой он стал в 29 лет, называют первой моделью научно-исследовательского института XX века.

«В конце опыта Камерлинг-Оннес предпринял попытку получить твердый гелий, — пишет Р.Бахтамов. — Это ему не удалось. Не удавалось и потом, когда он дошел до температуры 1,38, а затем и 1,04 градуса Кельвина. Не понимая причины этого странного явления, он, однако, заставил себя отступить и перешел к следующему пункту намеченной программы — к исследованию свойств металлов при гелиевой температуре.

Оннес измерил электросопротивление золота, платины и взялся за ртуть. И тут начались неожиданности. 28 апреля 1911 года он сообщил Нидерландской королевской академии, что сопротивление ртути достигло столь малой величины, что „приборы его не обнаружили“. 27 мая сообщение было уточнено: сопротивление ртути падает не постепенно, а резко, скачком, и снижается настолько, что можно говорить об „исчезновении сопротивления“.

В статье, опубликованной в марте 1913 года, Оннес впервые употребит термин „сверхпроводимость“. Еще через 11 лет он кое-что начнет понимать в этом странном явлении. Через 50 лет явление будет объяснено, хотя и далеко не полностью. Несколько раз Оннес наблюдал и другое достаточно странное явление — необычно высокую подвижность гелия. Но это уже было настолько неестественно, что Оннес даже не пытался что-то понять.

Он продолжал свою линию, двигаясь все ближе к абсолютному нулю. Пользовался он, в сущности, одним методом: чтобы уменьшить давление паров жидкого гелия, ставил все более мощные насосы. В конце концов, Оннес дошел до 0,83 градуса Кельвина. Казалось, это предел. Однако в апреле 1926 года — через два месяца после смерти Камерлинг-Оннеса — американский профессор Латимер, развив идею канадца Уильяма Джиока, предложил новый способ охлаждения — магнитный. В 1956 году Френсис Симон из Оксфорда получил температуру 0,00001 градуса Кельвина, лишь на одну стотысячную градуса выше абсолютного нуля».

Удивительно, но лишь спустя тридцать лет с момента сжижения гелия было открыто наиболее экзотическое его свойство — сверхтекучесть, хотя проводились тысячи экспериментов. Но однажды группа канадских ученых все-таки осмелилась привести описание, решительно отказавшись от выводов. «Правильное заключение относительно нового явления, — отметили они, — нетрудно сделать даже студенту первого курса. Но лишь зрелые и опытные физики взяли бы на себя смелость вполне серьезно предположить, что теплопроводность жидкости внезапно увеличивается в миллионы раз».

В начале 1938 года журнал «Nature» опубликовал две статьи. Одна из них принадлежала советскому ученому П.Л. Капице, а другая Аллену и Мизенару из Кембриджского университета. Их результаты и выводы совпали: поток жидкого гелия почти совершенно лишен вязкости. Именно Капице принадлежит и ставший общепринятым термин «сверхтекучесть». Поразительно — атомы гелия и свободные электроны металла ведут себя одинаково. Это открытие позволило связать оба явления: сверхпроводимость и сверхтекучесть электронного потока в проводнике.

Сверхпроводимость была открыта в начале века, однако только в 1957 году Бардин, Купер и Шрифер сумели дать удовлетворительное объяснение явлению сверхпроводимости, построив теорию, носящую их имя (теория БКШ).

«Что же происходит в сверхпроводнике? — спрашивает Редже в своей книге. — Полный ответ на этот вопрос длинен и сложен. Обычно два электрона в пустоте отталкиваются, но в металле положительные заряды ядер экранируют отрицательные заряды электронов, и отталкивание может почти полностью исчезнуть. Во многих случаях экранировка оказывается неполной, и тогда сверхпроводимость не наблюдается.

В некоторых случаях решетка сжимается вокруг электрона, создавая, таким образом, облако положительных зарядов, обволакивающее этот электрон и притягивающее другие электроны. Результатом является возникновение незначительного притяжения между электронами. Поскольку это притяжение слабое, оно приводит всего лишь к тому, что электроны передвигаются парами; таким образом, возникает связь, подобная химической, но в тысячи раз слабее. Следовательно, куперовская пара подобна молекуле „двухэлектрона“, а переход в состояние сверхпроводимости можно считать превращением электронного газа в газ, состоящий из таких „молекул“. Аналогичное явление встречается в химии: так, если нагреть двухатомный кислород, он распадается на одиночные атомы, способные вновь объединиться при охлаждении.

Электронный газ, движущийся в металле, конденсируется в жидкость из куперовских пар, которую мы и будем называть „конденсатом“. Радиус такой пары равен примерно 300 ангстрем, что намного больше расстояния между соседними атомами (несколько ангстрем). В море, состоящем из куперовских пар, трудно представить себе рябь или волны, длина которых была бы меньше самих пар. Поэтому неоднородности решетки с размерами не больше десятка ангстрем не представляют собой препятствия для течения конденсата, и потери энергии не происходит. Такова основная причина возникновения сверхпроводимости».

Сейчас еще трудно представить все последствия этого открытия. Эффект сверхпроводимости уже успешно используется в скоростных японских поездах «Маглев». «Созданы и работают сверхпроводящие магнитные системы с уникальными характеристиками, — пишет Р.Бахтамов. — Фирма „Локхид“, например, построила электромагнит, который весит 85 килограммов и дает магнитное поле 15 тысяч эрстед.

Крупнейшие сверхпроводящие магниты с полем 30–40 тысяч эрстед и размером порядка 4 метра уже работают в ряде ускорительных лабораторий Европы и Америки, созданы магниты с полем до 170 тысяч эрстед.

Ведутся работы по созданию крупнейших электрических машин — турбо- и гидрогенераторов со сверхпроводящими системами возбуждения.

Сверхпроводники открывают совершенно новые возможности при создании вычислительных машин. Ток в сверхпроводящих системах — идеальное запоминающее устройство, способное хранить колоссальное количество данных и выдавать их с фантастической скоростью…

Уже получены сплавы, сохраняющие сверхпроводимость при 18–20 градусах Кельвина. Создание вещества, которое обладало бы свойствами при температуре хотя бы в 100 градусов Кельвина, привело бы к революции в электротехнике. Современная наука считает, что задача реальна, а последствия ее решения определят одним словом — фантастические».

ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА

В первой атомной теории Дальтона предполагалось, что мир состоит из определенного числа атомов — элементарных кирпичиков — с характерными свойствами, вечными и неизменными.

Эти представления решительно изменились после открытия электрона. Все атомы должны содержать электроны. Но как электроны в них расположены? Физики могли лишь философствовать, исходя из своих познаний в области классической физики, и постепенно все точки зрения сошлись на одной модели, предложенной Дж. Дж. Томсоном. Согласно этой модели, атом состоит из положительно заряженного вещества, внутрь которого вкраплены электроны (возможно, они находятся в интенсивном движении), так что атом напоминает пудинг с изюмом. Томсоновскую модель атома нельзя было непосредственно проверить, но в ее пользу свидетельствовали всевозможные аналогии.

Немецкий физик Филипп Ленард в 1903 году предложил модель «пустого» атома, внутри которого «летают» какие-то никем не обнаруженные нейтральные частицы, составленные из взаимно уравновешенных положительных и отрицательных зарядов. Ленард даже дал название для своих несуществующих частиц — динамиды…

Однако единственной, право на существование которой доказывалось строгими, простыми и красивыми опытами, стала модель Резерфорда.

Эрнест Резерфорд (1871–1937) родился вблизи города Нелсон (Новая Зеландия) в семье переселенца из Шотландии. Окончив школу в Хавелоке, где в это время жила семья, он получил стипендию для продолжения образования в колледже провинции Нельсон, куда поступил в 1887 году. Через два года Эрнест сдал экзамен в Кентерберийский колледж — филиал Новозеландского университета в Крайчестере. В колледже на Резерфорда оказали большое влияние его учителя: преподававший физику и химию Э. У. Бикертон и математик Дж. Х.Х. Кук. После того как в 1892 году Резерфорду была присуждена степень бакалавра гуманитарных наук, он остался в Кентербери-колледже и продолжил свои занятия благодаря полученной стипендии по математике. На следующий год он стал магистром гуманитарных наук, лучше всех сдав экзамены по математике и физике.

В 1894 году в «Известиях философского института Новой Зеландии» появилась его первая печатная работа «Намагничение железа высокочастотными разрядами». В 1895 году оказалась вакантной стипендия для получения научного образования, первый кандидат на эту стипендию отказался по семейным обстоятельствам, вторым кандидатом был Резерфорд. Приехав в Англию, Резерфорд получил приглашение Дж. Дж. Томсона работать в Кембридже в лаборатории Кавендиша.

В 1898 году Резерфорд принял место профессора Макгиллского университета в Монреале, где начал серию важных экспериментов, касающихся радиоактивного излучения элемента урана. В Канаде он сделал фундаментальные открытия: им была открыта эманация тория и разгадана природа так называемой «индуцированной радиоактивности»; совместно с Содди он открыл радиоактивный распад и его закон. Здесь им была написана книга «Радиоактивность».

В своей классической работе Резерфорд и Содди коснулись фундаментального вопроса об энергии радиоактивных превращений. Подсчитывая энергию испускаемых радием к-частиц, они приходят к выводу, что «энергия радиоактивных превращений, по крайней мере, в 20 000 раз, а может, и в миллион раз превышает энергию любого молекулярного превращения». Резерфорд и Содди. сделали вывод, что «энергия, скрытая в атоме, во много раз больше энергии, освобождающейся при обычном химическом превращении». Эта огромная энергия, по их мнению, должна учитываться «при объяснении явлений космической физики». В частности, постоянство солнечной энергии можно объяснить тем, «что на Солнце идут процессы субатомного превращения».

Огромный размах научной работы Резерфорда в Монреале — им было опубликовано как лично, так и совместно с другими учеными 66 статей, не считая книги «Радиоактивность», — принес Резерфорду славу первоклассного исследователя. Он получает приглашение занять кафедру в Манчестере. 24 мая 1907 года Резерфорд вернулся в Европу. Начался новый период его жизни.

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведенные им исследования в области распада элементов в химии радиоактивных веществ».

В следующем году Резерфорд предложил Эрнесту Марсдену выяснить, могут ли альфы-частицы отражаться от золотой фольги. Резерфорд был абсолютно убежден в том, что массивные альфа-частицы должны испытывать лишь незначительные отклонения, проходя сквозь золотую фольгу. Большинство из них действительно проходило сквозь фольгу, лишь слабо отклоняясь. Но некоторые альфа-частицы — примерно одна из 20 000, — как заметил Марсден, — отклонялись на углы больше 90 градусов. Марсден даже боялся рассказать об этом Резерфорду и тщательно удостоверился сначала в том, что в его опытах не было ошибки. Резерфорд почти не поверил в этот результат наблюдений.

Много лет спустя Резерфорд вспоминал: «Это было, пожалуй, самым невероятным событием, которое я когда-либо переживал в моей жизни. Это было столь же неправдоподобно, как если бы вы произвели выстрел по обрывку папиросной бумаги 15-дюймовым снарядом, а он вернулся бы назад и угодил в вас».

Но в неправдоподобное пришлось поверить, и в 1911 году Резерфорд пришел к убеждению, что результаты опытов по рассеянию альфа-частиц золотой фольгой можно объяснить, только предположив, что альфа-частицы проходят на весьма малом расстоянии от других положительно заряженных частиц с размерами, много меньшими размеров атомов. Атом золота должен состоять из малого положительного заряженного ядра и окружающих его электронов. Это было рождением идеи об атомном ядре и новой отрасли физики — ядерной физики.

Эта идея была к 1911 году не совсем нова. Ее выдвигали ранее Джонстон Стони, японский физик Нагаока и некоторые другие ученые. Но все эти гипотезы были сугубо умозрительными, тогда как идея Резерфорда основывалась на эксперименте.

Результаты опытов, которые привели Резерфорда к мысли о планетарном строении атома, ученый изложил в большой статье «Рассеяние альфа- и бета-частиц в Веществе и Структура Атома», опубликованной в мае 1911 года в английском «Философском журнале». Физики всего мира могли теперь оценить еще одну, на сей раз убедительно подтвержденную экспериментально, модель строения атома…

Резерфорд был неутомим. И тут же предпринял новое исследование: стал определять количество альфа-частиц, отклоненных фольгой на различные углы в зависимости от электрического заряда ядер атомов того вещества, из которого сделана фольга.

Терпение исследователей было вознаграждено. Анализируя результаты этих опытов, Резерфорд вывел формулу, связывающую число альфа-частиц, отклоненных на определенный угол, с зарядом ядер вещества фольги-мишени. Теперь можно было из опытов по рассеянию альфа-частиц определять природу материала мишени. В руках исследователей появился первый ядерный метод химического анализа!

Ученые сравнили между собой поведение мишеней из различных материалов и установили, что чем больше заряд ядра, тем сильнее отклоняются альфа-частицы от прямолинейного пути. И здесь впервые физические эксперименты приоткрыли завесу тайны над периодическим законом элементов.

Из опытов Резерфорда следовало, что если бы Менделеев расположил элементы в ряд по мере увеличения заряда их ядер, то никаких перестановок делать не потребовалось бы! Физики внесли уточнение в формулировку периодического закона, химические свойства элементов находятся в периодической зависимости не от атомной массы элементов, а от электрического заряда их ядер. Именно в соответствии с величиной заряда ядер элементы выстраиваются в том порядке, в котором расставил их Менделеев, опираясь на свои энциклопедические знания химических свойств элементов…

Что же удерживает электрон от падения на массивное ядро? Конечно, быстрое вращение вокруг него. Но в процессе вращения с ускорением в поле ядра электрон должен часть своей энергии излучать во все стороны и, постепенно тормозясь, все же упасть на ядро. Эта мысль не давала покоя авторам планетарной модели атома. Очередное препятствие на пути новой физической модели, казалось, должно было разрушить всю с таким трудом построенную и доказанную четкими опытами картину атомной структуры…

Резерфорд был уверен, что решение найдется, но он не мог предполагать, что это произойдет так скоро. Дефект планетарной модели атома исправит датский физик Нильс Бор.

Почти в то же время, когда ученые мира получили номер «Философского журнала» со статьей Резерфорда о строении атома, в Копенгагенском университете успешно защитил диссертацию по электронной теории металлов двадцатипятилетний Нильс Бор.

Датский физик Нильс Хенрик Давид Бор (1885–1962) родился в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 году. Бор и его брат Харальд, который стал известным математиком, в школьные годы были заядлыми футболистами. Позднее Нильс увлекался катанием на лыжах и парусным спортом.

Если в школе Нильса Бора в общем считали учеником обыкновенных способностей, то в Копенгагенском университете его талант очень скоро заставил о себе заговорить. Нильса признавали необычайно способным исследователем. Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. В 1907 году он стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием.

В 1911 году Бор решил поехать в Кембридж, чтобы несколько месяцев поработать в лаборатории Дж. Дж. Томсона, первооткрывателя электрона. Мать Нильса и его брат Харальд одобрили эту идею. Не очень рада была, быть может, его невеста Маргарет, но и она согласилась.

Бор тогда мучительно размышлял над моделью Резерфорда и искал убедительные объяснения тому, что с очевидностью происходит в природе вопреки всем сомнениям: электроны, не падая на ядро и не улетая от него, постоянно вращаются вокруг своего ядра. Вот что пишут в книге «Биография атома» К. Манолов и В. Тютюнник:

«Если у водорода только один электрон, каким образом можно объяснить тот факт, что он излучает несколько различных по длине волны световых лучей?» — думал Бор. Он вновь возвратился к теории Никольсона. Блестящее согласие между вычисленными и наблюдаемыми значениями отношений длин волн спектров является сильным аргументом в пользу этой теории. Однако Никольсон отождествляет частоту излучения с частотой колебаний механической системы. Но системы, в которых частота является функцией энергии, не могут испускать конечного количества однородного излучения, так как при излучении частота их будет меняться. Кроме того, системы, рассчитанные Николь-соном, будут неустойчивы при некоторых формах колебаний. И, наконец, теория Никольсона не может объяснить сериальные законы Баль-мера и Ридберга.

— Хансен, мне кажется, ответ есть! — сказал Бор. — С помощью выведенного мною условия устойчивости орбиты электрона в атоме можно рассчитать скорость движения электрона по орбите, ее радиус и полную энергию электрона на любой орбите. Причем все формулы содержат один и тот же множитель, так называемое квантовое число, которое принимает те же целочисленные значения 1, 2, 3, 4 и т. д. Каждому из этих чисел соответствует определенный радиус орбиты… — Бор немного помолчал и продолжал. — Ну конечно же, теперь все ясно. Атом может существовать, не излучая энергии, только в определенных стационарных состояниях, каждое из которых характеризуется своим значением энергии. Если электрон переходит с одной орбиты на другую, атом либо испускает, либо поглощает энергию в виде особых порций — квантов!..

— Так вот в чем секрет! — воскликнул Хансен. — Значит, спектр атома отражает его строение!

— Теперь все становится на свои места. Ясно, почему атом водорода испускает несколько видов лучей. Если пронумеруем орбиты, начиная с самой близкой к ядру, то можно сказать, что электрон перескакивает с четвертой на первую, с третьей на первую, с третьей на вторую орбиту и т. д. Каждый перескок сопровождается излучением света соответствующей длины волны. Очень надеюсь, что мне удастся найти и количественную зависимость…

В 1913 году Нильс Бор опубликовал результаты длительных размышлений и расчетов, важнейшие из которых стали с тех пор именоваться постулатами Бора: в атоме всегда существует большое число устойчивых и строго определенных орбит, по которым электрон может мчаться бесконечно долго, ибо все силы, действующие на него, оказываются уравновешенными; электрон может переходить в атоме только с одной устойчивой орбиты на другую, столь же устойчивую. Если при таком переходе электрон удаляется от ядра, то необходимо сообщить ему извне некоторое количество энергии, равное разнице в энергетическом запасе электрона на верхней и нижней орбите. Если электрон приближается к ядру, то лишнюю энергию он «сбрасывает» в виде излучения…

Вероятно, постулаты Бора заняли бы скромное место среди ряда интересных объяснений новых физических фактов, добытых Резерфордом, если бы не одно немаловажное обстоятельство. Бор с помощью найденных им соотношений сумел рассчитать радиусы «разрешенных» орбит для электрона в атоме водорода. Зная разницу между энергиями электрона на этих орбитах, можно было построить кривую, описывающую спектр излучения водорода в различных возбужденных состояниях и определить, волны какой длины должен особенно охотно испускать атом водорода, если подводить к нему извне избыточную энергию, например, с помощью яркого света ртутной лампы. Эта теоретическая кривая полностью совпала со спектром излучения возбужденных атомов водорода, измеренным швейцарским ученым Я. Бальмером еще в 1885 году!

Планетарная модель атома получила могучее подкрепление, у Резерфорда и Бора появлялось все больше и больше сторонников.

КВАНТОВАЯ МЕХАНИКА

Когда прошел восторг первых успехов теории Бора, все вдруг осознали простую истину: схема Бора противоречива. От такого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули.

Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который «произошел» от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из подобного порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.

Выходило, что движение электрона в атоме подчиняется каким-то другим законам — законам квантовой механики. Квантовая механика — это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. Гейзенберг — первый из тех, кому выпало счастье эту науку создавать.

Вернер Карл Гейзенберг (1901–1976) родился в немецком городе Вюрцбурге. В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Геттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что ученым нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определенном положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.

Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна. Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…

В июне 1925 года заболевший Гейзенберг уехал отдохнуть на остров Гельголанд в Балтийском море. Отдохнуть ему не удалось — там он вдруг понял неожиданную истину: нельзя представлять себе движение электрона в атоме как движение маленького шарика по траектории. Нельзя, потому что электрон не шарик, а нечто более сложное, и проследить движение этого «нечто» столь же просто, как движение бильярдного шара, нельзя.

Л.Пономарев в своей книге пишет: «Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. А из опытов следовало, что атом устойчив, состоит из ядра и электронов и может испускать лучи, если его вывести из состояния равновесия. Эти лучи имеют строго определенную длину волны и, если верить Бору, возникают при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать „в полете“ между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает „между“ стационарными состояниями, такого свойства у него просто нет!

А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда».

До того времени физики пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел, отмечающих положение электрона в определенные моменты времени. Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой есть набор дискретных чисел, значения которых зависят от номеров начального и конечного состояний электрона.

Он представил состояние атома в виде бесконечной шахматной доски, в каждом квадрате которой написаны числа. Естественно, что значения этих чисел зависят от положения квадрата на «атомной доске», то есть от номера строки (начальное состояние) и номера столбца (конечное состояние), на пересечении которых стоит число.

Если известны числа X своеобразной записи «атомной игры», то об атоме известно все необходимое, чтобы предсказать его наблюдаемые свойства: спектр атома, интенсивность его спектральных линий, число и скорость электронов, выбитых из атома ультрафиолетовыми лучами, а также многое другое.

Числа X нельзя назвать координатами электрона в атоме. Они заменяют их, или, как стали говорить позже, представляют их. Но что означают эти слова — на первых порах не понимал и сам Гейзенберг. Однако тут же с помощью Макса Борна (1882–1970) и Паскуаля Иордана удалось понять, что таблица чисел — не просто таблица, а матрица.

«Матрицы, — замечает Л.И.Пономарев, — это таблицы величин, для которых существуют свои строго определенные операции сложения и умножения. В частности, результат перемножения двух матриц зависит от порядка, в котором они перемножаются. Это правило может показаться странным и подозрительным, но никакого произвола в себе не содержит. По существу, именно это правило отличает матрицы от других величин. Менять его по своей прихоти мы не вправе — в математике тоже есть свои незыблемые законы. Законы эти, независимые от физики и всех других наук, закрепляют на языке символов все мыслимые логические связи в природе. Причем заранее неизвестно, реализуются ли все эти связи в действительности.

Конечно, математики о матрицах знали задолго до Гейзенберга и умели с ними работать. Однако для всех было полной неожиданностью, что эти странные объекты с непривычными свойствами соответствуют чему-то реальному в мире атомных явлений. Заслуга Гейзенберга и Борна в том и состоит, что они преодолели психологический барьер, нашли соответствие между свойствами матриц и особенностями движения электронов в атоме и тем самым основали новую, атомную, квантовую, матричную механику.

Атомную — потому, что она описывает движение электронов в атоме. Квантовую — ибо главную роль в этом описании играет понятие кванта действия. Матричную — поскольку математический аппарат, необходимый для этого, — матрицы».

В новой механике каждой характеристике электрона: координате, импульсу, энергии — соответствовали соответствующие матрицы. Потом уже для них записывали уравнения движения, известные из классической механики.

Гейзенберг установил даже нечто большее: он выяснил, что кван-тово-механические матрицы координаты и импульса — это не вообще матрицы, а только те из них, которые подчиняются коммутационному (или перестановочному) соотношению.

В новой механике это перестановочное соотношение играло точно такую же роль, как условие квантования Бора в старой механике. И точно так же, как условия Бора выделяли стационарные орбиты из набора всех возможных, коммутационное соотношение Гейзенберга выбирает из множества всех матриц только квантово-механические.

Не случайно, что в обоих случаях — и в условиях квантования Бора, и в уравнениях Гейзенберга — необходимо присутствует постоянная Планка. Постоянная Планка непременно входит во все уравнения квантовой механики, и по этому признаку их можно безошибочно отличить от всех других уравнений.

Новые уравнения, которые нашел Гейзенберг, были непохожи ни на уравнения механики, ни на уравнения электродинамики. С точки зрения этих уравнений состояние атома полностью задано, если известны матрицы координаты или импульса. Причем структура этих матриц такова, что в невозбужденном состоянии атом не излучает. Согласно Гейзенбергу, движение — это не перемещение электрона-шарика по какой-либо траектории вокруг ядра.

Движение — это изменение состояния системы во времени, которое описывает матрицы координаты и импульса.

Вместе с вопросами о характере движения электрона в атоме сам собой отпал и вопрос об устойчивости атома. С новой точки зрения в невозбужденном атоме электрон покоится, а потому и не должен излучать.

Теория Гейзенберга была внутренне непротиворечива, чего схеме Бора так недоставало. Вместе с тем она приводила к таким же результатам, что и правила квантования Бора. Кроме того, с ее помощью удалось, наконец, показать, что гипотеза Планка о квантах излучения — это простое и естественное следствие новой механики.

Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершенности и общности мог конкурировать с классической механикой».

Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы, как он написал, «Паули преподнес мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико мое удивление, что Вы так быстро смогли ее разработать“».

Появление матричной механики Гейзенберга физики встретили с огромным облегчением: «Механика Гейзенберга снова вернула мне радость жизни и надежду. Хотя она и не дает решения загадки, но я верю, что теперь снова можно продвигаться вперед», — писал Паули 9 октября 1925 года.

Свою веру он вскоре сам же и оправдал. Применив новую механику к атому водорода, он получил те же формулы, что и Нильс Бор на основе своих постулатов. Конечно, при этом возникли новые трудности, однако это уже были трудности роста, а не безнадежность тупика.

ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

Принцип, который очень точно и емко Бор назвал дополнительностью, — одна из самых глубоких философских и естественно-научных идей настоящего времени. С ним можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле.

«За годы, предшествующие выступлению Н. Бора в Комо, имели место многочисленные дискуссии о физической интерпретации квантовой теории, — пишет У.И. Франкфурт. — Суть квантовой теории — в постулате, согласно которому каждому атомному процессу свойственна прерывность, чуждая классической теории. Квантовая теория признает в качестве одного из своих основных положений принципиальную ограниченность классических представлений при их применении к атомным явлениям, чуждую классической физике, но в то же время интерпретация эмпирического материала основывается главным образом на применении классических понятий. Из-за этого при формулировке квантовой теории возникают существенные трудности. Классическая теория предполагает, что физическое явление можно рассматривать, не оказывая на него принципиально неустранимого влияния».

Для доклада на Международном физическом конгрессе в Комо «Квантовый постулат и новейшее развитие атомной теории» ввиду важности обсуждавшихся проблем Бору была предоставлена четырехкратная норма времени. Дискуссия по его докладу заняла все оставшееся время конгресса.

«…Открытие универсального кванта действия, — говорил Нильс Бор, — привело к необходимости дальнейшего анализа проблемы наблюдения. Из этого открытия следует, что весь способ описания, характерный для классической физики (включая теорию относительности), остается применимым лишь до тех пор, пока все входящие в описание величины размерности действия велики по сравнению с квантом действия Планка. Если это условие не выполняется, как это имеет место в области явлений атомной физики, то вступают в силу закономерности особого рода, которые не могут быть включены в рамки причинного описания… Этот результат, первоначально казавшийся парадоксальным, находит, однако, свое объяснение в том, что в указанной области нельзя более провести четкую грань между самостоятельным поведением физического объекта и его взаимодействием с другими телами, используемыми в качестве измерительных приборов; такое взаимодействие с необходимостью возникает в процессе наблюдения и не может быть непосредственно учтено по самому смыслу понятия измерения…

Это обстоятельство фактически означает возникновение совершенно новой ситуации в физике в отношении анализа и синтеза опытных данных. Она заставляет нас заменить классический идеал причинности некоторым более общим принципом, называемым обычно „дополнительностью“. Получаемые нами с помощью различных измерительных приборов сведения о поведении исследуемых объектов, кажущиеся несовместимыми, в действительности не могут быть непосредственно связаны друг с другом обычным образом, а должны рассматриваться как дополняющие друг друга. Таким образом, в частности, объясняется безуспешность всякой попытки последовательно проанализировать „индивидуальность“ отдельного атомного процесса, которую, казалось бы, символизирует квант действия, с помощью разделения такого процесса на отдельные части. Это связано с тем, что если мы хотим зафиксировать непосредственным наблюдением какой-либо момент в ходе процесса, то нам необходимо для этого воспользоваться измерительным прибором, применение которого не может быть согласовано с закономерностями течения этого процесса. Между постулатом теории относительности и принципом дополнительности при всем их различии можно усмотреть определенную формальную аналогию. Она заключается в том, что подобно тому, как в теории относительности оказываются эквивалентными закономерности, имеющие различную форму в разных системах отсчета вследствие конечности скорости света, так в принципе дополнительности закономерности, изучаемые с помощью различных измерительных приборов и кажущиеся взаимно противоречащими вследствие конечности кванта действия, оказываются логически совместимыми.

Чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, совершенно новой с точки зрения теории познания, мы хотели бы здесь прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно-временным ходом какого-либо физического процесса. Такой контроль в конечном счете всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно-временную систему отсчета. Мы лишь тогда можем говорить о самостоятельном, не зависимом от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным прибором, которое неизбежно возникает при установлении упомянутых связей. Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно-временными характеристиками события и всеобщими динамическими законами сохранения. Это вытекает из того, что использование масштабов и часов для установления системы отсчета по определению исключает возможность учета величин импульса и энергии, передаваемых измерительному прибору в ходе рассматриваемого явления. Точно так же и наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль за пространственно-временным поведением объекта».

Согласно соотношениюнеопределенностей Гейзенберга, нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату и импульс.

Но Бор пошел дальше. Он отметил, что координату и импульс атомной частицы нельзя измерить не только одновременно, но вообще с помощью одного и того же прибора. Действительно, для измерения импульса атомной частицы необходим чрезвычайно легкий подвижный «прибор». Но именно из-за его подвижности положение его весьма неопределенно. Для измерения координаты нужен очень массивный «прибор», который не шелохнулся бы при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим.

«Дополнительность — вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору, — пишет Л.И.Пономарев. — До него все были убеждены, что несовместимость двух типов приборов непременно влечет за собой противоречивость их свойств. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства их действительно несовместимы, но для полного описания атомного объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.

Это простое рассуждение о дополнительности свойств двух несовместимых приборов хорошо объясняет смысл принципа дополнительности, но никоим образом его не исчерпывает. В самом деле, приборы нам нужны не сами по себе, а лишь для измерения свойств атомных объектов. Координата х и импульс р — это те понятия, которые соответствуют двум свойствам, измеряемым с помощью двух приборов. В знакомой нам цепочке познания — явление — образ, понятие, формула, принцип дополнительности сказывается прежде всего на системе понятий квантовой механики и на логике ее умозаключений.

Дело в том, что среди строгих положений формальной логики существует „правило исключенного третьего“, которое гласит: из двух противоположных высказываний одно истинно, другое — ложно, а третьего быть не может. В классической физике не было случая усомниться в этом правиле, поскольку там понятия „волна“ и „частица“ действительно противоположны и несовместимы по существу. Оказалось, однако, что в атомной физике оба они одинаково хорошо применимы для описания свойств одних и тех же объектов, причем для полного описания необходимо использовать их одновременно».

Принцип дополнительности Бора — удавшаяся попытка примирить недостатки устоявшейся системы понятий с прогрессом наших знаний о мире. Этот принцип расширил возможности нашего мышления, объяснив, что в атомной физике меняются не только понятия, но и сама постановка вопросов о сущности физических явлений.

Но значение принципа дополнительности выходит далеко за пределы квантовой механики, где он возник первоначально. Лишь позже — при попытках распространить его на другие области науки — выяснилось его истинное значение для всей системы человеческих знаний. Можно спорить о правомерности такого шага, но нельзя отрицать его плодотворность во всех случаях, даже далеких от физики.

«Бор показал, — отмечает Пономарев, — что вопрос „Волна или частица?“ в применении к атомному объекту неправильно поставлен. Таких раздельных свойств у атома нет, и потому вопрос не допускает однозначного ответа „да“ или „нет“. Точно так же, как нет ответа у вопроса: „Что больше: метр или килограмм?“, и у всяких иных вопросов подобного типа».

Два дополнительных свойства атомной реальности нельзя разделить, не разрушив при этом полноту и единство явления природы, которое мы называем атомом…

…Атомный объект — это и не частица, и не волна и даже ни то, ни другое одновременно. Атомный объект — это нечто третье, не равное простой сумме свойств волны и частицы. Это атомное «нечто» недоступно восприятию наших пяти чувств, и тем не менее оно, безусловно, реально. У нас нет образов и органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет познать ее и без этого. В конце концов (надо признать правоту Борна), «…теперь атомный физик далеко ушел от идиллических представлений старомодного натуралиста, который надеялся проникнуть в тайны природы, подстерегая бабочек на лугу».

ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ

Искусственную радиоактивность открыли супруги Ирен (1897–1956) и Фредерик (1900–1958) Жолио-Кюри. 15 января 1934 года их заметка была представлена Ж. Перреном на заседании Парижской Академии наук. Ирен и Фредерик сумели установить, что после бомбардировки альфа-частицами некоторые легкие элементы — магний, бор, алюминий — испускают позитроны. Далее они попытались установить механизм этого испускания, которое отличалось по своему характеру от всех известных в то время случаев ядерных превращений. Ученые поместили источник альфа-частиц (препарат полония) на расстоянии одного миллиметра от алюминиевой фольги. Затем они подвергали ее облучению в течение примерно десяти минут. Счетчик Гейгера — Мюллера показал, что фольга испускает излучение, интенсивность которого падает во времени по экспоненциальной зависимости с периодом полураспада 3 минут 15 секунд. В экспериментах с бором и магнием периоды полураспада составили 14 и 2,5 минут соответственно.

А вот при опытах с водородом, литием, углеродом, бериллием, азотом, кислородом, фтором, натрием, кальцием, никелем и серебром таких явлений не обнаруживалось. Тем не менее супруги Жолио-Кюри сделали вывод о том, что излучение, вызванное бомбардировкой атомов алюминия, магния и бора, нельзя объяснить наличием какой-либо примеси в полониевом препарате. «Анализ излучения бора и алюминия в камере Вильсона показал, — пишут в своей книге „Биография атома“ К. Манолов и В. Тютюнник, — что оно представляет собой поток позитронов. Стало ясно, что ученые имеют дело с новым явлением, существенно отличавшимся от всех известных случаев ядерных превращений. Известные до того времени ядерные реакции носили взрывной характер, тогда как испускание положительных электронов некоторыми легкими элементами, подвергнутыми облучению альфа-лучами полония, продолжается в течение некоторого более или менее продолжительного времени после удаления источника альфа-лучей. В случае бора, например, это время достигает получаса».

Супруги Жолио-Кюри пришли к выводу, что здесь речь идет о самой настоящей радиоактивности, проявляющейся в испускании позитрона.

Нужны были новые доказательства, и, прежде всего, требовалось выделить соответствующий радиоактивный изотоп. Опираясь на исследования Резерфорда и Кокрофта, Ирен и Фредерику Жолио-Кюри удалось установить, что происходит с атомами алюминия при бомбардировке их альфа-частицами полония. Сначала альфа-частицы захватываются ядром атома алюминия, положительный заряд которого возрастает на две единицы, вследствие чего оно превращается в ядро радиоактивного атома фосфора, названного учеными «радиофосфором». Этот процесс сопровождается испусканием одного нейтрона, вот почему масса полученного изотопа возрастает не на четыре, а на три единицы и становится равной 30. Устойчивый изотоп фосфора имеет массу 31. «Радиофосфор» с зарядом 15 и массой 30 распадается с периодом полураспада 3 минут 15 секунд, излучая один позитрон и превращаясь в устойчивый изотоп кремния.

Единственным и неоспоримым доказательством того, что алюминий превращается в фосфор и потом в кремний с зарядом 14 и массой 30, могло быть только выделение этих элементов и их идентификация с помощью характерных для них качественных химических реакций. Для любого химика, работающего с устойчивыми соединениями, это было простой задачей, но у Ирен и Фредерика положение было совершенно иным: полученные ими атомы фосфора существовали чуть больше трех минут. Химики располагают множеством методов обнаружения этого элемента, но все они требуют длительных определений. Поэтому мнение химиков было единодушным: идентифицировать фосфор за такое короткое время невозможно.

Однако супруги Жолио-Кюри не признавали слова «невозможно». И хотя эта «неразрешимая» задача требовала непосильного труда, напряжения, виртуозной ловкости и бесконечного терпения, она была решена. Несмотря на чрезвычайно малый выход продуктов ядерных превращений и совершенно ничтожную массу вещества, претерпевшего превращение, — лишь несколько миллионов атомов, удалось установить химические свойства полученного радиоактивного фосфора.

Обнаружение искусственной радиоактивности сразу было оценено как одно из крупнейших открытий века. До этого радиоактивность, которая была присуща некоторым элементам, не могла быть ни вызвана, ни уничтожена, ни как-нибудь изменена человеком. Супруги Жолио-Кюри впервые искусственно вызвали радиоактивность, получив новые радиоактивные изотопы. Ученые предвидели большое теоретическое значение этого открытия и возможности его практических приложений в области биологии и медицины.

Уже в следующем году первооткрыватели искусственной радиоактивности Ирен и Фредерик Жолио-Кюри были удостоены Нобелевской премии по химии.

Продолжая эти исследования, итальянский ученый Ферми показал, что бомбардировка нейтронами вызывает искусственную радиоактивность в тяжелых металлах.

Энрико Ферми (1901–1954) родился в Риме. Еще в детстве Энрико обнаружил большие способности к математике и физике. Его выдающиеся познания в этих науках, приобретенные в основном в результате самообразования, позволили ему получить в 1918 году стипендию и поступить в Высшую нормальную школу при Пизанском университете. Затем Энрико получил временную должность преподавателя математики для химиков в Римском университете. В 1923 году он едет в командировку в Германию, в Геттинген, к Максу Борну.

По возвращении в Италию Ферми с января 1925 года до осени 1926 года работает во Флорентийском университете. Здесь он получает свою первую ученую степень «свободного доцента» и, что самое главное, создает свою знаменитую работу по квантовой статистике. В декабре 1926 года он занял должность профессора вновь учрежденной кафедры теоретической физики в Римском университете. Здесь он организовал коллектив молодых физиков: Разетти, Амальди, Сегре, Понтекорво и других, составивших итальянскую школу современной физики.

Когда в Римском университете в 1927 году была учреждена первая кафедра теоретической физики, Ферми, успевший обрести международный авторитет, был избран ее главой.

Здесь в столице Италии Ферми сплотил вокруг себя несколько выдающихся ученых и основал первую в стране школу современной физики. В международных научных кругах ее стали называть группой Ферми. Через два года Ферми был назначен Бенито Муссолини на почетную должность члена вновь созданной Королевской академии Италии.

В 1938 году Ферми была присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».

Об искусственной радиоактивности Энрико Ферми узнал сразу же, весной 1934 года, как только супруги Жолио-Кюри опубликовали свои результаты. Ферми решил повторить опыты Жолио-Кюри, но пошел совершенно иным путем, применив в качестве бомбардирующих частиц нейтроны. Позже Ферми так объяснил причины недоверия к нейтронам со стороны других физиков и свою собственную счастливую догадку:

«Применение нейтронов как бомбардирующих частиц страдает недостатком: число нейтронов, которым можно практически располагать, неизмеримо меньше числа альфа-частиц, получаемых от радиоактивных источников, или числа протонов и дейтронов, ускоряемых в высоковольтных устройствах. Но этот недостаток частично компенсируется большей эффективностью нейтронов при проведении искусственных ядерных превращений Нейтроны обладают также и другим преимуществом. Они в большой степени способны вызывать ядерные превращения. Число элементов, которые могут быть активированы нейтронами, значительно превосходит число элементов, которые можно активировать с помощью других видов частиц».

Весной 1934 года Ферми начал облучать элементы нейтронами. «Нейтронные пушки» Ферми представляли собой маленькие трубочки длиной несколько сантиметров. Их заполняли «смесью» тонкодисперсного порошка бериллия и эманации радия. Вот как Ферми описывал один из таких источников нейтронов:

«Это была стеклянная трубочка размером всего 1,5 см… в которой находились зерна бериллия; прежде чем запаять трубочку, надо было ввести в нее некоторое количество эманации радия. Альфа-частицы, испускаемые радоном, в большом числе сталкиваются с атомами бериллия и дают нейтроны…

Опыт выполняется следующим образом. В непосредственной близости от источника нейтронов помещают пластинку алюминия, или железа, или вообще того элемента, который желательно изучить, и оставляют на несколько минут, часов или дней (в зависимости от конкретного случая). Нейтроны, вылетающие из источника, сталкиваются с ядрами вещества. При этом происходит множество ядерных реакций самого различного типа…»

Как все это выглядело на практике? Исследуемый образец находился заданное время под интенсивным воздействием нейтронного облучения, затем кто-либо из сотрудников Ферми буквально бегом переносил образец к счетчику Гейгера—Мюллера, расположенному в другой лаборатории, и регистрировал импульсы счетчика. Ведь многие новые искусственные радиоизотопы были короткоживущими.

В первом сообщении, датированном 25 марта 1934 года, Ферми сообщил, что бомбардируя алюминий и фтор, получил изотопы натрия и азота, испускающие электроны (а не позитроны, как у Жолио-Кюри). Метод нейтронной бомбардировки оказался очень эффективным, и Ферми писал, что эта высокая эффективность в осуществлении расщепления «вполне компенсирует слабость существующих нейтронных источников по сравнению с источниками альфа-частиц и протонов».

В сущности, многое было известно. Нейтроны попадали в ядро обстреливаемого атома, превращали его в нестабильный изотоп, который спонтанно распадался и излучал. В этом излучении и таилось неизвестное: некоторые из искусственно полученных изотопов излучали бета-лучи, другие — гамма-лучи, третьи — альфа-частицы. С каждым днем число искусственно полученных радиоактивных изотопов возрастало. Каждую новую ядерную реакцию необходимо было осмыслить, чтобы разобраться в сложных превращениях атомов Для каждой реакции надо было установить характер излучения, потому что, только зная его, можно представить схему радиоактивного распада и предсказать элемент, который получится в конечном результате. Затем приходила очередь химиков. Они должны были идентифицировать полученные атомы. На это тоже требовалось время.

С помощью своей «нейтронной пушки» Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро и йод. Все эти элементы активировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. Ему удалось этим методом активизировать 47 из 68 изученных элементов.

Воодушевленный успехом, он в сотрудничестве с Ф. Разетти и О. Д'Агостино предпринял нейтронную бомбардировку тяжелых элементов: тория и урана. «Опыты показали, что оба элемента, предварительно очищенные от обычных активных примесей, могут сильно активизироваться при бомбардировке нейтронами».

22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что этот эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала с парафином, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов.

Но, помимо замечательных экспериментальных результатов, в этом же году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей; полученные формулы сравниваются с экспериментом».

Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона.

Комментируя теорию Ферми, Ф Разетти писал: «Построенная им на этой основе теория оказалась способной выдержать почти без изменения два с половиной десятилетия революционного развития ядерной физики. Можно было бы заметить, что физическая теория редко рождается в столь окончательной форме».

РЕАКЦИЯ ДЕЛЕНИЯ

В 1938 году И. Жолио-Кюри и П. Савич заметили, что в уране, активизированном по методу Ферми, присутствует элемент, сходный с лантаном. Эти опыты были повторены в том же году О. Ганом и Ф. Штрассманом, подтвердившими результаты своих французских коллег и установившими, что новый замеченный ими элемент представляет собой именно лантан.

Вместе с Ганом и Штрассманом в Институте кайзера Вильгельма в Берлине работала Лиза Мейтнер — воспитанница Венского университета, талантливый теоретик и специалист в области атомной физики. Но, будучи еврейкой немецкого происхождения, она вынуждена была бежать в Данию в Копенгаген к Нильсу Бору и Отто Фришу — другому немецкому физику.

А далее события подробно описаны в книге «Мир атома»: «В спокойной творческой атмосфере Института теоретической физики она быстро забыла тревоги и опасения прошедших дней. Теперь для нее главной снова стала проблема атомного ядра.

За два дня до своего отъезда Лиза Мейтнер получила письмо Отто Гана, в котором тот писал об исследованиях радиоактивного бария. Прочитав письмо, она инстинктивно сжала кулаки. Ей хотелось смять его и выбросить. Внутри все кипело: „Чепуха! Какая чепуха!“

Когда прошло первое волнение, она задумалась: „Если Ган утверждает, что уран превращается в барий, может, это действительно так. Он не может ошибиться. Вероятно, и Ирен Кюри была права…“ В работе других Мейтнер могла сомневаться, но в результатах Гана — нет. Значит, нейтроны вызывают какой-то новый вид превращения уранового ядра. Она взяла карандаш и стала быстро писать. Математические символы, которыми она заполняла лист, для обычного человека выглядели бы непонятно. Ядро атома урана распалось примерно на две части. В письме Ган употребил слово „раскололось“. Теперь это не так важно, важен сам факт. Можно ли понять на основе известных законов физики возможность такого расщепления? Первые же вычисления, которые она сделала, дали положительный ответ. Мейтнер почувствовала неуверенность — что, если она ошибается?»

Лиза просит проверить расчеты Отто Фриша. «Он бегло просмотрел смятые листы, потом вынул карандаш, присел на корточки и стал быстро делать расчеты.

— А ведь это замечательно и невероятно. Ты действительно права! — Фриш сунул лист в карман. — Мы возвращаемся. Надо немедленно все проверить.

Так их каникулы и завершились, не начавшись. Празднества обещали быть исключительно веселыми, но сейчас их это не интересовало. Они заперлись в комнате, где и началось одно из самых замечательных теоретических исследований. Их ждали огромные трудности. Бесконечные вычисления, сложные и трудоемкие выводы, проверка полученных результатов, сравнение с выведенными формулами и закономерностями… Они не заметили, как прошли семь дней и как наступил 1939 год. Новый год принес новую теорию. Мейтнер и Фриш впервые дали теоретическое объяснение результатов, полученных Ганом и Штрассманом. Если их выводы подтвердятся и все окажется правильным, человечество пойдет по новому пути, будет располагать новым источником энергии. Они вполне сознавали, что сделали эпохальное открытие, поэтому спешили подготовить статьи».

Статья Лизы Мейтнер и Отто Фриша, озаглавленная «Деление урана с помощью нейтронов: новый тип ядерной реакции», была отправлена в печать 16 января 1939 года и появилась в журнале «Природа» через месяц. Здесь же вскоре была напечатана еще одна их статья — «Продукты деления уранового ядра» и затем работа Фриша о результатах экспериментов, проведенных в Дании.

Фактически это явление было объяснено почти одновременно в конце 1938 — начале 1939 года несколькими физиками. Меньше чем за месяц в четырех лабораториях мира — в Копенгагене, Нью-Йорке, Вашингтоне и Париже.

О Гане и Штрассмане, Мейтнер и Фрише уже говорилось. В подземелье Колумбийского университета Джон Даннинг с двумя помощниками также осуществляют деление уранового ядра. Кроме них в лаборатории Коллеж де Франс в Париже супруги Ирен и Фредерик Жолио-Кюри с сотрудниками Павле Савичем, Хансом Халбаном и Львом Коварски пришли к тому же открытию.

Согласно этому объяснению, атом урана, подверженный бомбардировке нейтронами, испытывает новый тип расщепления, причем атом, в который попал нейтрон, раскалывается на две более или менее равные части. Этому явлению вскоре было дано название деления.

Жолио-Кюри сразу понял чрезвычайную важность этого нового типа атомного распада. В ядрах легких элементов число протонов и нейтронов примерно одинаково, а с увеличением атомного номера относительное число нейтронов увеличивается. Если в ядре урана отношение числа нейтронов к числу протонов равно 1,59, то для элементов середины периодической системы оно колеблется между 1,2 и 1,4. Значит, если атом урана распадается на две части, то общее число нейтронов в осколках деления должно для достижения устойчивости самих осколков деления стать меньше числа нейтронов, содержавшихся в исходном ядре. При делении атома урана освобождаются нейтроны, которые могут в свою очередь вызвать деление других атомов.

Таким образом, появляется возможность цепной реакции, аналогичной химическим цепным реакциям при взрыве. Ф. Перрен в том же 1939 году сделал и опубликовал первый расчет «критической массы», необходимой для того, чтобы началась цепная реакция. Правда, то была лишь предварительная оценка.

Сегодня известно, что ни при каком количестве обычного урана цепная реакция начаться не может. Нейтроны, получающиеся при делении атомов урана-235, поглощаются за счет так называемого «резонансного захвата» атомами урана-238 с образованием урана-239. Последний в результате двух последовательных распадов переходит в нептуний и плутоний. Только для таких делящихся веществ, как уран-235 и плутоний, существует критическая масса.

Расчет потери массы при делении атома урана позволил, кроме того, предвидеть, что процесс деления должен сопровождаться выделением огромной энергии в 165 Мэв.

Идеи Жолио-Кюри удалось вскоре подтвердить экспериментально. Было доказано, что ядро урана захватывает медленные нейтроны и затем делится. Нильс Бор после теоретического рассмотрения пришел к выводу, что делению подвергается не обычный уран с массой 238, а его изотоп с массой 235. В 1940 году А.О. Нир подтвердил экспериментально это предсказание Бора, обнаружив также, что другим легко делящимся атомом является атом плутония.

Идея использования атомной энергии в военных целях была выдвинута группой иностранных ученых, бежавших от фашизма в Соединенные Штаты, из которых в отчете называются Л. Сцилард, Э. Вигнер, Э. Теллер, В. Р. Вайсскопф, Э. Ферми. Этой группе удалось заинтересовать президента Соединенных Штатов Рузвельта. Эти ученые воспользовались помощью Эйнштейна, написавшего президенту письмо. В итоге Рузвельт принял решение оказать государственную поддержку этим исследованиям, и они сразу же были засекречены.

«Усилия по получению атомной энергии в больших количествах имели две различные цели: управляемое медленное освобождение энергии для промышленных нужд и создание сверхмощного взрывчатого вещества, — пишет Льоцци. — Вторая цель была совершенно безотлагательной в тот трагический период мировой истории. Однако очень скоро ученые поняли, что наиболее быстрым способом достижения второй цели является осуществление первой. Как мы уже говорили, делению подвержены атомы плутония и урана-235, которого в природном уране лишь 0,7 процента. Атомная бомба требовала огромных количеств урана-235, который очень трудно отделять. При медленном получении энергии не требуется предварительного разделения, необходимы лишь большие количества урана, и в качестве побочного продукта получается плутоний. Отсюда возникла идея „атомного котла“, названного так, возможно, из-за простоты его конструкции. Это название теперь имеет лишь исторический интерес, поскольку оно вытеснено более подходящим названием „ядерный реактор“. Первоначальным назначением атомного котла было не получение энергии, а производство плутония в количествах, необходимых для создания атомной бомбы.

Важной проблемой было уменьшение числа нейтронов, захватываемых ураном-238 за счет резонанса; они выпадают из цепной реакции, хотя и полезны как обогатители, т. е. при получении урана-239, превращающегося затем в нептуний и плутоний. Поэтому нужно было как можно скорее выводить быстрые нейтроны из массы урана, отнимать у них кинетическую энергию и вновь направлять в уран в виде тепловых нейтронов, чтобы вызвать деление урана-235. Эту функцию замедлителей могли выполнять атомы тех легких элементов, в столкновении с которыми нейтроны теряют значительную часть своей энергии, не вызывая в то же время изменения этих атомов. До сего времени найдено лишь два вещества, пригодных для этих целей: тяжелый водород (в виде тяжелой воды) и углерод. Тяжелая вода очень дорога, поэтому остановились на углероде в форме графита.

Первый атомный котел, или ядерный реактор, из чередующихся слоев урана и графита, спроектированный и сконструированный Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудзом и Г. Вейлем, начал работать 2 декабря 1942 года на теннисном корте Чикагского университета. Его мощность составляла 0,5 вт. Через десять дней она была доведена до 200 вт. Это была первая установка ядерной энергетики, ставшей теперь одной из наиболее развитых отраслей современной промышленности».

На наружной стене теннисного корта Чикагского университета установлена мемориальная доска. Надпись на доске гласит:

«Здесь 2 декабря 1942 г. человек впервые осуществил цепную реакцию и этим положил начало овладению освобожденной ядерной энергией».

Первая опытная установка позволила провести точное экспериментальное исследование процесса получения плутония. Оно привело к заключению, что этот способ дает реальную возможность изготовления плутония в количествах, достаточных для изготовления атомной бомбы. В конце 1943 года проект создания атомной бомбы вошел в стадию реализации. Первый экспериментальный взрыв был успешно произведен в 17 часов 30 минут 16 июля 1945 года на воздушной базе Аламогордо, примерно в 200 километрах от Альбукерке, в пустыне штата Нью-Мексико.

КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

«Сколько элементарных частиц обнаружено до сих пор? — спрашивает в своей книге по физике Редже. — Если судить по толщине кратких справочников, где описаны их свойства и которые имеют хождение среди физиков, то несколько сотен. Многие из этих частиц собраны в семейства, похожие на семейства нуклонов или пионов. Эти семейства играют роль, сравнимую с ролью периодической системы Менделеева, столь полезной в химии. Но именно такое сходство и наталкивает на мысль, что мы занимаемся классификацией объектов, похожих на атомы, а аовсе не элементарных. Так или иначе, но уже снова начались поиски действительно элементарных составляющих вещества. К 1963 году выяснилось, что частицы следует объединять в более обширные семейства.

Древнегреческие философы приписывали атомам исключительно правильные и симметричные формы. Хотя реальные атомы весьма далеки от этого, мысль о том, что в физике понятие симметрии должно играть важную роль, осталась. Классификация частиц по семействам как раз и отражает существование какой-то симметрии в природе…»

Физика элементарных частиц в пятидесятые годы находилась в стадии формирования. Основными средствами экспериментальных исследований в этом отделе физики были ускорители, «выстреливавшие» пучок частиц в неподвижную мишень: при столкновении налетающих частиц с мишенью рождались новые частицы. С помощью ускорителей экспериментаторам удалось получить несколько новых типов элементарных частиц, помимо уже известных протонов, нейтронов и электронов. Физики-теоретики пытались найти некоторую схему, которая позволила бы классифицировать все новые частицы.

Учеными были обнаружены частицы с необычным (странным) поведением. Скорость рождения таких частиц в результате некоторых столкновений свидетельствовала о том, что их поведение определяется сильным взаимодействием, для которого характерно быстродействие. Сильное, слабое, электромагнитное и гравитационное взаимодействия образуют четыре фундаментальных взаимодействия, лежащих в основе всех явлений. Вместе с тем странные частицы распадались необычно долго, что было бы невозможно, если бы их поведение определялось сильным взаимодействием. Скорость распада странных частиц, по-видимому, указывала на то, что этот процесс определяется гораздо более слабым взаимодействием.

На решении этой труднейшей задачи и сосредоточил свое внимание Гелл-Манн.

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет. Он окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике. После годичного пребывания в Принстонском институте фундаментальных исследований (штат Нью-Джерси) Гелл-Манн начал работать в Чикагском университете с Энрико Ферми, сначала преподавателем (1952–1953), затем ассистент-профессором (1953–1954) и адъюнкт-профессором (1954–1955). В 1955 году Гелл-Манн стал адъюнкт-профессором факультета Калифорнийского технологического института.

Исходным пунктом своих построений он избрал понятие, известное под названием зарядовой независимости. Суть его состоит в определенной группировке частиц, подчеркивающей их сходство. Например, несмотря на то, что протон и нейтрон отличаются электрическим зарядом (протон имеет заряд + 1, нейтрон — 0), во всех остальных отношениях они тождественны. Следовательно, их можно считать двумя разновидностями одного и того же типа частиц, называемых нуклонами, имеющих средний заряд, или центр заряда, равный 1/2. Принято говорить, что протон и нейтрон образуют дублет. Другие частицы также могут быть включены в аналогичные дублеты или в группы из трех частиц, называемые триплетами, или в «группы», состоящие всего лишь из одной частицы, — синглеты. Общее название группы, состоящей из любого числа частиц, — мультиплет.

Все попытки сгруппировать странные частицы аналогичным образом не увенчались успехом. Разрабатывая свою схему их группировки, Гелл-Манн обнаружил, что средний заряд их мультиплетов отличается от среднего заряда нуклонов. Он пришел к выводу, что это отличие может быть фундаментальным свойством странных частиц, и предложил ввести новое квантовое свойство, названное странностью. По причинам алгебраического характера странность частицы равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклонов + 1/2. Гелл-Манн показал, что странность сохраняется во всех реакциях, в которых участвует сильное взаимодействие. Иначе говоря, суммарная странность всех частиц до сильного взаимодействия должна быть абсолютно равна суммарной странности всех частиц после взаимодействия.

Сохранение странности объясняет, почему распад таких частиц не может определяться сильным взаимодействием. При столкновении некоторых других, не странных, частиц странные частицы рождаются парами. При этом странность одной частицы компенсирует странность другой. Например, если одна частица в паре имеет странность +1, то странность другой равна -1. Именно поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения странные частицы разлетаются. Изолированная странная частица не может распадаться вследствие сильного взаимодействия, если продуктами ее распада должны быть частицы с нулевой странностью, так как такой распад нарушал бы сохранение странности. Гелл-Манн показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет странность. Таким образом, странные частицы, родившись, выживают вплоть до распада, определяемого слабым взаимодействием, которое не сохраняет странность. Свои идеи ученый опубликовал в 1953 году.

В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему ученый назвал восьмеричным путем (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Ман-на аналогичную классификацию частиц предложил израильский физик Ювал Нееман.

Восьмеричный путь американского ученого часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных еще элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц.

В 1963 году, находясь в качестве приглашенного профессора в Массачусетском технологическом институте, Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришел и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или -1/3. Существуют также антикварки с зарядами -2/3 или + 1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и двух кварков с зарядом -1/3 Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом -1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, а значит существует несколько типов кварков с одним и тем же зарядом. Таким образом, различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы. Гелл-Манну в 1969 году была вручена Нобелевская премия по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий». Ивар Валлер из Шведской королевской академии наук, выступая на церемонии вручения премии, отметил, что Гелл-Манн «на протяжении более чем десятилетия считается ведущим ученым в области теории элементарных частиц». По мнению Валлера, методы, предложенные им, «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».

ЛАЗЕР

Слово «лазер» образовано из начальных букв длинной фразы на английском языке, означающей в дословном переводе: «усиление света с помощью вынужденного излучения».

«Ученые давно обращали внимание на явление самопроизвольного испускания света атомами, — пишет в книге „Мир физики“ М.М. Колтун, — происходящее благодаря тому, что возбужденный каким-либо способом электрон вновь возвращается с верхних электронных оболочек атома на нижние. Недаром явление химической, биологической и световой люминесценции, вызванное такими переходами, издавна привлекало исследователей своей красотой и необычностью Но свет люминесценции слишком слаб и рассеян, Луны ему не достичь…

Каждый атом при люминесценции испускает свой свет в разное время, не согласованное с атомами-соседями. В результате возникает хаотичное вспышечное излучение. У атомов нет своего дирижера!

В 1917 году Альберт Эйнштейн в одной из статей теоретически показал, что согласовать вспышки излучения отдельных атомов между собой позволило бы внешнее электромагнитное излучение. Оно может заставить электроны разных атомов одновременно взлететь на одинаково высокие возбужденные уровни. Этому же излучению нетрудно сыграть роль и спускового крючка при „световом выстреле“: направленное на кристалл, оно может вызвать одновременное возвращение на исходные орбиты сразу нескольких десятков тысяч возбужденных электронов, что будет сопровождаться могучей ослепительно яркой вспышкой света, света практически одной длины волны, или, как говорят физики, монохроматического света.

Работа Эйнштейна была почти забыта физиками: исследования по изучению строения атома занимали тогда всех значительно больше.

В 1939 году молодой советский ученый, ныне профессор и действительный член Академии педагогических наук В.А. Фабрикант вернулся к введенному Эйнштейном в физику понятию вынужденного излучения. Исследования Валентина Александровича Фабриканта заложили прочный фундамент для создания лазера. Еще несколько лет интенсивных исследований в спокойной мирной обстановке, и лазер был бы создан». Но это произошло только в пятидесятые годы благодаря творческой работе советских ученых Прохорова, Басова и американца Чарльза Харда Таунса (1915).

Александр Михайлович Прохоров (1916–2001) родился в Атортоне (Австралия) в семье рабочего революционера, бежавшего в 1911 году в Австралию из сибирской ссылки. После Великой Октябрьской социалистической революции семья Прохорова возвратилась на родину в 1923 году и через некоторое время поселилась в Ленинграде.

В 1934 году здесь Александр окончил среднюю школу с золотой медалью. После школы Прохоров поступил на физический факультет Ленинградского государственного университета (ЛГУ), который оканчивает в 1939 году с отличием. Далее он поступает в аспирантуру Физического института имени П.Н. Лебедева АН СССР. Здесь молодой ученый занялся исследованием процессов распространения радиоволн вдоль земной поверхности. Им был предложен оригинальный способ изучения ионосферы с помощью радиоинтерференционного метода.

С самого начала Отечественной войны Прохоров в рядах действующей армии. Воевал в пехоте, в разведке, отмечен боевыми наградами, был дважды ранен. Демобилизовавшись в 1944 году, после второго тяжелого ранения, он возвратился к прерванной войной научной работе в ФИАНе. Прохоров занялся актуальными в то время исследованиями по теории нелинейных колебаний, методам стабилизации частоты радиогенераторов. Эти работы и легли в основу его кандидатской диссертации. За создание теории стабилизации частоты лампового генератора в 1948 году ему была присуждена премия имени академика Л.И. Мандельштама.

В 1948 году Александр Михайлович начинает исследование природы и характера электромагнитного излучения, испускаемого в циклических ускорителях заряженных частиц. В очень короткий срок ему удается провести большую серию успешных экспериментов по изучению когерентных свойств магнито-тормозного излучения релятивистских электронов, движущихся в однородном магнитном поле в синхротроне — синхротронного излучения.

В результате проведенных исследований Прохоров доказал, что синхротронное излучение может быть использовано в качестве источника когерентного излучения в сантиметровом диапазоне длин волн, определил основные характеристики и уровень мощности источника, предложил метод определения размеров электронных сгустков.

Эта классическая работа открыла целое направление исследований. Ее результаты были оформлены в виде докторской диссертации, успешно защищенной Александром Михайловичем в 1951 году. В 1950 году Прохоров начинает работы в совершенно новом направлении физики — радиоспектроскопии, постепенно отходя от работ в области физики ускорителей.

В спектроскопии тогда осваивался новый диапазон длин волн — сантиметровых и миллиметровых. В этот диапазон попадали вращательные и некоторые колебательные спектры молекул. Это открывало совершенно новые возможности в исследовании фундаментальных вопросов строения молекул. Богатый экспериментальный и теоретический опыт Прохорова в области теорий колебаний, радиотехники и радиофизики как нельзя лучше подходил для освоения этой новой области.

При поддержке академика Д.В. Скобельцына в минимально возможные сроки вместе с группой молодых сотрудников лаборатории колебаний Прохоров создал отечественную школу радиоспектроскопии, быстро завоевавшую передовые позиции в мировой науке. Одним из этих молодых сотрудников был выпускник Московского инженерно-физического института Николай Геннадьевич Басов.

Басов родился 14 декабря 1922 года городе Усмани Воронежской губернии (ныне Липецкой обл.) в семье Геннадия Федоровича Басова, впоследствии профессора Воронежского университета.

Окончание школы Басовым совпало с началом Великой Отечественной войны. В 1941 году Николая призвали в армию. Он был направлен в Куйбышевскую военно-медицинскую академию. Через год его перевели в Киевское военно-медицинское училище. После окончания училища в 1943 году Басова направили в батальон химической защиты. С начала 1945 года и до демобилизации, в конце того же года он находился в рядах действующей армии.

В 1946 году Басов поступает в Московский механический институт. По окончании института в 1950 году он поступил в его аспирантуру на кафедру теоретической физики.

С 1949 года Николай Геннадиевич работает в Физическом институте АН СССР. Его первая должность — инженер лаборатории колебаний, возглавляемой академиком М.А. Леонтовичем. Затем он становится младшим научным сотрудником той же лаборатории. В те годы группа молодых физиков под руководством Прохорова начала исследования на новом научном направлении — молекулярной спектроскопии. Тогда же началось плодотворное содружество Басова и Прохорова, приведшее к основополагающим работам в области квантовой электроники.

В 1952 году Прохоров и Басов выступили с первыми результатами теоретического анализа эффектов усиления и генерации электромагнитного излучения квантовыми системами, в дальнейшем ими была исследована физика этих процессов.

Разработав целый ряд радиоспектроскопов нового типа, лаборатория Прохорова начала получать очень богатую спектроскопическую информацию по определению структур, дипольных моментов и силовых постоянных молекул, моментов ядер и т. д.

Анализируя предельную точность микроволновых молекулярных стандартов частоты, которая определяется в первую очередь шириной молекулярной линии поглощения, Прохоров и Басов предложили использовать эффект резкого сужения линии в молекулярных пучках.

«Однако переход к молекулярным пучкам, — пишут И.Г.Бебих и В.С.Семенова, — решая проблему ширины линии, создавал новую трудность — резко снижалась интенсивность линии поглощения из-за низкой общей плотности молекул в пучке. Сигнал поглощения есть результат индуцированных переходов между двумя энергетическими состояниями молекул с поглощением кванта при переходе с нижнего уровня на верхний (индуцированное, вынужденное поглощение) и с испусканием кванта при переходе с верхнего уровня вниз (индуцированное, вынужденное излучение). Следовательно, он пропорционален разности заселенностей нижнего и верхнего энергетических уровней изучаемого квантового перехода молекул. Для двух уровней, отстоящих на энергетическом расстоянии, равном кванту СВЧ-излучения, эта разность населенностей составляет лишь малую часть от общей плотности частиц в силу термического заселения уровней в равновесном состоянии при обычных температурах согласно распределению Больцмана. Тогда-то и была предложена идея о том, что, изменяя искусственно населенности уровней в молекулярном пучке, т. е. создавая неравновесные условия (или как бы свою „температуру“, определяющую населенность этих уровней), можно существенно изменить интенсивность линии поглощения. Если резко снизить число молекул на верхнем рабочем уровне, отсортировывая из пучка такие частицы, например, с помощью неоднородного электрического поля, то интенсивность линии поглощения возрастает. В пучке как бы создана сверхнизкая температура. Если же таким способом убрать молекулы с нижнего рабочего уровня, то в системе будет наблюдаться усиление за счет индуцированного излучения. Если усиление превышает потери, то система самовозбуждается на частоте, которая определяется по-прежнему частотой данного квантового перехода молекулы. В молекулярном же пучке будет осуществлена инверсия населенностей, т. е. создана как бы отрицательная температура». Так возникла идея молекулярного генератора, изложенная в хорошо известном цикле классических совместных работ A.M. Прохорова и Н.Г. Басова 1952–1955 годов.

Отсюда начала свое развитие квантовая электроника — одна из самых плодотворных и наиболее быстро развившихся областей современной науки и техники.

По существу, главный, принципиальный шаг в создании квантовых генераторов состоял в том, чтобы приготовить неравновесную излучающую квантовую систему с инверсией населенностей (с отрицательной температурой) и поместить ее в колебательную систему с положительной обратной связью — объемный резонатор. Его могли и должны были сделать ученые, объединившие в себе опыт изучения квантовомеханических систем и радиофизическую культуру. Дальнейшее распространение этих принципов на оптический и другие диапазоны было неизбежно.

Принципиальным было предложение Прохорова и Басова о новом методе получения инверсии населенностей в трехуровневых (и более сложных) системах с помощью насыщения одного из переходов под действием мощного вспомогательного излучения. Это так называемый «метод трех уровней», получивший позднее также название метода оптической накачки.

Именно он позволил в 1958 году Фабри-Перо сформировать реальную научную основу для освоения других диапазонов. Этим успешно воспользовался в 1960 году Т. Мэйман при создании первого лазера на рубине.

Еще в период работы над молекулярными генераторами Басов пришел к идее о возможности распространения принципов и методов квантовой радиофизики на оптический диапазон частот. Начиная с 1957 года он занимается поиском путей создания оптических квантовых генераторов — лазеров.

В 1959 году Басовым совместно с Б.М. Вулом и Ю.М. Поповым подготовлена работа «Квантово-механические полупроводниковые генераторы и усилители электромагнитных колебаний». В ней предлагалось использовать для создания лазера инверсную заселенность в полупроводниках, получаемую в импульсном электрическом поле. Это предложение наряду с предложениями ученых США об использовании кристаллов рубина (Ч. Таунс, А. Шавдов) и газовых смесей (А. Джаван) ознаменовало начало планомерного освоения квантовой электроникой оптического диапазона частот.

В 1964 году Басов, Прохоров и Таунс (США) стали лауреатами Нобелевской премии, которой они были удостоены за фундаментальные исследования в области квантовой электроники, приведшие к созданию мазеров и лазеров.

МОГУЩЕСТВЕННАЯ МАТЕМАТИКА

ТЕОРЕМА ПИФАГОРА

Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Даже те, кто в своей жизни далек от математики, продолжают сохранять воспоминания о «пифагоровых штанах» — квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора ясна: это простота — красота — значимость. В самом деле, теорема Пифагора проста, но не очевидна. Противоречие двух начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение. Она применяется в геометрии буквально на каждом шагу. Существует около пятисот различных доказательств этой теоремы, что свидетельствует о гигантском числе ее конкретных реализаций.

Исторические исследования датируют появление на свет Пифагора приблизительно 580 годом до нашей эры. Счастливый отец Мнесарх окружает мальчика заботами. Возможности дать сыну хорошее воспитание и образование у него были.

Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из «Одиссеи» и «Илиады». Первый учитель прививал юному Пифагору любовь к природе и ее тайнам.

Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте. При помощи учителя Пифагору удается покинуть остров Самос. Но пока до Египта далеко. Он живет на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом — другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам.

Затем в Милете он слушает лекции Фалеса и его более молодого коллеги и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрел Пифагор за время своего пребывания в Милетской школе.

Перед Египтом он на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов.

Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. Здесь же Пифагор попадает в персидский плен.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой.

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую «пифагорейскую гамму» и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, идеи «гармонии мира» и «музыки сфер», впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал ученый и в геометрии. Прокл так оценивал вклад греческого ученого в геометрию: «Пифагор преобразовал геометрию, придав ей форму свободной науки, рассматривая ее принципы чисто абстрактным образом и исследуя теоремы с нематериальной, интеллектуальной точки зрения. Именно он нашел теорию иррациональных количеств и конструкцию космических тел».

В школе Пифагора геометрия впервые оформляется в самостоятельную научную дисциплину. Именно Пифагор и его ученики первыми стали изучать геометрию систематически — как теоретическое учение о свойствах абстрактных геометрических фигур, а не как сборник прикладных рецептов по землемерию.

Важнейшей научной заслугой Пифагора считается систематическое введение доказательства в математику, и, прежде всего, в геометрию. Строго говоря, только с этого момента математика и начинает существовать как наука, а не как собрание древнеегипетских и древневавилонских практических рецептов. С рождением же математики зарождается и наука вообще, ибо «ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства» (Леонардо да Винчи).

Так вот, заслуга Пифагора и состояла в том, что он, по-видимому, первым пришел к следующей мысли: в геометрии, во-первых, должны рассматриваться абстрактные идеальные объекты, и, во-вторых, свойства этих идеальных объектов должны устанавливаться не с помощью измерений на конечном числе объектов, а с помощью рассуждений, справедливых для бесконечного числа объектов. Эта цепочка рассуждений, которая с помощью законов логики сводит неочевидные утверждения к известным или очевидным истинам, и есть математическое доказательство.

Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение 1 книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка». Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики.

Михаил Ломоносов по этому поводу писал: «Пифагор за изобретение одного геометрического правила Зевесу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось».

А.В.Волошинов в своей книге о Пифагоре отмечает: «И хотя сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета I (около 2000 года до нашей эры), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII веке до нашей эры), и в древнейшем китайском трактате „Чжоу-би суань цзинь“ („Математический трактат о гномоне“), время создания которого точно не известно, но где утверждается, что в XII веке до нашей эры китайцы знали свойства египетского треугольника, а к VI веку до нашей эры — и общий вид теоремы, и в древнеиндийском геометрическо-теологическом трактате VII–V веках до нашей эры „Сульва сутра“ („Правила веревки“), — несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невозможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания.

Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Поэтому нам ничего не остается, как рассмотреть некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым».

Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Во II веке до нашей эры в Китае была изобретена бумага и одновременно начинается создание древних книг. Так возникла «Математика в девяти книгах» — главное из сохранившихся математико-астрономических сочинений. В IX книге «Математики» помещен чертеж, доказывающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. В самом деле, на древнекитайском чертеже четыре равных прямоугольных треугольника с катетами и гипотенузой. С уложены так, что их внешний контур образует квадрат со стороной А+В, а внутренний — квадрат со стороной С, построенный на гипотенузе. Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника, то ясно, что образовавшаяся пустота, с одной стороны, равна С в квадрате, а с другой — А+В, т. е. С=А+В. Теорема доказана.

Математики Древней Индии заметили, что для доказательства теоремы Пифагора достаточно использовать внутреннюю часть древнекитайского чертежа. В написанном на пальмовых листьях трактате «Сид-дханта широмани» («Венец знания») крупнейшего индийского математика XII века в Бхаскары помещен чертеж с характерным для индийских доказательств словом «смотри!». Прямоугольные треугольники уложены здесь гипотенузой наружу и квадрат С перекладывается в «кресло невесты» квадрат А плюс квадрат В. Частные случаи теоремы Пифагора встречаются в древнеиндийском трактате «Сульва сутра» (VII–V веках до нашей эры).

Доказательство Евклида приведено в предложении 1 книги «Начал». Здесь для доказательства на гипотенузе и катетах прямоугольного треугольника строятся соответствующие квадраты.

«Багдадский математик и астроном X века ан-Найризий (латинизированное имя — Аннариций), — пишет Волошинов, — в арабском комментарии к „Началам“ Евклида дал следующее доказательство теоремы Пифагора. Квадрат на гипотенузе разбит у Аннариция на пять частей, из которых составляются квадраты на катетах. Конечно, равенство всех соответствующих частей требует доказательства, но мы его за очевидностью оставляем читателю. Любопытно, что доказательство Аннариция является простейшим среди огромного числа доказательств теоремы Пифагора методом разбиения: в нем фигурирует всего 5 частей (или 7 треугольников). Это наименьшее число возможных разбиений».

ЕВКЛИДОВА ГЕОМЕТРИЯ

Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» греческое, в переводе означает «землемерие».

Люди очень рано столкнулись с необходимостью измерять земельные участки. Это требовало определенного запаса геометрических и арифметических знаний. Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.

«По дошедшим до нас египетским папирусам и древневавилонским текстам видно, что уже за 2 тысячи лет до нашей эры люди умели определять площади треугольников, прямоугольников, трапеций, приближенно вычислять площадь круга, — пишет И. Г. Башмакова. — Они знали также формулы для определения объемов куба, цилиндра, конуса, пирамиды и усеченной пирамиды. Сведения по геометрии вскоре стали необходимы не только при измерении земли. Развитие архитектуры, а несколько позднее и астрономии предъявило геометрии новые требования. И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчетов…И все же, несмотря на то, что человечество накопило такие обширные знания геометрических фактов, геометрия как наука еще не существовала.

Геометрия стала наукой только после того, как в ней начали систематически применять логические доказательства, начали выводить геометрические предложения не только путем непосредственных измерений, но и путем умозаключений, путем вывода одного положения из другого, и устанавливать их в общем виде. Обычно этот переворот в геометрии связывают с именем ученого и философа VI века до нашей эры Пифагора Самосского».

Однако все новые проблемы и созданные в связи с ними теории привели к тому, что совершенствовались сами способы математических доказательств, возрастала потребность создания стройной логической системы в геометрии.

«Но как строить такую систему? — спрашивает И.Г. Башмакова. — Ведь каждое отдельное предложение мы доказываем, опираясь на некоторые другие предложения. Эти предложения в свою очередь доказываются ссылкой на какие-тр третьи предложения и т. д., эти ссылки мы могли бы продолжать до бесконечности, и процесс доказательства никогда бы не закончился. Как же быть? Это обстоятельство заметили еще в древности, и тогда же был найден выход. Не позднее IV века до нашей эры греческие математики при построении геометрии выбирали некоторые предложения, которые принимались без доказательства, а все остальные предложения выводили из них строго логически. Предложения, принятые без доказательства, назывались аксиомами и постулатами. Наиболее совершенным образцом такой теории на протяжении более 2 тысяч лет служили „Начала“ Евклида, написанные около 300 года до нашей эры».

О жизни Евклида (около 365 г. до нашей эры — 300 г. до нашей эры) почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем „Геометра“, ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенных под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из 13 книг, построенных по единой логической схеме. Каждая из книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I–IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книд-скому. В книгах VII–IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах X–XII содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в X книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием Евклидовой геометрии. В качестве постулатов Евклид выбрал такие предложения, в которых утверждалось то, что можно проверить простейшими построениями с помощью циркуля и линейки. Евклид принял также некоторые общие предложения-аксиомы, например, что две величины, порознь равные третьей, равны между собой. На основе таких постулатов и аксиом Евклид строго и систематично развил всю планиметрию.

В «Началах» он описывает метрические свойства пространства, которое современная наука называет Евклидовым пространством.

Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами:

«От всякой точки до всякой точки можно провести прямую линию». «Ограниченную прямую можно непрерывно продолжить по прямой». «Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства Евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6–7 изданий. До двадцатого века книга считалась основным учебником по геометрии не только для школ, но и для университетов.

«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле. Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом.

Конечно, все особенности Евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ Евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

Можно смело утверждать, что Евклид заложил основы не только геометрии, но и всей античной математики.

Лишь в девятнадцатом веке исследования основ геометрии поднялись на новую, более высокую ступень. Удалось выяснить, что Евклид перечислил далеко не все аксиомы, которые на самом деле нужны для построения геометрии. В действительности при доказательствах ученый ими пользовался, но не сформулировал.

Тем не менее все выше сказанное нисколько не умаляет роли Евклида, первого показавшего, как можно и как нужно строить математическую теорию. Он создал дедуктивный метод, прочно вошедший в математику. А значит, все последующие математики в известной степени являются учениками Евклида.

ОСНОВЫ АЛГЕБРЫ

Считается, что эллины заимствовали первые сведения по алгебре у вавилонян. Греческий философ-неоплатоник Прокл Диадох отмечал в своем сочинении: «Согласно большинству мнений, геометрия была впервые открыта в Египте, имела свое происхождение в измерении площадей». Воздействие традиций вавилонской алгебры на математику Древней Греции и алгебраическую школу стран ислама подчеркивается в «Истории математики». Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI–V векам до нашей эры. Античная наука достигла вершины в работах Евклида, Архимеда, Аполлония.

Новый подъем античной математики в III веке нашей эры связан с творчеством великого математика Диофанта. Его основной труд — «Арифметика». К сожалению, лишь шесть книг из тринадцати книг дошли до нашего времени. Диофант сумел возродить и развить числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки. У Диофанта впервые появляется буквенная символика. Он ввел обозначения: неизвестной, квадрата, куба, четвертой, пятой и шестой степеней, а также первых шести отрицательных степеней. В «Истории математики» это отмечено особо: «Книга Диофанта свидетельствует о наличии у него буквенной символики. Значение этого шага огромно. Только на такой основе могло быть создано буквенное исчисление, развит формульный аппарат, позволяющий часть наших мыслительных операций заменить механическими преобразованиями. Однако Диофант, видимо, не нашел в этом деле последователей ни в его эпоху, ни много позднее. Лишь с конца XV века в Европе началась интенсивная разработка алгебраической символики, а завершение создания буквенного исчисления произошло только в конце XVI — начале XVII века в трудах Виета и Декарта».

«Диофант — пишет В.А. Никифоровский, — сформулировал правила алгебраических операций со степенями неизвестной, соответствующие нашим умножению и делению степеней с натуральными показателями, и правила знаков приумножении. Это дало возможность компактно записывать многочлены, производить умножение их, оперировать с уравнениями. Он указал также правила переноса отрицательных членов уравнения в другую часть его с обратными знаками, взаимного уничтожения одинаковых членов в обеих частях уравнения».

Начиная с V века центр математической культуры постепенно перемещается на восток — к индусам и арабам. Математика индусов была числовой. Она отмечена стремлением достичь строгости эллинов в доказательствах и обосновании геометрии, довольствуясь чертежами. Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа. Первое известное нам применение десятичной позиционной системы относится к 595 году — сохранилась плита, на которой число лет 346 записано в такой системе.

Наиболее известными математиками Индии были Ариабхата (прозванный «первым», около 500 г.) и Брахмагупта (около 625 г.). Индусы рассматривали числа безотносительно к геометрии. Они распространили правила действия над рациональными числами на числа иррациональные, производя над ними непосредственные выкладки.

Еще одно достижение индусов в совершенствовании алгебраической символики состоит в том, что они ввели обозначения нескольких различных неизвестных и их степеней. Как у Диофанта, они были по сути дела сокращениями слов.

Вслед за индийскими математиками пользоваться правилом положения стали математики Ближнего и Среднего Востока. Особую роль в истории развития алгебры в первой половине IX века сыграл трактат аль-Хорезми на арабском языке под названием «Книга о восстановлении и противопоставлении» (на арабском языке — «Китаб аль-джебр валь-мукабала»). Позднее при переводе на латинский язык арабское название трактата было сохранено. С течением времени «аль-джебр» сократили до «алгебры».

В трактате решение уравнений рассматривается уже не в связи с арифметикой, а как самостоятельный раздел математики. Арабский математик показывает, что в алгебре применяются неизвестные, их квадраты и свободные члены уравнений. Аль-Хорезми назвал неизвестное «корнем». При решении различных видов уравнений аль-Хорезми предлагает переносить отрицательные члены уравнений из одной части в другую, называя это восстановлением. Вычитание равных членов из обеих частей уравнения при этом он называет противопоставление (валь мукабала).

«В своем трактате аль-Хорезми, — отмечает Александр Свечников, — рассматривает неизвестное число как величину особого рода, вводит термин корень, свободный член называет дирхем (так в то время называли и денежную единицу). Он распределяет уравнения по видам, разъясняет, как применять правила восполнения и противопоставления, формулирует правила решения уравнений различных видов.

В рукописях аль-Хорезми все математические выражения и все выкладки записаны словами, вот почему алгебру того времени и более поздних времен называли риторической, т. е. словесной. В период работы над алгебраическим трактатом аль-Хорезми уже знал о числовой алгебре Вавилона и других стран Востока. Он был знаком с геометрической алгеброй греков и достижениями индийских астрономов и математиков.

Аль-Хорезми выделил алгебраический материал в особый раздел математики и освободил его от геометрического толкования, хотя в некоторых случаях пользовался геометрическими доказательствами. Алгебраический труд аль-Хорезми стал образцом, который изучали и которому подражали многие математики более позднего времени. Последующие алгебраические сочинения и учебники по своему характеру стали приближаться к современным. Алгебраический трактат аль-Хорезми послужил началом создания науки алгебры. Он был в числе первых сочинений по математике, переведенных на латинский язык. В то время в Европе все научные труды писали и печатали на латинском языке».

При решении задачи главное — осмысление содержания задачи, способность выразить его на языке алгебры. Проще говоря, записать условие задачи посредством символов — математических знаков.

Диофант, как уже говорилось, дал понятие об алгебраическом уравнении, записанном символами, однако очень далекими от современных. Первым стал обозначать буквами не только неизвестные, но и данные величины Франсуа Виет. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Франсуа Виет (1540–1603) родился на юге Франции в небольшом городке Фантене-ле-Конт. Отец Виета был прокурором. По традиции сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1560 году двадцатилетний адвокат начал свою карьеру в родном городе, но через три года перешел на службу в знатную гугенотскую семью де Партене. Он стал секретарем хозяина дома и учителем его дочери — двенадцатилетней Екатерины. Именно преподавание пробудило в молодом юристе интерес к математике.

В 1671 году Виет перешел на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.

В 1580 году Генрих III назначил Виета на важный государственный пост рекетмейстера, который давал право контролировать от имени короля выполнение распоряжений в стране и приостанавливать приказы крупных феодалов.

Находясь на государственной службе, Виет оставался ученым. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников.

В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Получив неожиданный досуг, ученый поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная еще наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».

Виет изложил программу своих исследований и перечислил трактаты, объединенные общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введение в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел ученого замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене: «Все математики знали, что под алгеброй и алмукабалой… скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства…»

Основы своего подхода Виет называл видовой логистикой. Следуя примеру древних, он четко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объем. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.

Демонстрируя силу своего метода, ученый привел в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «-», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введенные до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.

Символика Виета позволила и решать конкретные задачи, и находить общие закономерности, полностью обосновывая их. Таким образом, алгебра выделались в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь стало возможным алгебраическое исчисление как система формул, как оперативный алгоритм».

Символики Виета придерживался впоследствии Пьер Ферма. Дальнейшее значительное усовершенствование алгебраической символики принадлежит Декарту. Рене Декарт ввел для обозначения коэффициентов строчные буквы латинского алфавита. Для обозначения неизвестных он использовал последние буквы того же алфавита. Это нововведение получило широкое распространение в работах математиков и с небольшими изменениями сохранилось до наших дней.

ЛОГАРИФМЫ

На всем протяжении XVI века быстро возрастало количество приближенных вычислений, прежде всего в астрономии. Исследование планетных движений требовало колоссальных расчетов. Астрономы просто могли утонуть в невыполнимых расчетах. Очевидные трудности возникали и в других областях, таких как финансовое и страховое дело. Основную трудность представляли умножение и деление многозначных чисел, особенно же тригонометрических величин.

Иногда для приведения умножения к более легкому сложению и вычитанию пользовались таблицами синусов и косинусов. Была также составлена таблица квадратов до 100 000, с помощью которой умножение можно было производить по определенному правилу.

Однако эти приемы не давали удовлетворительного решения вопроса. Его принесли с собой таблицы логарифмов.

«Открытие логарифмов опиралось на хорошо известные к концу XVI века свойства прогрессий, — пишут М.В. Чириков и А.П. Юшкевич. — Связь между членами геометрической профессии и арифметической прогрессией не раз отмечалась математиками, о ней говорилось еще в „Псаммите“ Архимеда. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели, позволившее перенести только что упомянутую связь на более общий случай…

Многие… авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической — в том же порядке — сложение, вычитание, умножение и деление. Здесь уже скрывалась идея логарифма числа как показателя степени, в которую нужно возвести данное основание, чтобы получить это число. Оставалось перенести знакомые свойства прогрессии с общим членом на любые действительные показатели. Это дало бы непрерывную показательную функцию, принимающую любые положительные значения, а также обратную ей логарифмическую. Но эту идею глубокого принципиального значения удалось развить через несколько десятков лет».

Логарифмы изобрели независимо друг от друга Непером и Бюрги лет на десять позднее. Их цель была одна — желание дать новое удобное средство арифметических вычислений. Подход же оказался разный. Непер кинематически выразил логарифмическую функцию, что позволило ему по существу вступить в почти неизведанную область теории функций. Бюрги остался на почве рассмотрения дискретных прогрессий. Надо заметить, что у обоих определение логарифма не походило на современное.

Первый изобретатель логарифмов — шотландский барон Джон Непер (1550–1617) получил образование на родине в Эдинбурге. Затем после путешествия по Германии, Франции и Испании, в возрасте двадцати одного года, он навсегда поселился в семейном поместье близ Эдинбурга. Непер занялся главным образом богословием и математикой, которую изучал по сочинениям Евклида, Архимеда, Региомонтана, Коперника.

«К открытию логарифмов, — отмечают Чириков и Юшкевич, — Непер пришел не позднее 1594 года, но лишь двадцать лет спустя опубликовал свое „Описание удивительной таблицы логарифмов“ (1614), содержавшее определение Неперовых логарифмов, их свойства и таблицы логарифмов синусов и косинусов от 0 до 90 градусов с интервалом в 1 минуту, а также разности этих логарифмов, дающие логарифмы тангенсов. Теоретические выводы и объяснения способа вычисления таблицы он изложил в другом труде, подготовленном, вероятно, до „Описания“, но изданном посмертно, в „Построении удивительной таблицы логарифмов“ (1619). Упомянем, что в обоих сочинениях Непер рассматривает и некоторые вопросы тригонометрии. Особенно известны удобные для логарифмирования „аналогии“, т. е. пропорции Непера, применяемые при решении сферических треугольников по двум сторонам и углу между ними, а также по двум углам и прилежащей к ним стороне.

Непер с самого началавводил понятие логарифма для всех значений непрерывно меняющихся тригонометрических величин — синуса и косинуса. При тогдашнем состоянии математики, когда еще не было аналитического аппарата исчисления бесконечно малых, естественным и единственным средством для этого являлось кинематическое определение логарифма. Быть может, здесь не остались без влияния и традиции, восходившие к оксфордской школе XIV века».

В основе определения логарифма у Непера лежит кинематическая идея, обобщающая на непрерывные величины связь между геометрической профессией и арифметической прогрессией показателей ее членов.

Теорию логарифмов Непер изложил в сочинении «Построение удивительных таблиц логарифмов», посмертно опубликованном в 1619 году и переизданном в 1620 году его сыном Робертом Непером. Вот выдержки из нее:

«Таблица логарифмов — небольшая таблица, с помощью которой можно узнать посредством весьма легких вычислений все геометрические размеры и движения. Она по справедливости названа небольшой, ибо по объему превосходит таблицы синусов, весьма легкой, потому что с ее помощью избегают всех сложных умножений, делений и извлечений корня, и все вообще фигуры и движения измеряются посредством выполнения более легких сложения, вычитания и деления на два. Она составлена из чисел, следующих в непрерывной пропорции.

16. Если из полного синуса с добавленными семью нулями ты вычтешь его 10000000-ую часть, а из полученного таким образом числа — его 10000000-ую часть и так далее, то этот ряд можно легко продолжить до ста чисел в геометрическом отношении, существующем между полным синусом и синусом, меньшим его на единицу, а именно между 10000000 и 9999999, и этот ряд пропорциональных мы назовем Первой таблицей.

17. Вторая таблица следует от полного синуса с шестью добавленными нулями через пятьдесят других чисел, пропорционально убывающих в отношении, которое является простейшим и возможно более близким к отношению между первым и последним числами Первой таблицы.

Поскольку первое и последнее числа Первой таблицы суть 10000000.0000000 и 9999900.004950, то в этом отношении трудно образовать пятьдесят пропорциональных чисел. Близким и в то же время простым отношением является 100000 к 99999, которое можно с достаточной точностью продолжить, добавив к полному синусу шесть нулей и последовательно вычитая из предшествующего его 100000-ую часть. Эта таблица содержит, кроме полного синуса, являющегося первым числом, еще пятьдесят пропорциональных чисел, последнее из которых (если ты не ошибешься) будет 9995001.222927.

18. Третья таблица состоит из шестидесяти девяти столбцов и в каждом столбце расположено двадцать одно число, следующее в отношении, которое является простейшим и возможно более близким к отношению, существующему между первым и последним членами Второй таблицы.

Поэтому ее первый столбец может быть очень легко получен из полного синуса с пятью добавленными нулями и из последующих чисел вычитанием из них 2000-ой части.

19. Первые числа всех столбцов следуют от полного синуса с добавленными четырьмя нулями в отношении, которое является простейшим и близким к отношению, существующему между первым и последним числами первого столбца…

20. В том же отношении должна быть образована прогрессия со второго числа первого столбца для вторых чисел всех столбцов, и с третьего для третьих, и с четвертого для четвертых, и соответственно с остальных для остальных.

Таким образом, из любого числа предыдущего столбца вычитанием его сотой части получается число того же порядка следующего столбца…

21…. этих трех таблиц (после их составления) достаточно для вычисления таблицы логарифмов».

В 1620 году швейцарец Иост Бюрги (1552–1632) — высококвалифицированный механик и часовых дел — мастер опубликовал книгу «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях» (1620).

Как писал сам Бюрги, он исходил из соображений о соответствии между умножением в геометрической прогрессии и сложением в арифметической. Задача состояла в выборе прогрессии со знаменателем, достаточно близким к единице, с тем, чтобы ее члены следовали друг за другом с интервалами, достаточно малыми для практических вычислений.

Однако таблицы Бюрги не получили значительного распространения. Они не могли конкурировать с таблицами Непера, более удобными и к тому времени уже широко известными.

Ни у Непера, ни у Бюрги не было, строго говоря, основания логарифмов, поскольку логарифм единицы отличается от нуля. И значительно позднее, когда уже перешли к десятичным и натуральным логарифмам, еще не было сформулировано определение логарифма, как показателя степени данного основания.

В руководствах оно появляется впервые, вероятно, у В Гардинера (1742). Впрочем, сам Гардинер использовал при этом бумаги преподавателя математики В. Джонса. Широкому распространению современного определения логарифма более других содействовал Эйлер, который применил в этой связи и термин «основание».

Термин «логарифм» принадлежит Неперу, он возник из сочетания греческих слов «отношение» и «число», и означает «число отношения». Хотя первоначально Непер пользовался другим термином — «искусственные числа».

Таблицы Непера, приспособленные к тригонометрическим вычислениям, были неудобны для действий с данными числами. Чтобы устранить эти недостатки, Непер предложил составить таблицы логарифмов, приняв за логарифм единицы нуль, а за логарифм десяти просто единицу. Это предложение он сделал в ходе обсуждения с посетившим его в 1615 году профессором математики Грешем колледжа в Лондоне Генри Бригсом (1561–1631), который и сам задумывался, как усовершенствовать таблицы логарифмов. Заняться осуществлением своего плана Непер не мог из-за пошатнувшегося здоровья, но указал идею двух вычислительных приемов, развитых далее Бригсом.

Бриге опубликовал первые результаты своих кропотливых вычислений — «Первую тысячу логарифмов» (1617) в год смерти Непера. Здесь даны были десятичные логарифмы чисел от 1 до 1000 с четырнадцатью знаками Большинство десятичных логарифмов простых чисел Бриге нашел с помощью извлечения квадратных корней Позднее, уже став профессором в Оксфорде, он выпустил «Логарифмическую арифметику» (1624). В книге содержались четырнадцатизначные логарифмы чисел от 1 до 20 000 и от 90 000 до 100 000.

Оставшийся пробел был восполнен голландским книготорговцем и любителем математики Андрианом Флакком (1600–1667). Несколько ранее семизначные десятичные таблицы логарифмов синусов и тангенсов вычислил коллега Бригса по Грешем колледжу, воспитанник Оксфордского университета Эдмунд Гунтер (1581–1626), опубликовавший их в «Своде треугольников» (1620).

Открытие Непера в первые же годы приобрело исключительно широкую известность. Составлением логарифмических таблиц и совершенствованием их занялись очень многие математики. Так, Кеплер в Марбурге в 1624–1625 годах применил логарифмы к построению новых таблиц движений планет. В приложении ко второму изданию «Описания» Непера (1618) было вычислено и несколько натуральных логарифмов. Здесь можно усмотреть подход к введению предела. Вероятнее всего, это дополнение принадлежит В. Отреду. Вскоре лондонский учитель математики Джон Спейделл издал таблицы натуральных логарифмов чисел от 1 до 1000. Термин «натуральные логарифмы» ввели П. Менголи (1659), а несколько позднее — Н. Меркатор (1668).

Практическое значение вычисленных таблиц было очень велико. Но открытие логарифмов имело также глубочайшее теоретическое значение. Оно вызвало к жизни исследования, о которых не могли и мечтать первые изобретатели, преследовавшие цель только облегчить и ускорить арифметические и тригонометрические выкладки с большими числами. Открытие Непера, в частности, открыло путь в область новых трансцендентных функций и сообщило мощные стимулы в развитии анализа.

ВЕЛИКАЯ ТЕОРЕМА ФЕРМА

В одном из некрологов Пьеру Ферма говорилось: «Это был один из наиболее замечательных умов нашего века, такой универсальный гений и такой разносторонний, что если бы все ученые не воздали должное его необыкновенным заслугам, то трудно было бы поверить всем вещам, которые нужно о нем сказать, чтобы ничего не упустить в нашем похвальном слове».

К сожалению, о жизни великого ученого известно не так много. Пьер Ферма (1601–1665) родился на юге Франции в небольшом городке Бомон-де-Ломань, где его отец — Доминик Ферма — был «вторым консулом», т. е. помощником мэра.

Доминик Ферма дал своему сыну очень солидное образование. В колледже родного города Пьер приобрел хорошее знание языков: латинского, греческого, испанского, итальянского. Впоследствии он писал стихи на латинском, французском и испанском языках.

Ферма славился как тонкий знаток античности, к нему обращались за консультацией по поводу трудных мест при изданиях греческих классиков. Однако Пьер направил всю силу своего гения на математические исследования. И все же математика не стала его профессией. Ученые его времени не имели возможности посвятить себя целиком любимой науке.

Ферма избирает юриспруденцию. Степень бакалавра была ему присуждена в Орлеане. С 1630 года Ферма переселяется в Тулузу, где получает место советника в Парламенте (т. е. суде). О его юридической деятельности говорится в «похвальном слове», что он выполнял ее «с большой добросовестностью и таким умением, что он славился как один из лучших юристов своего времени».

При жизни Ферма об его математических работах стало известно главным образом через посредство обширной переписки, которую он вел с другими учеными. Собрание сочинений, которое он неоднократно пытался написать, так и не было им создано. Да это и неудивительно при той напряженной работе в суде, которую ему пришлось выполнять. Ни одно из его сочинений не было опубликовано при жизни Однако нескольким трактатам он придал вполне законченный вид, и они стали известны в рукописи большинству современных ему ученых. Кроме этих трактатов осталась еще обширная и чрезвычайно интересная его переписка. В XVII веке, когда еще не было специальных научных журналов, переписка между учеными играла особую роль. В ней ставились задачи, сообщалось о методах их решения, обсуждались острые научные вопросы.

Корреспондентами Ферма были крупнейшие ученые его времени: Декарт, Этьен и Блез Паскали, де-Бееси, Гюйгенс, Торричелли, Валлис. Письма посылались либо непосредственно корреспонденту, либо в Париж аббату Мерсенну (соученику Декарта по колледжу); последний размножал их и посылал тем математикам, которые занимались аналогичными вопросами.

Одной из первых математических работ Ферма было восстановление двух утерянных книг Аполлония «О плоских местах».

Крупную заслугу Ферма перед наукой видят обыкновенно во введении им бесконечно малой величины в аналитическую геометрию, подобно тому, как это несколько ранее было сделано Кеплером в отношении геометрии древних. Он совершил этот важный шаг в своих, относящихся к 1629 году, работах о наибольших и наименьших величинах, — работах, открывших собою тот из важнейших рядов исследований Ферма, которые являются одним из самых крупных звеньев в истории развития не только высшего анализа вообще, но и анализа бесконечно малых в частности.

В конце двадцатых годов Ферма открыл методы нахождения экстремумов и касательных, которые, с современной точки зрения, сводятся к отысканию производной В 1636 году законченное изложение метода было передано Мерсенну, и с ним могли познакомиться все желающие.

До Ферма систематические методы вычисления площадей разработал итальянский ученый Кавальери. Но уже в 1642 году Ферма открыл метод вычисления площадей, ограниченных любыми «параболами» и любыми «гиперболами» Им было показано, что площадь неограниченной фигуры может быть конечной.

Ферма одним из первых занялся задачей спрямления кривых, т. е. вычислением длины их дуг. Он сумел свести эту задачу к вычислению некоторых площадей.

Таким образом, понятие «площади» у Ферма приобретало уже весьма абстрактный характер. К определению площадей сводились задачи на спрямление кривых, вычисление сложных площадей он сводил с помощью подстановок к вычислению более простых площадей. Оставался только шаг, чтобы перейти от площади к еще более абстрактному понятию «интеграл».

У Ферма есть много других достижений. Он первым пришел к идее координат и создал аналитическую геометрию. Он занимался также задачами теории вероятностей. Но Ферма не ограничивался одной только математикой, он занимался и физикой, где ему принадлежит открытие закона распространения света в средах.

Несмотря на отсутствие доказательств (из них дошло только одно), трудно переоценить значение творчества Ферма в области теории чисел. Ему одному удалось выделить из хаоса задач и частных вопросов, сразу же возникающих перед исследователем при изучении свойств целых чисел, основные проблемы, которые стали центральными для всей классической теории чисел. Ему же принадлежит открытие мощного общего метода для доказательства теоретико-числовых предложений — так называемого метода неопределенного или бесконечного спуска, о котором будет сказано ниже. Поэтому Ферма по праву может считаться основоположником теории чисел.

В письме к де-Бесси от 18 октября 1640 года Ферма высказал следующее утверждение: если число а не делится на простое число р, то существует такой показатель к, что а — делится на р, причем к является делителем р-1. Это утверждение получило название малой теоремы Ферма. Оно является основным во всей элементарной теории чисел. Эйлер дал этой теореме несколько различных доказательств.

Во второй книге своей «Арифметики» Диофант поставил задачу представить данный квадрат в виде суммы двух рациональных квадратов. На полях, против этой задачи, Ферма написал:

«Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще ни в какую степень, большую квадрата, на две степени с тем же показателем Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Это и есть знаменитая Великая теорема.

Теорема эта имела удивительную судьбу. В прошлом веке ее исследования привели к построению наиболее тонких и прекрасных теорий, относящихся к арифметике алгебраических чисел. Без преувеличения можно сказать, что она сыграла в развитии теории чисел не меньшую роль, чем задача решения уравнений в радикалах. С той только разницей, что последняя уже решена Галуа, а Великая теорема до сих пор побуждает математиков к исследованиям.

С другой стороны, простота формулировки этой теоремы и загадочные слова о «чудесном доказательстве» ее привели к широкой популярности теоремы среди не математиков и к образованию целой корпорации «ферматистов», у которых, по словам Дэвенпорта, «смелость значительно превосходит их математические способности». Поэтому Великая теорема стоит на первом месте по числу данных ей неверных доказательств.

Сам Ферма оставил доказательство Великой теоремы для четвертых степеней. Здесь он применил новый метод. Ферма пишет, что «поскольку обычные методы, находящиеся в книгах, были недостаточны для доказательства столь трудных предложений, то я, наконец, нашел совершенно особый путь для их достижения. Я назвал этот способ доказательства бесконечным или неопределенным спуском».

Именно этим методом были доказаны многие предложения теории чисел, и, в частности, с его помощью Эйлер доказал Великую теорему для n=4 (способом, несколько отличным от способа Ферма), а спустя 20 лет и для n=3.

Этот метод Ферма описывал в своем письме к Каркави (август 1659 года) следующим образом:

«Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы, в силу подобного рассуждения, третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключают, что не существует никакого прямоугольного треугольника с квадратной площадью».

Далее Ферма говорит, что после долгих размышлений он смог применить свой метод и для доказательства других утвердительных предложений. «Но для применения метода к доказательству других предложений, — пишет И.Г Башмакова, — например, для доказательства того, что каждое число представимо суммой не более четырех квадратов, требуется применение „новых принципов“, на которых Ферма подробнее не останавливается. Далее идет перечисление всех теорем, которые Ферма доказал, пользуясь методом спуска. Среди них находится и великая теорема для случая n=3. В конце письма Ферма выражает надежду, что этот метод окажется полезным для последующих математиков и покажет им, что „древние не все знали“. К сожалению, это письмо было опубликовано только в 1879 году. Однако Эйлер восстановил метод по отдельным замечаниям Ферма и с успехом применил его к проблемам неопределенного анализа. Ему, в частности, принадлежит и доказательство великой теоремы для n=3. Напомним, что первая попытка доказать неразложимость куба натурального числа в сумму двух кубов была сделана около 1000 года на арабском Востоке.

Метод спуска вновь начал играть ведущую роль в исследованиях по диофантову анализу А. Пуанкаре и А. Вейля. В настоящее время для применения этого метода вводится понятие высоты, т. е. такого натурального числа, которое определенным образом ставится в соответствие каждому рациональному решению. При этом если удастся доказать, что для каждого рационального решения высоты А найдется другое решение высоты меньше А, то отсюда будут следовать неразрешимость задачи в рациональных числах».

Вся последующая алгебраическая теория чисел вплоть до работ Гаусса развивалась, отталкиваясь от проблем Ферма. В XIX веке исследования, связанные с великой теоремой Ферма и законами взаимности, потребовали расширения области арифметики. Куммер, занимаясь Великой теоремой Ферма, построил арифметику для целых алгебраических чисел определенного вида. Это позволило ему доказать Великую теорему для некоторого класса простых показателей п. В настоящее время справедливость Великой теоремы проверена для всех показателей n меньше 5500.

Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.

Но Великая теорема в общем виде еще не доказана. Поэтому мы вправе ожидать здесь появления новых идей и методов.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

«Можно считать, — пишет В.А. Никифоровский, — что теория вероятностей не как наука, а как собрание эмпирических наблюдений, сведений существует издавна, столько, сколько существует игра в кости. Действительно, опытный игрок знал и, вероятно, учитывал в игре, что разные выпадения числа очков имеют разную частоту появления. При метании трех костей, например, три очка могут выпасть только одним способом (по очку на каждой кости), а четыре очка — тремя способами: 2+1+1, 1+2+1, 1+1+2. Элементарные понятия теории вероятностей возникли, как уже было сказано, в связи с задачами азартных игр, обработки результатов астрономических наблюдений, задачами статистики, практики страховых обществ. Страхование получило широкое распространение вместе с развитием мореплавания и морской торговли».

Еще в шестнадцатом веке видные математики Тарталья и Кардано обратились к задачам теории вероятностей в связи с игрой в кости и подсчитали различные варианты выпадения очков.

Кардано в своей работе «Об азартной игре» привел расчеты, очень близкие к полученным позднее, когда теория вероятностей уже утвердилась как наука.

Тот же Кардано сумел подсчитать, сколькими способами даст метание двух или трех костей то или иное число очков. Он определил полное число возможных выпадений. Другими словами, Кардано вычислил вероятности тех или иных выпадений. Однако все таблицы и вычисления Тартальи и Кардано стали лишь материалом для будущей науки. «Исчисление вероятностей, всецело построенное на точных заключениях, мы находим впервые только у Паскаля и Ферма», — утверждает Цейтен.

Ферма и Паскаль действительно стали основателями математической теории вероятностей.

Блез Паскаль (1623–1662) родился в Клермоне. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.

В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Вилль.

Имея много свободного времени, Этьен Паскаль почти исключительно занялся умственным воспитанием сына. Он сам много занимался математикой и любил собирать у себя в доме математиков. Но, составив план занятий сына, он отложил математику до тех пор, пока сын не усовершенствуется в латыни. Каково же было удивление отца, когда он увидел сына, самостоятельно пытавшегося доказать свойства треугольника.

Собрания, проходившие у отца Паскаля и у некоторых из его приятелей, приобрели характер настоящих ученых заседаний. С шестнадцатилетнего возраста молодой Паскаль также стал принимать деятельное участие в занятиях кружка. Он был уже настолько силен в математике, что овладел почти всеми известными в то время методами, и среди членов, наиболее часто делавших новые сообщения, он был одним из первых.

Шестнадцати лет Паскаль написал весьма примечательный трактат о конических сечениях. Однако усиленные занятия вскоре подорвали и без того слабое здоровье Паскаля. В восемнадцать лет он уже постоянно жаловался на головную боль, на что первоначально не обращали особого внимания. Но окончательно расстроилось здоровье Паскаля во время чрезмерных работ над изобретенной им арифметической машиной.

Придуманная Паскалем машина была довольно сложна по устройству, и вычисление с ее помощью требовало значительного навыка. Этим и объясняется, почему она осталась механической диковинкой, возбуждавшей удивление современников, но не вошедшей в практическое употребление.

Со времени изобретения Паскалем арифметической машины имя его стало известным не только во Франции, но и за ее пределами.

В 1643 году Торричелли предпринял опыты по подъему различных жидкостей в трубках и насосах. Торричелли вывел, что причиною подъема, как воды, так и ртути, является вес столба воздуха, давящего на открытую поверхность жидкости.

Эти эксперименты заинтересовали Паскаля. Зная, что воздух имеет вес, он решает объяснить явления, наблюдаемые в насосах и в трубках, действием этого веса. Главная трудность, однако, состояла в том, чтобы объяснить способ передачи давления воздуха. Блез рассуждал так: если давление воздуха действительно служит причиной рассматриваемых явлений, то из этого следует, что чем меньше или ниже, при прочих равных условиях, столб воздуха, давящий на ртуть, тем ниже будет столб ртути в барометрической трубке.

В результате эксперимента Паскаль показал, что давление жидкости распространяется во все стороны равномерно и что из этого свойства жидкостей вытекают почти все остальные их механические свойства. Далее ученый нашел, что и давление воздуха по способу своего распространения совершенно подобно давлению воды.

В области математики Паскаль в первую очередь известен своим вкладом в теорию вероятностей. Как выразился Пуассон, «задача, относившаяся к азартным играм и поставленная перед суровым янсенистом светским человеком, была источником теории вероятностей». Этим светским человеком был кавалер де Мере, а «суровым янсенистом» — Паскаль. Считается, что де Мере был азартнейшим игроком. На самом деле он серьезно интересовался наукой.

Как бы там ни было, де Мере задал Паскалю следующий вопрос: каким образом разделить старку между игроками в случае, если игра не была окончена? Решение этой задачи совершенно не поддавалось всем известным до того времени математическим методам.

Здесь предстояло решить вопрос, не зная, который из игроков мог бы выиграть в случае продолжения игры? Ясно, что речь шла о задаче, которую надо было решить на основании степени вероятности выигрыша или проигрыша того или другого игрока. Но до тех пор ни одному математику еще не приходило в голову вычислять события только вероятные. Казалось, что задача допускает лишь гадательное решение, то есть что делить ставку надо совершенно наудачу, например, метанием жребия, определяющего, за кем должен остаться окончательный выигрыш.

Необходим был гений Паскаля и Ферма, чтобы понять, что такого рода задачи допускают вполне определенные решения и что «вероятность» есть величина, доступная измерению. Допустим, требуется узнать, как велика вероятность вынуть белый шар из урны, содержащей два белых шара и один черный. Всех шаров три, и белых шаров вдвое больше, чем черных. Ясно, что правдоподобнее предположить при доставании наудачу, что будет вытянут белый шар, нежели черный. Может как раз случиться, что мы вынем черный шар; но все же мы вправе сказать, что вероятность этого события меньше, чем вероятность вынуть белый. Увеличивая число белых шаров и оставляя один черный, легко видеть, что вероятность вынуть черный шар будет уменьшаться. Так, если бы белых шаров было тысяча, а черных — один и если бы кому-либо предложили побиться об заклад, что будет вынут черный шар, а не белый, то только сумасшедший или азартный игрок решился бы поставить на карту значительную сумму в пользу черного шара.

Уяснив себе понятие об измерении вероятности, легко понять, каким образом Паскаль решил задачу, предложенную де Мере. Очевидно, что Для вычисления вероятности надо узнать отношение между числом случаев благоприятных событию и числом всех возможных случаев (как благоприятных, так и неблагоприятных). Полученное отношение и есть искомая вероятность. Так, если белых шаров сто, а черных, положим, десять, то всех «случаев» будет сто десять, из них десять в пользу черных шаров. Поэтому вероятность вынуть черный шар будет 10 к 110, или 1 к 11.

Две задачи, предложенные кавалером де Мере, сводятся к следующему. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии. Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».

Вот краткое решение Паскаля. Предположим, говорит Паскаль, что играют два игрока и что выигрыш считается окончательным после победы одного из них в трех партиях. Предположим, что ставка каждого игрока составляет 32 червонца и что первый уже выиграл две партии (ему не хватает одной), а второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 червонца; если второй, у каждого будет по две победы, шансы обоих станут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.

Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 — может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же s, всей суммы, второму 16 червонцев, или, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).

Несколько позднее Паскаля и Ферма к теории вероятностей обратился Хейнгенс Христиан Гюйгенс (1629–1695). До него дошли сведения об их успехах в новой области математики. Гюйгенс пишет работу «О расчетах в азартной игре». Она впервые вышла в виде приложения к «Математическим этюдам» его учителя Схоотена в 1657 году. До начала восемнадцатого века «Этюды…» оставались единственным руководством по теории вероятностей и оказали большое влияние на многих математиков.

В письме Схоотену Гюйгенс заметил: «Я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории». Подобное высказывание говорит о том, что Гюйгенс глубоко понимал существо рассматриваемого предмета.

Именно Гюйгенс ввел понятие математического ожидания и приложил его к решению задачи о разделении ставки при разном числе игроков и разном количестве недостающих партий и к задачам, связанным с бросанием игральных костей. Математическое ожидание стало первым основным теоретико-вероятностным понятием.

В XVII веке появляются первые работы по статистике. Они посвящены, главным образом, подсчету распределения рождений мальчиков и девочек, смертности людей различных возрастов, необходимого количества людей разных профессий, величины налогов, народного богатства, доходов. При этом применялись методы, связанные с теорией вероятностей. Подобные работы способствовали ее развитию.

Галлей при составлении таблицы смертности в 1694 году осреднял данные наблюдений по возрастным группам. По его мнению, имеющиеся отклонения «видимо, вызваны случаем», что данные не имели бы резких отклонений при «намного большем» числе лет наблюдений.

Теория вероятностей имеет огромное применение в самых различных областях. Посредством нее астрономы, например, определяют вероятные ошибки наблюдений, а артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, а страховые общества — размер премий и процентов, уплачиваемых при страховании жизни и имущества.

А во второй половине девятнадцатого столетия зародилась так называемая «статистическая физика», представляющая собой область физики, специально изучающей огромные совокупности атомов и молекул, составляющие любое вещество, с точки зрения вероятностей.

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ

Задолго до Ньютона и Лейбница многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ пределов, посредством которого вычисляли, например, площадь круга. Особенное развитие дал этому способу величайший математик древности Архимед, открывший с его помощью множество замечательных теорем. Кеплер и в этом отношении ближе всех подошел к открытию Ньютона. По случаю чисто житейского спора между покупщиком и продавцом из-за нескольких кружек вина Кеплер занялся геометрическим определением емкости бочкообразных тел. В этих исследованиях видно уже весьма отчетливое представление о бесконечно малых. Так, Кеплер рассматривал площадь круга как сумму бесчисленных весьма малых треугольников или, точнее, как предел такой суммы. Позднее тем же вопросом занялся итальянский математик Кавальери. В особенности много сделали в этой области французские математики XVII века Роберваль, Ферма и Паскаль. Но только Ньютон и несколько позднее Лейбниц создали настоящий метод, давший огромный толчок всем отраслям математических наук.

По замечанию Огюста Конта, дифференциальное исчисление, или анализ бесконечно малых величин, есть мост, перекинутый между конечным и бесконечным, между, человеком и природой: глубокое познание законов природы невозможно при помощи одного грубого анализа конечных величин, потому что в природе на каждом шагу — бесконечное, непрерывное, изменяющееся.

Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики.

Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать, что он был выработан Ньютоном между 1666 и 1669 годами и во всяком случае раньше первых открытий, сделанных в этой области Лейбницем. «Математику Ньютон считал основным инструментом физических исследований, — отмечает В.А. Никифоровский, — и разрабатывал ее для многочисленных дальнейших приложений. После длительных размышлений он пришел к исчислению бесконечно малых на основе концепции движения; математика для него не выступала как абстрактный продукт человеческого ума. Он считал, что геометрические образы — линии, поверхности, тела — получаются в результате движения: линия — при движении точки, поверхность — при движении линии, тело — при движении поверхности. Эти движения осуществляются во времени, и за сколь угодно малое время точка, например, пройдет сколь угодно малый путь. Для нахождения мгновенной скорости, скорости в данный момент, необходимо найти отношение приращения пути (по современной терминологии) к приращению времени, а затем — предел этого отношения, т. е. взять „последнее отношение“, когда приращение времени стремится к нулю. Так Ньютон ввел отыскание „последних отношений“, производных, которые он называл флюксиями…

…Использование теоремы о взаимной обратности операций дифференцирования и интегрирования, известной еще Барроу, и знание производных многих функций дало Ньютону возможность получить интегралы (по его терминологии, флюенты). Если интегралы непосредственно не вычислялись, Ньютон разлагал подынтегральную функцию в степенной ряд и интегрировал его почленно. Для разложения функций в ряды он чаще всего пользовался открытым им разложением бинома, применял и элементарные методы…»

Новый математический аппарат был апробирован ученым уже ко времени создания основного труда своей жизни — «Математических начал натуральной философии». В тот период Ньютон свободно владел дифференцированием, интегрированием, разложением в ряд, интегрированием дифференциальных уравнений, интерполированием.

«Свои открытия Ньютон, — продолжает В.А.Никифоровский, — сделал раньше Лейбница, но своевременно не опубликовал их; все его математические сочинения были изданы после того, как он стал знаменитым. Зимой 1664–1665 годов Ньютон нашел вид общего разложения бинома с произвольным показателем степени. В 1666 году он подготовил рукопись „Следующие предложения достаточны, чтобы решать задачи с помощью движения“, содержащую основные открытия по математике. Рукопись осталась в черновом варианте и была опубликована только через триста лет.

В „Анализе с помощью уравнений с бесконечным числом членов“, написанном в 1665 году, Ньютон изложил свои результаты в учении о бесконечно малых рядах, в приложении рядов к решению уравнений…

…В 1670–1671 годах Ньютон стал готовить к изданию более полную работу — „Метод флюксий и бесконечных рядов“. Издателя найти не удалось: в то время книги по математике приносили убыток…В „Методе флюксий“ учение Ньютона выступает как система: рассматривается исчисление флюксий, приложение их к определению касательных, нахождению экстремумов, кривизны, вычисление квадратур, решение уравнений с флюксиями, что соответствует современным дифференциальным уравнениям».

Лишь в 1704 году вышел первый из всех трудов Ньютона по анализу — написанное им в 1665–1666 годах. Еще через семь лет опубликовали «Анализ с помощью уравнений с бесконечным числом членов». «Метод флюксий» увидел свет только после смерти автора в 1736 году.

Долгое время Ньютон и не подозревал, что на континенте успешно занимается подобной проблемой немец Лейбниц До поры до времени высоко ценившие заслуги друг друга, в конце концов, ученые втянулись в полемику о приоритете открытия исчисления бесконечно малых.

Готфрид Вильгельм Лейбниц (1646–1716) родился в Лейпциге. Мать Лейбница, заботясь об образовании сына, отдала его в школу Николаи, считавшуюся в то время лучшей в Лейпциге. Готфрид целыми днями просиживал в отцовской библиотеке. Без разбора читал он Платона, Аристотеля, Цицерона, Декарта.

Готфриду не было еще четырнадцати лет, когда он изумил своих школьных учителей, проявив талант, которого в нем никто не подозревал. Он оказался поэтом, — по тогдашним понятиям истинный поэт мог писать только по-латыни или по-гречески.

Пятнадцатилетним юношей Готфрид стал студентом Лейпцигского университета. Официально Лейбниц считался на юридическом факультете, но специальный круг юридических наук далеко не удовлетворял его. Кроме лекций по юриспруденции, он усердно посещал и многие другие, в особенности по философии и математике.

Желая пополнить свое математическое образование, Готфрид отправился в Иену, где славился математик Вейгель. Возвратившись в Лейпциг, Лейбниц блистательно выдержал экзамен на степень магистра «свободных искусств и мировой мудрости», то есть словесности и философии. Готфриду в то время не было и 18 лет. На следующий год, на время обратившись к математике, он пишет «Рассуждение о комбинаторном искусстве».

Осенью 1666 года Лейбниц уехал в Альторф, университетский город маленькой Нюрнбергской республики. Здесь 5 ноября 1666 года Лейбниц блистательно защитил докторскую диссертацию «О запутанных делах».

В 1667 году Готфрид отправился в Майнц к курфюрсту, которому был немедленно представлен. В течение пяти лет Лейбниц занимал видное положение при майнцском дворе Этот период в его жизни был временем оживленной литературной деятельности. Лейбниц написал целый ряд сочинений философского и политического содержания.

18 марта 1672 года Лейбниц выехал во Францию с важной дипломатической миссией. Знакомство с парижскими математиками в самое короткое время доставило Лейбницу те сведения, без которых он, при всей своей гениальности, никогда не смог бы достичь в области математики ничего истинно великого. Школа Ферма, Паскаля и Декарта была необходима будущему изобретателю дифференциального исчисления.

Настоящие занятия математикой начались для Лейбница лишь после посещения Лондона в 1675 году. По возвращении в Париж Лейбниц разделял свое время между занятиями математикой и работами философского характера. Математическое направление все более одерживало в нем верх над юридическим, точные науки привлекали его теперь более, чем диалектика римских юристов.

В последний год своего пребывания в Париже в 1676 году Лейбниц выработал первые основания великого математического метода, известного под названием «дифференциальное исчисление». Факты с достаточной убедительностью доказывают, что Лейбниц хотя и не знал о методе флюксий, но был подведен к открытию письмами Ньютона. С другой стороны, несомненно, что открытие Лейбница по общности, удобству обозначения и подробной разработке метода стало орудием анализа значительно могущественнее и популярнее Ньютонова метода флюксий. Даже соотечественники Ньютона, из национального самолюбия долгое время предпочитавшие метод флюксий, мало-помалу усвоили более удобные обозначения Лейбница; что касается немцев и французов, они даже слишком мало обратили внимания на способ Ньютона, в иных случаях сохранивший значение до настоящего времени.

Математический метод Лейбница находится в теснейшей связи с его позднейшим учением о монадах — бесконечно малых элементах, из которых он пытался построить Вселенную. Математическая аналогия, применение теории наибольших и наименьших величин к нравственной области дали Лейбницу то, что он считал путеводною нитью в нравственной философии.

Политическая деятельность Лейбница в значительной мере отвлекала его от занятий математикой. Тем не менее все свое свободное время он посвятил обработке изобретенного им дифференциального исчисления и в промежуток времени между 1677 и 1684 годами успел создать целую новую отрасль математики.

В 1684 году Лейбниц напечатал в журнале «Труды ученых» систематическое изложение начал дифференциального исчисления. Все опубликованные им трактаты, особенно последний, появившийся почти тремя годами раньше появления в свет первого издания «Начал» Ньютона, дали науке такой огромный толчок, что в настоящее время трудно даже оценить все значение реформы, произведенной Лейбницем в области математики. То, что смутно представлялось умам лучших французских и английских математиков, исключая Ньютона, обладавшего своим методом флюксий, стало вдруг ясным, отчетливым и общедоступным, чего нельзя сказать о гениальном методе Ньютона.

«Лейбниц в противовес конкретному, эмпиричному, осмотрительному Ньютону, — пишет В.П. Карцев, — был в области исчисления крупным систематиком, дерзким новатором. Он с юности мечтал создать символический язык, знаки которого отражали бы целые сцепления мыслей, давали бы исчерпывающую характеристику явления. Этот амбициозный и нереальный проект был, конечно, неосуществим; но он, видоизменившись, превратился в универсальную систему обозначений исчисления малых, которой мы пользуемся до сих пор. Он свободно оперирует знаками… которые он справедливо считает знаками обратных операций, и обращается с ними столь же вольно и свободно, как с алгебраическими символами. Он легко оперирует производными высших порядков, в то время как Ньютон вводит флюксии высшего порядка строго ограниченно, если это необходимо для решенияконкретной задачи.

Лейбниц видел в своих дифференциалах и интегралах всеобщий метод, сознательно стремился к созданию жесткого алгоритма упрощенного решения ранее не решавшихся задач.

Ньютон же нисколько не заботился о том, чтобы сделать свой метод общедоступным. Его символика введена им лишь для „внутреннего“, личного потребления, он ее строго не придерживался».

Вот мнение советского математика А. Шибанова: «Склоняясь перед непререкаемым авторитетом своего великого соотечественника, английские ученые впоследствии канонизировали каждый штрих, каждую мельчайшую деталь его научной деятельности, даже введенные им для личного употребления математические знаки». «Над английской наукой тяготела традиция почитания Ньютона, и его обозначения, неуклюжие по сравнению с обозначениями Лейбница, затрудняли прогресс», — соглашается голландский ученый Д.Я. Стройк.

В письме, написанном в июне 1677 года, Лейбниц прямо раскрывал Ньютону свой метод дифференциального исчисления. Тот на письмо Лейбница не ответил. Ньютон считал, что открытие принадлежит ему навечно. При этом достаточно того, что оно было запрятано лишь в его голове. Ученый искренне считал: своевременная публикация не приносит никаких прав. Перед Богом первооткрывателем всегда останется тот, кто открыл первым.

ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ

«Основная теорема алгебры в виде утверждения: алгебраическое уравнение имеет столько корней, какова его степень, высказана Жираром и Декартом, — отмечает в своей книге „В мире уравнений“ В.А. Никифоровский. — Ее формулировка, состоящая в том, что алгебраический многочлен с действительными коэффициентами раскладывается в произведение действительных линейных и квадратичных множителей, принадлежит Д'Аламберу и Эйлеру. Эйлер впервые сообщил об этом в письме Николаю I Бернулли (1687–1759) от 1 сентября 1742 года. Отсюда следовало, что корни алгебраических уравнений с действительными коэффициентами принадлежат полю комплексных чисел».

Первое доказательство теоремы предпринял в 1746 году Д'Аламбер (1717–1783). Доказательство основной теоремы алгебры, выполненное Д'Аламбером, было, однако, аналитическим, а не алгебраическим. Французский математик воспользовался не оформившимися еще в то время понятиями анализа, такими, как степенной ряд, бесконечно малая. Неудивительно, что доказательство теоремы страдало погрешностями и позднее подверглось разгромной критике Гаусса, а затем было забыто.

Новый и значительный шаг в доказательстве основной теоремы алгебры сделал Эйлер.

Леонард Эйлер (1707–1783) родился в Базеле. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базельский университет для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли — Николаем и Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Леонарда.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук. Они способствовали тому, что и Эйлер переехал в Россию.

Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д Бернулли, возвратившийся в этом году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».

В 1736 году появились два тома его аналитической механики. Потребность в этой книге была большая. Немало было написано статей по разным вопросам механики, но хорошего трактата по механике еще не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки.

В конце 1740 года власть в России перешла в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной королевской Академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере остается и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж, и сложилась новая наука.

Доказательство Эйлера основной теоремы алгебры опубликовано в 1751 году в работе «Исследования о воображаемых корнях уравнений».

Эйлер выполнил наиболее алгебраическое доказательство теоремы. Позднее его основные идеи повторялись и углублялись другими математиками. Так, методы исследования уравнений получили развитие сначала у Лагранжа, а затем вошли составной частью в теорию Галуа.

Основная теорема состояла в том, что все корни уравнения принадлежат полю комплексных чисел. Для доказательства подобного положения Эйлер установил, что всякий многочлен с действительными коэффициентами можно разложить в произведение действительных линейных или квадратичных множителей.

Значения чисел, не являющиеся действительными, «Эйлер называл воображаемыми, — пишет Никифоровский, — и указывал, что обычно считают их такими, которые попарно в сумме и произведении дают действительные числа Следовательно, если воображаемых корней будет 2 т, то это даст т действительных квадратичных множителей в представлении многочлена. Эйлер пишет. „Поэтому говорят, что каждое уравнение, которое нельзя разложить на действительные простые множители, имеет всегда действительные множители второй степени. Однако никто, насколько я знаю, еще не доказал достаточно строго истинность этого мнения; я постараюсь поэтому дать ему доказательство, которое охватывает все без исключения случаи“.

Такой же концепции придерживались Лагранж, Лаплас и некоторые другие последователи Эйлера. Не согласен с ней был Гаусс.

Эйлер сформулировал три теоремы, вытекающие из свойств непрерывных функций.

1. Уравнение нечетной степени имеет по меньшей мере один действительный корень. Если таких корней больше одного, то число их нечетно.

2. Уравнение четной степени либо имеет четное число действительных корней, либо не имеет их совсем.

3. Уравнение четной степени, у которого свободный член отрицательный, имеет по меньшей мере два действительных корня разных знаков.

Вслед за этим Эйлер доказал теоремы о разложимости на линейные и квадратичные действительные множители многочленов с действительными коэффициентами…

При доказательстве основной теоремы Эйлер установил два свойства алгебраических уравнений: 1) рациональная функция корней уравнения, принимающая при всех возможных перестановках корней А различных значений, удовлетворяет уравнению степени А, коэффициенты которого выражаются рационально через коэффициенты данного уравнения; 2) если рациональная функция корней уравнения инвариантна (не меняется) относительно перестановок корней, то она рационально выражается через коэффициенты исходного уравнения».

П.С. Лаплас в лекциях по математике 1795 года, вслед за Эйлером и Лагранжем, допускает разложение многочлена на множители. При этом Лаплас доказывает, что они будут действительными.

Таким образом, и Эйлер, и Лагранж, и Лаплас строили доказательство основной теоремы алгебры на предположении существования поля разложения многочлена на множители.

Особая роль в доказательствах основной теоремы принадлежит «королю математиков» Гауссу.

Карл Фридрих Гаусс родился (1777–1855) в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери яркий интеллект. В семь лет Карл Фридрих поступил в Екатерининскую народную школу. В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать — математиком или филологом.

О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду — герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счета. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Геттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.

В 1795 году Гаусса охватывает страстный интерес к целым числам. Осенью того же года Гаусс переезжает в Геттинген и прямо-таки проглатывает впервые попавшуюся в его руки литературу: работы Эйлера и Лагранжа.

«30 марта 1796 года наступает для него день творческого крещения. — пишет Ф. Клейн, — Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника… Это событие явилось поворотным пунктом жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».

Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времен». Только трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошел, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.

Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.

30 марта 1796 года, в день, когда был построен правильный семнад-цатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашел полное доказательство гипотезы Эйлера. Впрочем, Гаусс еще не знал о работах своих великих предшественников. Весь нелегкий путь к «золотой теореме» он прошел самостоятельно!

Два великих открытия Гаусс сделал на протяжении всего 10 дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, переоткрыв за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.

В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. «Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.

В Брауншвейге Гаусс не имел возможности знакомиться с литературой, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвященную доказательству основной теоремы алгебры.

Гаусс оставил после себя сразу четыре доказательства основной теоремы алгебры. Первому доказательству он посвятил выпущенную в 1799 году докторскую диссертацию под названием «Новое доказательство теоремы о том, что всякая целая рациональная алгебраическая функция одного непременного может быть разложена на действительные множители первой и второй степени».

Гаусс не преминул обратить внимания на пробелы у Эйлера, а главное, подверг критике саму постановку вопроса, когда заранее предполагалось существование корней уравнений.

Первое доказательство Гаусса, как и Д'Аламбера, было аналитическим. Во втором доказательстве, выполненном им в 1815 году, знаменитый математик опять вернулся к критике доказательства основной теоремы алгебры при помощи рассуждения, когда заранее предполагается существование корней уравнения.

Гаусс так пояснил во вводном параграфе необходимость нового доказательства: «Хотя доказательство о разложении целой рациональной функции на множители, которое я дал в мемуаре, опубликованном 16 лет тому назад, не оставляет желать лучшего в отношении строгости и простоты, надо надеяться, что математики не будут считать нежелательным, что я вновь возвращаюсь к этому чрезвычайно важному вопросу и предпринимаю построение второго не менее строгого доказательства, исходя из совершенно иных принципов. А именно, это первое доказательство зависело частично от геометрических рассмотрений, тогда как то, которое я здесь начинаю объяснять, покоится на чисто аналитических принципах». Надо заметить, то, что Гаусс называет аналитическим методом, сегодня именуется алгебраическим.

Для доказательства Гаусс использовал построения поля разложения многочлена. Прошло более шестьдесяти лет, когда и Л Кронекер усовершенствовал и развил метод Гаусса для построения поля разложения любого многочлена. Впоследствии Гаусс дал еще два доказательства основной теоремы алгебры. Четвертое и последнее относится к 1848 году.

Главный итог доказательств основной теоремы алгебры Эйлером, Лагранжем и Гауссом, считает И.Г. Башмакова, было то, что «алгебраические доказательства основной теоремы алгебры ценны именно тем, что для их проведения были развиты новые глубокие методы самой алгебры и были испробованы силы уже созданных методов и приемов».

ТЕОРИЯ ГРУПП

Группами перестановок корней занимались ранее других Лагранж и Гаусс. Но бесспорна заслуга того, кто сформулировал существенные свойства понятий, применил их к решению новых и трудных задач. Это сделал французский математик Галуа для понятия группы. Только после его работ оно стало предметом изучения математиков.

Эварист Галуа (1811–1832) родился в городе Бур-ля-Рен. В 1823 году родители отправили Эвариста учиться в Королевский коллеж в Париже. Здесь он увлекся математикой и стал самостоятельно изучать сочинения Лежандра, Эйлера, Лагранжа, Гаусса.

Идеи Лагранжа целиком овладевают Галуа. Ему, как когда-то Абелю, кажется, что он нашел решение уравнения пятой степени. Он предпринимает безуспешную попытку поступить в Политехническую школу, но знаний работ Лежандра и Лагранжа оказалось недостаточно, и Галуа возвращается в коллеж.

Здесь ему впервые улыбается счастье — он встречает учителя, который смог оценить его гениальность. Ришар умел подниматься выше официальных программ, он был в курсе успехов наук и стремился расширить кругозор своих учеников. Отзывы Ришара о Эваристе просты: «Он работает лишь в высших областях математики».

И действительно, уже в семнадцать лет Галуа получает первые научные результаты. В 1829 году была опубликована его заметка «Доказательство одной теоремы о периодических непрерывных дробях». Тогда же Галуа представил в Парижскую академию наук другую работу. Она затерялась у Коши.

Галуа пытается вторично поступить в Политехническую школу, и вновь неудача. К этому вскоре добавилось событие, потрясшее юношу: затравленный политическими противниками, его отец покончил с собой. Обрушившиеся на Эвариста несчастья неизбежно повлияли на него: он стал нервным и вспыльчивым.

В 1829 году Галуа поступил в Нормальную школу. В ней готовились кандидаты на звание преподавателя. Здесь Эварист выполнил исследование по теории алгебраических уравнений и в 1830 году представил работу на конкурс Парижской академии наук Его судьба была в руках бессменного секретаря Академии — Фурье. Фурье начинает читать рукопись, но вскоре умирает. Вторая рукопись, как и первая, исчезает.

В жизни Галуа наступило время, заполненное важными событиями. Он примкнул к республиканцам, вступил в «Общество друзей народа» и записался в артиллерию Национальной гвардии. За выступление против руководства его исключили из Нормальной школы.

14 июля 1831 года, в ознаменование очередной годовщины взятия Бастилии, состоялась манифестация республиканцев. Полиция арестовала многих манифестантов, среди них был и Галуа. Суд над Галуа состоялся 23 октября 1831 года. Его осудили на 9 месяцев заключения. Галуа продолжал свои исследования и в тюрьме.

Утром 30 мая 1832 года на дуэли в местечке Жантийи Галуа был смертельно ранен пулей в живот. Через день он скончался.

Математические работы Галуа, по крайней мере, те, что сохранились, составляют шестьдесят небольших страниц. Никогда еще труды столь малого объема не доставляли автору такой широкой известности.

В 1832 году Галуа, сидя в тюрьме, составляет программу, которую опубликовали лишь спустя семьдесят лет после его смерти. Но и в начале двадцатого века она не вызвала серьезного интереса и скоро была забыта. Только математики нового времени, продолжившие работу многих поколений ученых, осуществили, наконец, мечту Галуа.

«Я умоляю моих судей по крайней мере прочесть эти несколько страниц», — так начал Галуа свой знаменитый мемуар. Однако идеи Галуа были настолько глубоки и всеобъемлющи, что в то время их действительно трудно было оценить какому бы то ни было ученому.

«…Итак, я полагаю, что упрощения, получаемые за счет усовершенствования вычислений (при этом, конечно, имеются в виду упрощения принципиальные, а не технические), вовсе не безграничны. Настанет момент, когда математики смогут настолько четко предвидеть алгебраические преобразования, что трата времени и бумаги на их аккуратное проведение перестанет окупаться. Я не утверждаю, что анализ не сможет достигнуть чего-нибудь нового и помимо такого предвидения, но думаю, что без него в один прекрасный день все средства окажутся тщетными.

Подчинить вычисления своей воле, сгруппировать математические операции, научиться их классифицировать по степени трудности, а не по внешним признакам, — вот задачи математиков будущего так, как я их понимаю, вот путь, по которому я хочу пойти.

Пусть только никто не смешивает проявленную мной горячность со стремлением некоторых математиков вообще избегнуть каких бы то ни было вычислений. Вместо алгебраических формул они используют длинные рассуждения и к громоздкости математических преобразований добавляют громоздкость словесного описания этих преобразований, пользуясь языком, не приспособленным для выполнения таких задач. Эти математики отстали на сто лет.

Здесь не происходит ничего подобного. Здесь я занимаюсь анализом анализа. При этом самые сложные из известных сейчас преобразований (эллиптические функции) рассматриваются всего лишь как частные случаи, весьма полезные и даже необходимые, но все же не общие, так что отказ от дальнейших более широких исследований был бы роковой ошибкой. Придет время, и преобразования, о которых идет речь в намеченном здесь высшем анализе, будут действительно производиться и будут классифицироваться по степени трудности, а не по виду возникающих здесь функций».

Здесь надо обязательно обратить внимание на слова «сгруппировать математические операции». Галуа, несомненно, подразумевает под этим теорию групп.

В первую очередь Галуа интересовали не отдельные математические задачи, а общие идеи, определяющие всю цепь соображений и направляющие логический ход мыслей. Его доказательства основываются на глубокой теории, позволяющей объединить все достигнутые к тому времени результаты и определить развитие науки надолго вперед. Через несколько десятков лет после смерти Галуа немецкий математик Давид Гильберт назвал эту теорию «установлением определенного остова понятий». Но какое бы название за ней не укрепилось, очевидно, что она охватывает очень большую область знаний.

«В математике, как в любой другой науке, — писал Галуа, — есть вопросы, требующие решения именно в данный момент. Это те насущные проблемы, которые захватывают умы передовых мыслителей независимо от их собственной воли и сознания».

Одна из проблем, над которой работал Эварист Галуа, — решение алгебраических уравнений. Что будет, если рассматривать лишь уравнения с числовыми коэффициентами? Ведь может же случиться, что хотя общей формулы для решения таких уравнений нет, корни каждого отдельного уравнения можно выразить в радикалах. А если это не так? Тогда должен быть какой-то признак, позволяющий определить, решается данное уравнение в радикалах или нет? Что же это за признак?

Первое из открытий Галуа состояло в том, что он уменьшил степень неопределенности их значений, т. е. установил некоторые из «свойств» этих корней. Второе открытие связано с методом, использованным Галуа для получения этого результата. Вместо того чтобы изучать само уравнение, Галуа изучал его «группу», или, образно говоря, его «семью».

«Группа, — пишет А. Дальма, — это совокупность предметов, имеющих определенные общие свойства. Пусть, например, в качестве таких предметов взяты действительные числа. Общее свойство группы действительных чисел состоит в том, что при умножении любых двух элементов этой группы мы получаем также действительное число. Вместо действительных чисел в качестве „предметов“ могут фигурировать изучаемые в геометрии движения на плоскости; в таком случае свойство группы заключается в том, что сумма любых двух движений дает снова движение. Переходя от простых примеров к более сложным, можно в качестве „предметов“ выбрать некоторые операции над предметами. В таком случае основным свойством группы будет то, что композиция любых двух операций также является операцией. Именно этот случай и изучал Галуа. Рассматривая уравнение, которое требовалось решить, он связывал с ним некоторую группу операций (к сожалению, мы не имеем возможности уточнить здесь, как это делается) и доказывал, что свойства уравнения отражаются на особенностях данной группы. Поскольку различные уравнения могут иметь одну и ту же группу, достаточно вместо этих уравнений рассмотреть соответствующую им группу. Это открытие ознаменовало начало современного этапа развития математики.

Из каких бы „предметов“ ни состояла группа: из чисел, движений или операций, — все они могут рассматриваться как абстрактные элементы, не обладающие никакими специфическими признаками. Для того чтобы определить группу, надо только сформулировать общие правила, которые должны выполняться для того, чтобы данную совокупность „предметов“ можно было назвать группой. В настоящее время математики называют такие правила групповыми аксиомами, теория групп состоит в перечислении всех логических следствий из этих аксиом. При этом последовательно обнаруживаются все новые и новые свойства; доказывая их, математик все более и более углубляет теорию. Существенно, что ни сами предметы, ни операции над ними никак не конкретизируются. Если после этого при изучении какой-нибудь частной задачи приходится рассмотреть некоторые специальные математические или физические объекты, образующие группу, то, исходя из общей теории, можно предвидеть их свойства. Теория групп, таким образом, дает ощутимую экономию в средствах; кроме того, она открывает новые возможности применения математики в исследовательской работе».

Введение понятия группы избавило математиков от обременительной обязанности рассматривать множество различных теорий. Оказалось, что нужно лишь выделить «основные черты» той или иной теории, и так как, по сути дела, все они совершенно аналогичны, то достаточно обозначить их одним и тем же словом, и сразу становится ясно, что бессмысленно изучать их по отдельности.

Галуа стремится внести в разросшийся математический аппарат новое единство. Теория групп — это, прежде всего, наведение порядка в математическом языке.

Теория групп, начиная с конца XIX века, оказала огромное влияние на развитие математического анализа, геометрии, механики и, наконец, физики. Оно впоследствии проникло в другие области математики — появились группы Ли в теории дифференциальных уравнений, группы Клейна в геометрии. Возникли также группы Галилея в механике и группы Лоренца в теории относительности.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ

По определению Евклида параллельные линии — прямые, лежащие в одной плоскости и никогда не встречающиеся, как бы далеко мы их ни продолжали.

Но уже древнейшие комментаторы Евклида Посидоний (II век до нашей эры), Геминус (I век до нашей эры), Птолемей (II век нашей эры) — не считали пятый постулатум Евклида имеющим ту же очевидность, как другие по-стулатумы и аксиомы Евклида, и пытались или вывести его, как следствие других положений, или заменить определение параллельных, данное Евклидом, другим определением.

Во второй половине XVII столетия Лейбниц также критически относился к основным положениям Евклида. Как известно, он хотел также построить чисто геометрической анализ, который непосредственно выражал бы свойства положения, подобно тому как алгебра выражает величину.

Но только в первой половине XVIII века приходит мысль применить к вопросу о параллельных линиях и систематически провести в теории параллельных линий тот метод доказательства от противного, которым так часто пользовались греческие математики.

Эта гениальная идея принадлежала Саккери. В сочинении, появившемся в год его смерти «Евклид, избавленный от всякого пятна», Саккери берет исходным пунктом четырехугольник, которого две противоположные стороны, перпендикулярные к основанию, равны между собой. В таком четырехугольнике углы, образуемые равными сторонами с стороною, противоположною основанию, равны, и доказательство этого свойства четырехугольника не зависит от постулатума Евклида. Если они прямые, то постулатум Евклида доказан, так как в этом случае сумма углов треугольника равна двум прямым. Но Саккери (и в этом состоит его оригинальная гениальная мысль) делает и две другие гипотезы — гипотезу острого и гипотезу тупого угла, выводит из этих гипотез вытекающие следствия и пытается доказать невозможность этих следствий, т. е. допустимость только одной гипотезы прямого угла. Ему легко удается доказать, что гипотеза тупого угла недопустима, так как приводит к противоречиям. Для того чтобы найти такое же противоречие в гипотезе острого угла, он выводит ряд замечательных теорем, которые потом были снова доказаны Лежандром. Таковы, например, теоремы, по которым если та или другая или третья гипотеза имеет место для одного четырехугольника, то она имеет место и для всякого другого.

Через три года после ее появления, в 1766 году, Ламберт ставит ту же задачу, что и Саккери. Вместо четырехугольника с двумя прямыми углами и двумя равными сторонами Ламберт рассматривает четырехугольник с тремя прямыми углами и делает три гипотезы относительно четвертого угла. Его изложение имеет некоторые особенности сравнительно с изложением Саккери: он избегает прибегать к соображениям, основанным на непрерывности. Из того, что в гипотезах тупого и острого угла не существует подобия фигур, Ламберт выводит заключение о существовании абсолютной меры.

В 1799 году гениальный математик Карл Гаусс пошел по тому пути, по которому до него шли Саккери и Ламберт, — по пути планомерного вывода всех следствий гипотезы острого угла. Но его размышления привели к сомнению в возможности доказать аксиому Евклида, и к 1816 году у математика созрело убеждение в невозможности такого доказательства.

Высказанное публично мнение Гаусса о недоказуемости аксиомы Евклида не имело влияния и даже подверглось грубым нападкам. Это было одной из причин, почему он решился не публиковать своих исследований и мыслей по вопросу об основаниях, «боясь крика бео-тийцев» (письмо к Бесселю от 27 января 1829 года). Но он не прервал своих исследований и с величайшим интересом и сочувствием приветствовал те работы и мысли, которые совпадали с его исследованиями и взглядами.

Как далеко он пошел по этому пути, показывает его письмо к Вольфгангу Болиаи от 6 марта 1832 года, в котором Гаусс говорит, что между 1797 и 1802 годами он нашел те результаты, к которым пришел Иоганн Болиаи. Например, чисто геометрическое доказательство теоремы, что в неевклидовой геометрии разность суммы углов треугольника от 180 градусов пропорциональна площади треугольника.

Вольфганг Болиаи, друг школьных лет Гаусса, проявлял большой интерес к теории параллельных линий. Этот необычайный интерес, по свидетельству его письма к сыну в 1820 году, отравил ему все радости жизни, сделал его мучеником стремления освободить геометрию от пятна, «удалить облако, затемняющее красоту девы-истины». Но в то время как усилия почти всей жизни отца были направлены к доказательству 5-го постулатума, и ему не удалось достигнуть цели, его талантливый сын явился одним из творцов неевклидовой геометрии.

Иоганн Болиаи родился в 1802 году в Клаузенбурге. Уже в 1807 году отец с восторгом и гордостью пишет Гауссу о необыкновенных математических способностях мальчика, который к тринадцати годам уже изучил планиметрию, стереометрию, тригонометрию, конические сечения, а в 14 лет уже решал с легкостью задачи дифференциального и интегрального исчисления. Вольфгангу не удалось послать сына учиться в Геттингене у «математического колосса», и в 1818 году Иоганн поступил в Венскую инженерную академию, где уделялось большое внимание высшей математике. В 1823 году он кончил курс в академии и, как военный инженер, был послан в крепость Теметвар.

Вполне естественно, что обладавший необыкновенными математическими способностями Иоганн еще почти мальчиком решил испытать свои силы на решении того вопроса, над которым мучился отец, но про который отец же говорил ему, что решивший его достоин алмаза величиною в земной шар. В 1820 году Иоганн сообщает отцу, что он уже нашел путь к доказательству аксиомы, и тогда-то отец пишет ему горячее письмо, предостерегающее его от занятия теориею параллельных линий.

В зимнюю ночь 1823 года он нашел то основное соотношение между длиною перпендикуляра, опущенного из точки на прямую, и углом, который составляет с этим перпендикуляром ассимптота (параллельная линия Лобачевского), которое является ключом к неевклидовой тригонометрии. В восторге от своего открытия, которое, казалось ему, открывало путь к доказательству XI аксиомы, он пишет 3 ноября из Теметвара отцу: «Я создал новый, другой мир из ничего. Все, что посылал до сих пор, есть только карточный домик в сравнении с воздвигаемою теперь башнею».

В 1829 году Вольфганг закончил большое математическое сочинение, над которым трудился около двадцати лет. Как приложение к этой книге, было напечатано и бессмертное сочинение Иоганна Болиаи. Конечно, Болиаи не подозревали, что в это же самое время в далекой Казани Лобачевский печатал свою первую работу «О началах геометрии» (1829 год).

Николай Иванович Лобачевский (1792–1856) родился в Макарьевском уезде Нижегородской губернии. Отец его занимал место уездного архитектора и принадлежал к числу мелких чиновников, получавших скудное содержание. Бедность, окружавшая его в первые дни жизни, перешла в нищету, когда в 1797 году умер отец и двадцатипятилетняя мать осталась одна с детьми без всяких средств. В 1802 году она привезла троих сыновей в Казань и определила их в Казанскую гимназию, где очень быстро заметили феноменальные способности ее среднего сына.

Когда в 1804 году старший класс Казанской гимназии был преобразован в университет, Лобачевский был включен в число студентов по естественно-научному отделению. Учился юноша блестяще.

Лобачевский получил прекрасное образование. Лекции по астрономии читал профессор Литрофф. Лекции по математике он слушал у профессора Бартельса, воспитанника такого крупного ученого, как Карл Фридрих Гаусс.

Уже в 1811 году Лобачевский получил степень магистра, и его оставили в университете для подготовки к профессорскому званию. В 1814 году Лобачевский получил звание адъюнкта чистой математики, а в 1816 году был сделан профессором.

С 1819 года Лобачевский преподавал астрономию. Административная деятельность ученого началась с 1820 года, когда он был избран деканом.

Несмотря на изнурительную практическую деятельность, не оставлявшую ни минуты отдыха, Лобачевский никогда не прекращал своих научных занятий и во время своего ректорства напечатал в «Ученых записках Казанского университета» лучшие свои сочинения.

Если Иоганн Болиаи начал заниматься теорией параллельных линий под влиянием своего отца, то Лобачевский мог начать заниматься ею только потому, что интерес к этой теории особенно оживился в конце XVIII и начале XIX столетия.

В двадцатипятилетие, предшествующее появлению первой работы Лобачевского, не проходило и года, в которой не появилось бы одно или несколько сочинений по теории параллельных линий. Известно до 30 сочинений, напечатанных только на немецком и французском языках с 1813 по 1827 год.

Работы Лежандра возбудили интерес к теории параллельных линий и в среде русских математиков. Первый академик из русских, заслуживший своими печатными трудами почетное место в истории русского математического преподавания, СЕ. Гурьев в наиболее важном из своих сочинений «Опыт о усовершении элементов геометрии», напечатанном в 1798 году, обратил особое внимание на теорию параллельных линий и на доказательства, данные Лежандром. Критикуя эти доказательства, Гурьев предлагает и свое собственное.

Основываясь на утверждении, что при определенных условиях прямые, которые кажутся нам параллельными, могут пересекаться, Лобачевский пришел к выводу о возможности создания новой, непротиворечивой геометрии. Поскольку ее существование было невозможно представить в реальном мире, ученый назвал ее «воображаемой геометрией». Но к этой мысли и он, как и И. Болиаи, пришел не сразу.

Лекции 1815–1817 годов, учебник геометрии 1823 года и не дошедшая до нас «Exposition succincte des principes de la geometrie», прочтенная в заседании физико-математического отделения 12 февраля 1826 года, — таковы три этапа мысли Лобачевского в области теории параллельных линий. В лекциях он дает три различных способа для ее обоснования; в учебнике 1823 года он заявляет, что все до сих пор данные доказательства не заслуживают быть почтены в полном смысле математическими, и, наконец, через три года он дает уже ту систему построения геометрии на положении, отличном от постулатума Евклида, которая обессмертила его имя.

«Exposition» не дошло до нас. Первое печатное сочинение Лобачевского, которое он называет извлечением из «Exposition», печаталось в «Казанском вестнике» в 1829–1830 годах. Эта дата устанавливает приоритет опубликования открытия Лобачевского сравнительно с И. Болиаи, так как «Appendix» последнего был напечатан в 1831 году, а вышел из печати только в 1832 году. Как показывает заглавие «Exposition», оно имело своим предметом не только точную теорию параллельных линий, но посвящено было вместе с тем вопросу о началах геометрии.

Хотя и И. Болиаи, и Лобачевский за это открытие были избраны членами Ганноверской академии наук, права гражданства получила в Западной Европе именно геометрия Лобачевского.

В 1837 году труды Лобачевского печатаются на французском языке. В 1840 году он издал на немецком языке свою теорию параллельных, заслужившую признание великого Гаусса. В России же Лобачевский не видел оценки своих научных трудов.

Очевидно, исследования Лобачевского находились за пределами понимания его современников. Одни игнорировали его, другие встречали его труды грубыми насмешками и даже бранью. В то время как наш другой высокоталантливый математик Остроградский пользовался заслуженной известностью, никто не знал Лобачевского; к нему и сам Остроградский относился то насмешливо, то враждебно.

Совершенно правильно или, вернее, основательно один геометр назвал геометрию Лобачевского звездной геометрией. О бесконечных же расстояниях можно составить себе понятие, если вспомнить, что существуют звезды, от которых свет доходит до Земли тысячи лет. Итак, геометрия Лобачевского включает в себя геометрию Евклида не как частный, а как особый случай. В этом смысле первую можно назвать обобщением геометрии нам известной. Теперь возникает вопрос, принадлежит ли Лобачевскому изобретение четвертого измерения? Нисколько. Геометрия четырех и многих измерений создана была немецким математиком, учеником Гаусса, Риманом. Изучение свойств пространств в общем виде составляет теперь неевклидову геометрию, или геометрию Лобачевского. Пространство Лобачевского есть пространство трех измерений, отличающееся от нашего тем, что в нем не имеет места постулат Евклида. Свойства этого пространства в настоящее время уясняются при допущении четвертого измерения. Но этот шаг принадлежит уже последователям Лобачевского.

Естественно возникает вопрос, где же находится такое пространство. Ответ на него был дан крупнейшим физиком XX века Альбертом Эйнштейном. Основываясь на работах Лобачевского и постулатах Римана, он создал теорию относительности, подтвердившую искривленность нашего пространства.

В соответствии с этой теорией любая материальная масса искривляет окружающее ее пространство. Теория Эйнштейна была многократно подтверждена астрономическими наблюдениями, в результате которых стало ясно, что геометрия Лобачевского является одним из фундаментальных представлений об окружающей нас Вселенной.

КИБЕРНЕТИКА

«Винер по праву назван отцом кибернетики, — пишет в своей „Кибернетической смеси“ В.Д. Пекелис. — Его книга „Кибернетика“ появилась в 1948 году и потрясла многих неожиданностью выводов, оказала ошеломляющее влияние на общественное мнение. Ее появление можно уподобить исподволь подготовленному взрыву.

В истории кибернетики, как и в любой другой науке, два периода: накопление материала и оформление его в новую науку… Здесь стоит упомянуть посвященные теории регулирования работы инженера А. Стодолы, опубликованные в конце прошлого века в одном из швейцарских журналов. В них рассматривался принцип управления с помощью обратной связи. Своеобразие истории вычислительной техники знаменательно тем, что первые счетные машины сразу же открыли перед человеком возможность механизации умственной работы. Здесь нельзя обойти вниманием „Математическое исследование логики“ Джорджа Буля. Оно положило начало разработке алгебры логики, которой широко пользуется теперь кибернетика.

Когда в теории вероятностей возник новый раздел — теория информации, универсальность новой теории, хоть и не сразу, стала ясна всем. Обнаружилось, например, соответствие между количеством информации и мерой перехода различных форм энергии в тепловую — энтропией. Впервые на это указал в 1929 году известный физик Л. Сциллард. Впоследствии теория информации стала одной из важных основ в кибернетике.

В XIX веке заметны достижения и в физиологии высшей нервной деятельности. Особенно в исследовании процессов обучения животных. В 30-х годах нашего столетия явлением стала теория физиологической активности Беркштейна, еще позже принцип функциональной системы Анохина».

Вместе с прогрессом происходит и сближение технических средств, используемых и в физиологии и в автоматике. Такое сближение сопровождается взаимным обменом принципами построения структурных схем, идеями моделирования, методами анализа и синтеза систем.

Подобную тенденцию одним из первых уловил русский философ Александр Александрович Богданов. «Мой исходный пункт, — писал ученый, — заключается в том, что структурные отношения могут быть обобщены до такой формальной чистоты схем, как в математике и отношениях величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим».

Таким образом, Богданов предвосхитил появление общей теории систем — одной из ключевых концепций кибернетики. Русский ученый сумел обосновать и принцип обратной связи, назвав его «механизмом двойного взаимного регулирования».

Позднее, в 1936 году английский математик А. Тьюринг опубликовал работу, описывающую абстрактную вычислительную машину. Некоторые положения его труда во многом предвосхитили различные проблемы кибернетики.

Однако решающее слово в рождении новой науки сказал крупный американский математик Винер.

Норберт Винер (1894–1964) родился в городе Колумбия штата Миссури. Читать он научился с четырех лет, а вшесть уже читал Дарвина и Данте. В девять лет он поступил в среднюю школу, в которой начинали учиться дети с 15–16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же мальчик поступил в высшее учебное заведение, Тафте-колледж. После окончания его, в возрасте 14 лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 — доктором философии по специальности «математическая логика».

Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах. Перед Первой мировой войной, весной 1914 года Винер переехал в Геттинген, где в университете учился у Э.Ландау и великого Д.Гильберта.

В начале войны Винер вернулся в США, год провел в Кембридже, но в сложившихся условиях научных результатов добиться не мог. В Колумбийском университете он стал заниматься топологией, но начатое до конца не довел. В 1915–1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете.

Следующий учебный год Винер работал по найму в университете штата Мэн. После вступления США в войну он работал на заводе «Дженерал электрик», откуда перешел в редакцию Американской энциклопедии в Олбани. Затем Норберт какое-то время участвовал в составлении таблиц артиллерийских стрельб на полигоне, где его даже зачислили в армию, но вскоре из-за близорукости уволили. Потом он перебивался статьями в газеты, написал две работы по алгебре, вслед за опубликованием которых получил рекомендацию профессора математики В.Ф. Осгуда и в 1919 году поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ). Так началась его служба в этом институте, продолжавшаяся всю жизнь.

Здесь Винер ознакомился с содержанием статистической механики У. Гиббса. Ему удалось связать основные положения ее с лебеговским интегрированием при изучении броуновского движения и написать несколько статей. Такой же подход оказался возможным в установлении сущности дробового эффекта в связи с прохождением электрического тока по проводам или через электронные лампы.

Возвратившись в США, Винер усиленно занимается наукой. В 1920–1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе.

В 1922, 1924— и 1925 годах Винер побывал в Европе у знакомых и родственников семьи. В 1925 году он выступил в Геттингене с сообщением о своих работах по обобщенному гармоническому анализу, заинтересовавшим Гильберта, Куранта и Борна. Впоследствии Винер понял, что его результаты в некоторой степени связаны с развивавшейся в то время квантовой теорией.

Тогда же Винер познакомился с одним из конструкторов вычислительных машин — В. Бушем и высказал пришедшую ему однажды в голову идею нового гармонического анализатора. Буш претворил ее в жизнь.

Продвижение Винера по службе шло медленно. Он пытался получить приличное место в других странах, но у него не вышло. Однако пришла пора, наконец, и везения. На заседании Американского математического общества Винер встретился с Я.Д. Тамаркиным, геттингенским знакомым, всегда высоко отзывавшимся о его работах. Такую же поддержку оказывал ему неоднократно приезжавший в США Харди. И это повлияло на положение Винера: благодаря Тамаркину и Харди он стал известен в Америке.

Особо значимой оказалась совместная деятельность Винера с приехавшим из Германии в Гарвардский университет Э. Хопфом — в результате чего в науку вошло «уравнение Винера — Хопфа», описывающее радиационные равновесия звезд, а также относящееся к другим задачам, в которых ведется речь о двух различных режимах, отделенных границей.

В 1929 году в шведском журнале «Акта математика» и американском «Анналы математики» вышли две большие итоговые статьи Винера по обобщенному гармоническому анализу.

С 1932 года Винер — профессор МТИ. В Гарварде он познакомился с физиологом А. Розенблютом и стал посещать его методологический семинар, объединявший представителей различных наук. Этот семинар сыграл важную роль в формировании у Винера идей кибернетики. После отъезда Розенблюта в Мехико заседания семинара проводились иногда в Мехико, иногда в МТИ.

В 1934 году Винер получил приглашение из университета Цинхуа (в Пекине) прочитать курс лекций по математике и электротехнике. Год посещения Китая он считал годом полного своего становления как ученого.

Во время войны Винер почти целиком посвятил свое творчество военным задачам. Он исследует задачу движения самолета при зенитном обстреле. Обдумывание и экспериментирование убедили Винера в том, что система управления огнем зенитной артиллерии должна быть системой с обратной связью; что обратная связь играет существенную роль и в человеческом организме. Все большую роль начинают играть прогнозирующие процессы, осуществляя которые нельзя полагаться лишь на человеческое сознание.

Существовавшие в ту пору вычислительные машины необходимым быстродействием не обладали. Это заставило Винера сформулировать ряд требований к таким машинам. По сути дела, им были предсказаны пути, по которым в дальнейшем пошла электронно-вычислительная техника. Вычислительные устройства, по его мнению, «должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие». Следующее требование состояло в том, что в вычислительных устройствах «должна использоваться более экономичная двоичная, а не десятичная система счисления». Машина, полагал Винер, должна сама корректировать свои действия, в ней необходимо выработать способность к самообучению. Для этого ее нужно снабдить блоком памяти, где откладывались бы управляющие сигналы, а также те сведения, которые машина получит в процессе работы.

Если ранее машина была лишь исполнительным органом, всецело зависящим от воли человека, то ныне она становилась думающей и приобретала определенную долю самостоятельности.

В 1943 году вышла статья Винера, Розенблюта, Байглоу «Поведение, целенаправленность и телеология», представляющая собой набросок кибернетического метода.

В 1948 году в нью-йоркском издательстве «Джон Уили энд Санз» и парижском «Херманн эт Ци» выходит книга Винера «Кибернетика».

«Основной тезис книги, — пишет Г.Н. Поваров в предисловии к „Кибернетике“, — подобие процессов управления и связи в машинах, живых организмах и обществах, будь то общества животных (муравейник) или человеческие. Процессы эти суть, прежде всего, процессы передачи, хранения и переработки информации, т. е. различных сигналов, сообщений, сведений. Любой сигнал, любую информацию, независимо от ее конкретного содержания и назначения, можно рассматривать как некоторый выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), и это позволяет подойти ко всем процессам с единой меркой, с единым статистическим аппаратом. Отсюда мысль об общей теории управления и связи — кибернетике.

Количество информации — количество выбора — отождествляется Винером с отрицательной энтропией и становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы. Таков второй краеугольный камень кибернетического здания. Отсюда толкование кибернетики как теории организации, как теории борьбы с мировым хаосом, с роковым возрастанием энтропии.

Действующий объект поглощает информацию из внешней среды и использует ее для выбора правильного поведения. Информация никогда не создается, она только передается и принимается, но при этом может утрачиваться, исчезать. Она искажается помехами, „шумом“, на пути к объекту я внутри его и теряется для него».

Основоположником современной теории управления сам Винер считал Дж. К. Максвелла, и это совершенно справедливо. Теория автоматического регулирования была в основном сформулирована Дж. Максвеллом, И. Вышнеградским, А. Ляпуновым и А. Стодолой. В чем же заслуга Н. Винера? Может быть, его книга просто представляет собой компиляцию известных сведений, собирает воедино известный, но разрозненный материал?

Основная заслуга Винера в том, что он впервые понял принципиальное значение информации в процессах управления. Говоря об управлении и связи в живых организмах и машинах, он видел главное не просто в словах «управление» и «связь», а в их сочетании. Точно так же, как в теории относительности важен не сам факт конечности скорости взаимодействия, а сочетание этого факта с понятием одновременности событий, протекающих в различных точках пространства. Кибернетика — наука об информационном управлении, и Винера с полным правом можно считать творцом этой науки.

«С выходом книги в свет кончился первый, инкубационный период истории кибернетики, — пишет Г.Н. Поваров, — и начался второй, крайне бурный — период распространения и утверждения. Дискуссии потрясли ученый мир. Кибернетика нашла горячих защитников и столь же горячих противников…

…Одни усматривали в кибернетике сплошной философский выверт и „холодную войну“ против учения Павлова. Другие, энтузиасты, относили на ее счет все успехи автоматики и вычислительной техники и соглашались видеть уже в тогдашних „электронных мозгах“ подлинных разумных существ. Третьи, не возражая против сути проекта, сомневались, однако, в успехе предпринятого синтеза и сводили кибернетику к простым призывам.

…Вокруг всего этого бушевали страсти. Однако кибернетика выиграла, в конце концов, сражение и получила право гражданства в древней семье наук. Период утверждения занял приблизительно десятилетие. Постепенно решительное отрицание кибернетики сменилось поисками в ней „рационального зерна“ и признанием ее полезности и неизбежности. К 1958 году уже почти никто не выступал совсем против. Винеровский призыв к синтезу раздался в чрезвычайно благоприятный момент, обстоятельства работали на кибернетику, несмотря на ее несовершенства и преувеличения».

В 1959 году академик А.Н. Колмогоров писал: «Сейчас уже поздно спорить о степени удачи Винера, когда он в своей известной книге в 1948 году выбрал для новой науки название „кибернетика“. Это название достаточно установилось и воспринимается как новый термин, мало связанный со своей греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы „целесообразности“ в машинах и философскому анализу изучаемого ею круга явлений».

ТАЙНЫ ВСЕЛЕННОЙ

ГЕОЦЕНТРИЧЕСКАЯ МОДЕЛЬ МИРА

Уже в древности люди хотели получить ответы на такие важные вопросы, как «что такое наша Земля?», «каковы ее размеры?», «каково ее место во Вселенной?» и т. д. Но поиски ответов оказались долгими и трудными.

«Первые ответы на вопрос „как устроен окружающий мир?“ древние люди составляли на основе своих непосредственных впечатлений, — пишет в своей книге А.И.Климишин, — так, не ощущая никаких движений Земли, люди, естественно, предположили, что она неподвижна. Наблюдая, как Солнце, Луна, весь небосвод вращаются вокруг Земли, они восприняли это как непреложный факт. У них не было оснований сомневаться в том, что Земля плоская. И, наконец, таким логичным казалось предположение, что она расположена в центре мира…

В Древнем Вавилоне сформировалось представление, будто Земля имеет вид выпуклого круглого острова, плавающего в мировом океане. На земную поверхность будто бы опирается небо — твердый каменный свод, к которому прикреплены звезды и планеты и по которому совершает свою ежедневную прогулку Солнце. Примечательно, что у древних шумеров слово „на“ обозначало и „небо“ и „камень“. Позже основные элементы этой вавилонской модели мира встречаются и у древних евреев; ее, в частности, придерживались и авторы Библии. Например, в книге Иова говорится, будто бы „Бог… распростер небеса твердые, как литое зеркало“ (Иов, 37, 18).» Вероятно, в Древней Греции впервые попытались научно объяснить эти явления, разгадать истинную причину их появления. Так выдающийся мыслитель Гераклит Эфесский (около 544–470 гг. до нашей эры) высказал предположение о непрерывном развитии мира. Согласно Демокриту (около 460–370 гг. до нашей эры), Вселенная состоит из бесконечного множества миров, образующихся вследствие столкновения атомов, причем одни миры рождаются, другие находятся в состоянии расцвета, третьи разрушаются. Демокрит предполагал, что Млечный Путь является скоплением большого числа звезд.

У Пифагора встречается мысль о том, что Земля имеет форму шара и что она висит в пространстве без какой бы то ни было поддержки. Аристотель (384–322 гг. до нашей эры) в своем труде «О небе» уже приводит величину земной окружности, из чего следует, что радиус Земли в современной мере равен примерно 10 000 километрам.

Аристотель писал, что планета состоит из земли, воды, воздуха и огня, тогда как небесные тела состоят из иной, неуничтожимой формы материи — эфира. Ученый утверждал, что упомянутые четыре «стихии» располагаются друг над другом в виде концентрических сфер. Каждый элемент, сместившись со своего «естественного» места, стремится снова занять его. Поэтому, мол, в природе и наблюдаются движения тяжелых элементов вниз (к «центру Вселенной»), а легких — вверх, где они переходят в состояние покоя. Аристотель и его последователи выступали против уже существовавших в то время представлений о возможном вращении Земли вокруг своей оси и ее движении в пространстве. Они выдвинули казавшиеся в то время неопровержимыми доказательства: если бы Земля вращалась вокруг своей оси, то возникал бы встречный ветер, который сдувал бы все с ее поверхности в сторону запада, а движение Земли неминуемо было бы обнаружено по изменению на протяжении года углового расстояния между произвольно взятой на небе парой звезд.

Сейчас известно: земная атмосфера в равной мере принимает участие в суточном вращении Земли, расстояния же до звезд оказались настолько велики, что у Аристотеля не было никаких шансов определить подобное изменение.

Сохранилась до наших дней работа Аристарха Самосского (около 320–230 гг. до нашей эры). Ему удалось измерить угловое расстояние Луны от Солнца в первой четверти. Он также сделал попытку определить размеры и расстояния до Луны и Солнца. По Аристарху, расстояние от Земли до Луны — 19 радиусов Земли, а до Солнца еще в 19 раз больше. По-видимому, имея в виду большие по сравнению с Землей размеры Солнца, Аристарх и высказал предположение, «что неподвижные звезды и Солнце не меняют своего места в пространстве, что Земля движется по окружности вокруг Солнца», как об этом сообщал позже и Архимед.

Во II веке до нашей эры величайший античный астроном Гиппарх определил размеры Луны с исключительной точностью. По Гиппарху, радиус Луны равен 0,27 земных радиусов, что мало отличается от принятого ныне. Расстояние до Луны этот выдающийся астроном определил в 59 радиусов Земли (истинное среднее значение — 60,3). Однако расстояние до Солнца со времени Птолемея и вплоть до XVII века принималось равным 1120, т. е. примерно в 20 раз меньше истинного.

Первые попытки построить модель мира, в которой объяснялись бы прямые и попятные движения планет, были сделаны Евдоксом Книдским (около 408–353 гг. до нашей эры) и Аристотелем. Но шедевром античной астрономии стал труд выдающегося александрийского ученого Клавдия Птолемея (II век нашей эры) «Альмагест», в котором была построена новая теория планетных движений.

В то время все остальные науки о природе были еще только в зачаточном состоянии. Астрономы же, благодаря Птолемею, уже имели метод, позволявший с достаточной для того времени точностью рассчитать положение планет на небе на любое число лет вперед!

В геоцентрической модели мира Птолемея одна планета движется с угловой скоростью по малой окружности — эпициклу, центр которого, т. е другая «средняя планета», обращается с угловой скоростью по деференту вокруг Земли. Из-за сложения обоих движений планета в пространстве описывает петлеобразную кривую — гипоциклоиду, что в проекции на небесную сферу при вполне определенных значениях угловых скоростей, а также величинах отношений радиуса эпицикла к радиусу деферента для каждой из планет полностью объясняло ее движение на небе. Эти значения Птолемей определил с большой точностью.

В связи с особенностями движения планеты Меркурий и Венера были названы нижними. Марс, Юпитер и Сатурн — верхними планетами. В системе мира Птолемея центры эпициклов нижних планет всегда расположены на прямой, соединяющей Землю с Солнцем, а каждая из верхних планет находится на эпицикле строго в том же направлении, в котором относительно Земли находится Солнце, иначе говоря, радиусы-векторы эпициклов Марса, Юпитера и Сатурна всегда параллельны между собой. Видно также, что верхняя планета, занимая на небе положение, противоположное Солнцу (противостояние планеты), находится в ближайшем к Земле положении — в перигее (от греческого «пери» — вблизи). В момент же соединения планеты с Солнцем, когда направления на оба светила совпадают, планета находится в апогее — в наиболее удаленной от Земли точке (от греческого «апо» — вдали).

Как замечает А.И. Климишин, «возникает вопрос: если система Птолемея ошибочна, поскольку она основывалась на ложном представлении о неподвижной Земле как центре мироздания, то почему расчеты, проведенные на ее основе, дают правильные результаты? Ведь именно поэтому она использовалась астрономами почти 1400 лет. Ответ на поставленный вопрос очевиден: это система кинематическая. Птолемей не объяснял (да и не мог объяснить), почему движение планеты именно такое, каким он его описывал. Но каждое движение относительно. И, как это ни парадоксально звучит, Птолемей описал и смоделировал движение каждой из планет совершенно правильно — так, как его действительно видит наблюдатель с Земли. Эпицикл верхней планеты и есть отображение движения Земли вокруг Солнца (в случае нижней планеты это ее деферент)».

Но «…с помощью данных Птолемея было трудно согласовать между собой сведения о положениях той или другой планеты, разделенных промежутком времени в несколько сотен лет. Поэтому его система все больше усложнялась, в нее вводили множество дополнительных эпициклов, что сделало ее исключительно громоздкой. Явно противоречила наблюдениям построенная Птолемеем теория движения Луны. В итоге перегруженная эпициклами модель Птолемея рухнула. Произошла революция во взглядах на мир и место Земли во Вселенной…»

ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ

Планеты благодаря своим внешне сложным движениям сыграли решающую роль в астрономии и вообще в построении фундамента механики и физики. Еще древнегреческие астрономы поставили вопрос, не являются ли наблюдаемые сложные перемещения по небу лишь отражением более регулярных движений планет в пространстве. С этого времени начинается теоретическое построение схем планетной системы, или же, как мы говорили выше, кинематики планетных движений в пространстве.

Один из первых коперниканцев, немецкий математик и астроном Эразм Рейнгольд (1511–1553) составил в 1551 году, основываясь на гелиоцентрической системе Коперника, таблицы движения планет, названные им «Прусские таблицы». Эти таблицы оказались более точными, чем все предыдущие, основанные на старых схемах, и это очень способствовало укреплению идеи гелиоцентризма, с огромным трудом пробивающей себе путь сквозь устоявшиеся веками и привычные для тех времен взгляды, а также преодолевающей реакционное идеологическое давление церкви.

Тем не менее вскоре астрономы обнаружили расхождение и этих таблиц с данными наблюдений движения небесных тел.

Для передовых ученых было ясно, что учение Коперника правильно, но надо было глубже исследовать и выяснить законы движения планет. Эту задачу решил великий немецкий ученый Кеплер.

Иоганн Кеплер (1571–1630) появился на свет в маленьком городке Вейле близ Штутгарта. Кеплер родился в бедной семье, и поэтому ему с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет. Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника.

В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Еще до окончания университета, в 1594 году, Иоганна посылают преподавать математику в протестантское училище города Граца, столицы австрийской провинции Штирии.

Уже в 1596 году он издает «Космографическую тайну», где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определенном порядке вписаны и вокруг которых описаны правильные многогранники. Несмотря на то, что этот труд Кеплера оставался еще образцом схоластического, квазинаучного мудрствования, он принес автору известность. Знаменитый датский астроном-наблюдатель Тихо Браге (1546–1601), скептически отнесшийся к самой схеме, отдал должное самостоятельности мышления молодого ученого, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.

В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вел астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем. Ученый с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал свое объяснение устройства мира: планеты он признавал спутниками Солнца, а Солнце, Луну и звезды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.

Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.

Отправным пунктом для Кеплера служило сравнение теории и наблюдений. Дело в том, что к концу XVI века Прусские таблицы, составленные, как уже говорилось выше, стали предсказывать движение планет очень неточно Наблюденные и вычисленные по этим таблицам положения планет отличались на 4–5 градусов, что было недопустимо в астрономической практике. Отсюда вытекало, что планетная теория Коперника нуждается в исправлении и дополнении.

В начале Кеплер пошел по пути уточнения и усложнения схемы Коперника. Конечно, он был глубоко убежден в истинности принципа гелиоцентризма и стал подбирать новые комбинации окружностей (эпициклов, эксцентров). Ему удалось подобрать, в конце концов, такую комбинацию, что его схема давала ошибку по сравнению с наблюдениями до 8 минут. Но Кеплер был уверен, что Тихо Браге в своих наблюдениях не мог допускать таких ошибок.

Поэтому Кеплер заключил, что «виновата» теория, поскольку она не согласуется с астрономической практикой. Он отбросил полностью схему, основанную на эпициклах и эксцентрах, и стал искать другие схемы.

Кеплер пришел к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путем вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решен быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, мы придем к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путем суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.

Первый закон Кеплера предполагает, что Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Так как эллипс — плоская фигура, то первый закон подразумевает, что каждая планета движется, оставаясь все время в одной и той же плоскости.

Второй закон звучит так: радиус-вектор планеты (т. е. отрезок, соединяющий Солнце и планету) описывает равные площади в равные промежутки времени. Этот закон часто называют законом площадей. Второй закон указывает, прежде всего, на изменение скорости движения планеты по ее орбите: чем ближе планета подходит к Солнцу, тем быстрее она движется. Но этот закон дает на самом деле больше. Он целиком определяет движение планеты по ее эллиптической орбите.

Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая «Новая астрономия» — изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлек к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.

Кеплер интуитивно чувствовал, что существуют закономерности, связывающие всю планетную систему в целом. И он ищет эти закономерности в течение десяти лет, прошедших после публикации «Новой астрономии». Богатейшая фантазия и огромное усердие привели Кеплера к его так называемому третьему закону, который, как и первые два, играет важнейшую роль в астрономии. Кеплер издает «Гармонию мира», где он формулирует третий закон планетных движений. Ученый установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет вокруг солнца относятся между собой как кубы их средних расстояний от Солнца. Это — третий закон Кеплера.

«Третий закон Кеплера играет ключевую роль при определении масс планет и спутников, — пишут в своей книге Е.А. Гребенников и Ю.А. Рябов. — Действительно, периоды обращения планет вокруг Солнца и их гелиоцентрические расстояния определяются с помощью специальных математических методов обработки наблюдений, а массы планет непосредственно из наблюдений невозможно получить. В нашем распоряжении нет грандиозных космических весов, на одну чашу которых мы положили бы Солнце, а на другую — планеты. Третий закон Кеплера и компенсирует отсутствие таких космических весов, так как с его помощью мы легко можем определить массы небесных тел, образующих единую систему».

Законы Кеплера замечательны и тем, что они, если можно так выразиться, более точны, чем сама действительность. Они представляют собой точные математические законы движения для идеализированной «Солнечной системы», в которой планеты — материальные точки бесконечно малой массы по сравнению с «Солнцем». В действительности же планеты имеют ощутимую массу, так что в фактическом их движении имеются отклонения от законов Кеплера. Такая ситуация имеет место быть в случае многих известных сейчас физических законов. Сегодня можно сказать, что законы Кеплера точно описывают движение планеты в рамках задачи двух тел, а наша Солнечная система является многопланетной системой, поэтому для нее эти законы являются лишь приближенными. Парадоксальным является к тому же тот факт, что именно для Марса, наблюдения которого и привели к их открытию, законы Кеплера выполняются менее точно.

Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют свое значение: научившись учитывать взаимодействие небесных тел, ученые их используют не только для расчета движений естественных небесных тел, но, что особенно важно, и искусственных, таких, как космические корабли, свидетелями появления и совершенствования которых является наше поколение.

СПУТНИКИ ЮПИТЕРА

Итальянский ученый Галилео Галилей является одним из гигантов науки. В историю науки он вошел как мученик, его жизнь и смерть — вечный укор его мучителям. Но и, конечно, остались его открытия. Одно из самых замечательных — открытие спутников Юпитера.

Галилео Галилей (1564–1642) родился в городе Пизе в знатной, но обедневшей семье. До одиннадцати лет Галилей жил в Пизе и учился в обычной школе, а затем вместе с семьей переехал во Флоренцию. Здесь он продолжил образование в монастыре бенедиктинцев, где изучал грамматику, арифметику, риторику и другие предметы.

В семнадцать лет Галилей поступил в Пизанский университет и стал готовиться к профессии врача. Одновременно из любознательности он читал труды по математике и механике, в частности Евклида и Архимеда. Последнего позже Галилей всегда называл своим учителем.

Из-за стесненного материального положения юноше пришлось бросить Пизанский университет и вернуться во Флоренцию. Дома Галилей самостоятельно занялся углубленным изучением математики и физики, которые его очень заинтересовали. В 1586 году он написал свою первую научную работу «Маленькие гидростатические весы», которая принесла ему некоторую известность и позволила познакомиться с несколькими учеными. По протекции одного из них — автора «Учебника механики» Гвидо Убальдо дель Монте, Галилей в 1589 году получил кафедру математики в Пизанском университете. В двадцать пять лет он стал профессором там, где учился, так и не завершив свое образование.

Галилей преподавал студентам математику и астрономию, которую рассказывал, естественно, по Птолемею. В работе «О движении» (1590 год) Галилей подверг критике аристотелевское учение о падении тел.

К этому же периоду относится установление Галилеем изохронности малых колебаний маятника — независимости периода его колебаний от амплитуды.

Критика Галилеем физических представлений Аристотеля восстановила против него многочисленных сторонников древнегреческого ученого. Молодому профессору стало очень неуютно в Пизе, и он принял приглашение занять кафедру математики в известном Падуанском университете.

Падуанский период, продолжавшийся 18 лет, был самым плодотворным и спокойным в жизни ученого. Здесь он обрел семью, связав свою судьбу с одинокой девушкой Мариной Гамба.

Галилей много работал, обдумывая будущие сочинения. Хотя с университетской кафедры он доносит до слушателей освященные церковью идеи перипатетиков о мироздании и даже доказывает «справедливость» геоцентризма, но одновременно он страстно ищет и находит новые подтверждения справедливости великого учения Коперника.

Узнав в конце 1608 года об изобретении за границей подзорной трубы, ученый увлеченно работает над собственной конструкцией, используя сочетание двояковыпуклой и двояковогнутой линз. Терпеливо создавая один за другим приборы со все большим увеличением, он, наконец, построил «прибор до такой степени превосходный, что при его помощи предметы казались почти в 1000 раз больше и более чем в 30 раз ближе, чем при наблюдении простым глазом», — вспоминает о своем изобретении в книге «Пробирщик» Галилей.

При помощи подзорной трубы ученым было обнаружено множество новых звезд, не видимых невооруженным взглядом, было доказано, что Млечный Путь состоит из большого скопления мельчайших звезд. Телескоп помог открыть на Луне существование гор и впадин, и, наконец, Галилей увидел на небе воочию прообраз системы Коперника — четырех спутников Юпитера, обращающихся вокруг него, как и Луна вокруг Земли. Знаменитое это открытие было сделано при помощи трубы с 30-кратным увеличением. Вот как Галилей рассказывает об этом открытии:

«7 января 1610 года, в первом часу ночи, наблюдая небесные светила, я, между прочим, направил на Юпитер мою трубу и, благодаря ее совершенству, увидел недалеко от планеты три маленьких блестящих звездочки, которых прежде не замечал вследствие слабого увеличения бывшей в то время у меня трубы. Эти светлые точки были приняты мною за неподвижные звезды, они обратили на себя мое внимание только потому, что все три находились на совершенно прямой линии, параллельной эклиптике, и были несколько ярче звезд одинаковой с ними величины. Расположение их относительно Юпитера быдо следующее: две находились на восточной стороне планеты, третья же на западной. Крайняя восточная звездочка и западная казались немного большими третьей. Я тогда не определял точным образом их взаимных расстояний, ибо, как сказано, они были сочтены мною за неподвижные звезды.

Через восемь дней ведомый не знаю какою судьбою, я опять направил трубу на Юпитер и увидел, что расположение звездочек значительно изменилось: именно все три помещались на западе от планеты и ближе одна к другой, чем в предшествовавшее наблюдение. Они по-прежнему стояли на прямой линии, но уже были разделены между собою равными промежутками. Хотя я был далек от мысли приписать это собственному движению звездочек, но тем не менее сомневался, чтобы такое изменение в их положении могло произойти от перемещения Юпитера, за несколько дней находившего на западе от двух звездочек. С величайшим нетерпением ожидал я следующей ночи, чтобы рассеять свои сомнения, но был обманут в своих ожиданиях, небо в эту ночь было со всех сторон покрыто облаками».

Галилей описывает далее новое расположение звездочек и дальнейшие над ними наблюдения; число звездочек оказалось равным четырем.

«Вследствие всего этого я уже без малейшего колебания решил, что существуют четыре светила, вращающиеся около Юпитера, подобно тому как Венера или Меркурий вращаются вокруг Солнца. Ныне имеем очевидный аргумент, чтобы рассеять сомнения тех, кои, склоняясь допустить, что планеты обращаются вокруг Солнца, смущаются, однако, каким образом Луна несется вокруг Земли и в то же время вместе с нею совершает годичный круг около Солнца… Мы знаем теперь, что есть планеты, обращающиеся одна около другой и в то же время вместе несущиеся вокруг Солнца; мы знаем, что и около Юпитера движутся и не одна, но четыре луны, следующие за ним во все продолжение его двенадцатилетнего обращения около Солнца».

В этом замечательном рассказе живо чувствуются переживания Галилея, сделавшего небывалое открытие. Галилей уже неоднократно смотрел на небо, смотрел и на Юпитера, уже сделал ряд замечательных открытий, но он не успокаивается. Он снова и снова совершенствует трубу и снова направляет на Юпитер. Он видит новые звездочки. Он еще не думает, что это луны Юпитера, но точно фиксирует их сравнительную величину и расположение. Это не было мимолетным наблюдением, он настолько хорошо зафиксировал расположение, что через 8 дней сразу замечает изменение его. Он еще не верит в свое открытие, но, охваченный творческим порывом, уже чувствует, что имеет дело с новым фактом: это не результат простого перемещения Юпитера. Начинаются тщательные наблюдения и изучение нового факта. Сопоставляя результаты отдельных наблюдений, теоретически обобщая их, Галилей приходит к смелому выводу: это спутники Юпитера. Он сразу оценивает значимость этого открытия для системы Коперника. Ведь он сам, руководясь системой Коперника, сумел не только не пройти мимо группы звездочек, одной из многих новых групп, открытых им, но и получить совершенно новый астрономический результат. Понятен восторг Галилея, понятно и то, что он сообщению о своих новых астрономических открытиях, вышедшему в 1610 году, придал величавое заглавие. «Звездный вестник».

Этой книгой Галилей начинает свою борьбу за легализацию и пропаганду системы Коперника.

Позже Галилей обнаружил феномен Сатурна (хотя и не понял, в чем дело) и открыл фазы Венеры.

Наблюдая, как солнечные пятна перемещаются по солнечной поверхности, он установил, что Солнце тоже вращается вокруг своей оси. На основании наблюдений Галилей сделал вывод, что вращение вокруг оси свойственно всем небесным телам.

Наблюдая звездное небо, он убедился, что число звезд гораздо больше, чем можно увидеть простым глазом. Так Галилей подтвердил мысль Джордано Бруно о том, что просторы Вселенной бесконечны и неисчерпаемы. После этого Галилей сделал вывод о том, что гелиоцентрическая система мира, предложенная Коперником, является единственно верной.

ПЛАНЕТА УРАН

Представления людей о Солнечной системе претерпели существенные изменения за время, прошедшее с момента открытия телескопа и до конца XVIII столетия. Одно лишь оставалось неизменным: число планет в Солнечной системе, равное шести. Сатурн считался самой далекой от Солнца планетой, и мало кто допускал, что за орбитой Сатурна блуждает в мировом пространстве по гелиоцентрической орбите еще одна планета.

Эту планету открыл немецкий астроном Вильгельм Гершель. В своей долгой жизни Гершель сделал множество других замечательных открытий, относящихся как к Солнечной системе, так и к звездной вселенной. Например, он доказал, что Млечный Путь представляет собой «неизмеримый звездный слой», т. е. имеет звездную природу. Ему принадлежат уникальные наблюдения двойных звезд и фундаментальные исследования формы и структуры Галактики. Этому ученому принадлежит также открытие периодического увеличения и уменьшения белых шапок у марсианских полюсов и многих других разнообразных явлений, происходящих на Солнце, планетах и спутниках.

Но среди многочисленных его открытий, бесспорно, одно из первых мест занимает открытие Урана, и его вполне было бы достаточно, чтобы имя Гершеля навечно осталось в истории естествознания.

Фридрих Вильгельм Гершель (1738–1822) родился в Ганновере в семье гобоиста ганноверской гвардии Исаака Гершеля и Анны Ильзы Морицен. Протестанты Гершели были выходцами из Моравии, которую покинули, вероятно, из религиозных соображений. Атмосферу родительского дома можно назвать интеллектуальной. «Биографическая записка», дневник и письма Вильгельма, воспоминания его младшей сестры Каролины вводят нас в дом и мир интересов Гершеля и показывают тот воистину титанический труд и увлеченность, создавшие выдающегося наблюдателя и исследователя. Он получил обширное, но несистематическое образование. Занятия по математике, астрономии, философии выявили его способности к точным наукам. Но, кроме этого, Вильгельм обладал большими музыкальными способностями и в четырнадцать лет стал музыкантом в полковом оркестре. В 1757 году, после четырех лет военной службы, он уехал в Англию, куда несколько ранее переселился брат его Яков, капельмейстер ганноверского полка.

Не имея ни гроша в кармане, Вильгельм, переименованный в Англии в Вильяма, занялся в Лондоне перепиской нот. В 1766 году он переселился в Бат, где скоро достиг большой известности как исполнитель, дирижер и музыкальный педагог Но такая жизнь не могла его полностью удовлетворить. Интерес Гершеля к естествознанию и философии, постоянное самостоятельное образование привели его к увлечению астрономией. «Как жаль, что музыка не в сотню раз труднее науки, я люблю деятельность и мне необходимо занятие», — писал он брату.

В 1772 году в Бат приехала младшая сестра Вильяма Каролина Лукреция. В 1773 году Гершель приобрел ряд трудов по оптике и астрономии. «Полная система оптики» Смита и «Астрономия» Фергюсона стали его настольными книгами. В том же году он впервые взглянул на небо в небольшой телескоп с фокусным расстоянием около 75 сантиметров, но наблюдения со столь малым увеличением не удовлетворили исследователя. Поскольку средств на покупку более светосильного телескопа не было, он решил сделать его сам. Купив необходимые инструменты и заготовки, он самостоятельно отлил и отшлифовал зеркало для своего первого телескопа. Переборов большие трудности, Гершель в том же 1773 году изготовил рефлектор с фокусным расстоянием более 1,5 метра. Шлифовку зеркал Гершель производил вручную (машину для этой цели он создал только через пятнадцать лет), часто работая по 10, 12 и даже 16 часов подряд, так как остановка процесса шлифовки ухудшала качество зеркала. Работа оказалась не только тяжелой, но и опасной, однажды при изготовлении заготовки для зеркала взорвалась плавильная печь.

Сестра Каролина и брат Александр были верными и терпеливыми помощниками Вильяма в этой нелегкой работе. Трудолюбие и энтузиазм дали превосходные результаты. Зеркала, изготовленные Гершелем из сплава меди и олова, были прекрасного качества и давали совершенно круглые изображения звезд.

Как пишет известный американский астроном Ч. Уитни: «С 1773 по 1782 года Гершели были заняты тем, что превращались из профессиональных музыкантов в профессиональных астрономов».

В 1775 году Гершель начал свой первый «обзор неба». В это время он еще продолжал зарабатывать себе на жизнь музыкальной деятельностью, но истинной его страстью стали астрономические наблюдения. В перерывах между уроками музыки он занимался изготовлением зеркал для телескопов, вечерами давал концерты, а ночи проводил за наблюдением звезд. Для этойцели Гершель предложил оригинальный новый способ «звездных черпков», т. е. подсчета количества звезд на определенных площадках неба.

13 марта 1781 года, во время наблюдений, Гершель заметил нечто необычное: «Между 10 и 11 вечера, когда я изучал слабые звезды в соседстве с Н Близнецов, я заметил одну, которая выглядела большей, чем остальные. Удивленный ее необычным размером, я сравнил ее с Н Близнецов и небольшой звездой в квадрате между созвездиями Возничего и Близнецов и обнаружил, что она значительно больше любой из них. Я заподозрил, что это — комета». Объект имел ярко выраженный диск и смещался вдоль эклиптики. Сообщив другим астрономам об открытии «кометы», Гершель продолжал ее наблюдать.

Наблюдения, сделанные 15 марта, показали, что светящийся кружочек действительно обладает собственным движением относительно звезд. Из этого факта Гершель заключил, что им открыта новая комета, хотя не наблюдался ни хвост, ни туманная оболочка, присущие кометам, не очень удаленным от Солнца. Об этом открытии Гершель сообщил в Гринвичскую обсерваторию, и круг наблюдателей небесного странника значительно расширился. К лету 1781 года количество наблюдений стало достаточным, чтобы можно было вычислить параметры орбиты. Эти сложные и громоздкие вычисления выполнил петербургский академик Андрей Иванович Лексель (1740–1784), который нашел, что блуждающая звездочка Гершеля движется вокруг Солнца по почти круговой орбите на расстоянии в 19 раз большем расстояния Солнце — Земля. Лексель также определил период обращения вокруг Солнца, оказавшийся равным приблизительно 84 годам. Из этих вычислений однозначно вытекало, что Вильям Гершель открыл не комету, а новую, неизвестную до тех пор планету, так как уже тогда было известно, что орбиты большинства комет — это вытянутые эллипсы с большими эксцентриситетами или даже гиперболы.

Гершель предложил назвать новую планету звездой Георга в честь английского короля Георга III, но это название не получило распространения По предложению немецкого астронома Иоганна Боле (1747–1826) ей было присвоено наименование Уран, взятое из древнеримской мифологии и означавшее имя самого древнего из богов. Уран отстоял от Солнца почти на 3 миллиарда километров и превышал объем Земли более чем в 60 раз.

Это уникальное открытие занимает особое место в естествознании в целом и в астрономии в частности. Открытие Гершеля сделало несостоятельными старые, традиционные взгляды на размеры и структуру Солнечной системы и отодвинуло ее границы далеко за орбиту Сатурна. Солнечная система увеличилась в линейных размерах в два раза, и теперь ее граница проходила по орбите Урана на расстоянии 19,2 а. е. от Солнца.

В дальнейшем Гершель постепенно увеличивал диаметры зеркал. Его вершиной стал построенный в 1789 году телескоп — гигант по тому времени, с трубой длиной 12 метров и зеркалом диаметром 122 сантиметра. Этот телескоп оставался непревзойденным до 1845 года, когда ирландский астроном В. Парсонс построил еще больший телескоп — длиной почти 18 метров с зеркалом диаметром 183 сантиметра.

При помощи новейшего телескопа Гершель открыл два спутника Урана и два спутника Сатурна. Таким образом, с именем Гершеля связано открытие сразу нескольких небесных тел в солнечной системе.

ОСНОВНЫЕ НАЧАЛА ГЕОЛОГИИ

Факт, что Земля имеет свою историю, был признан уже в незапамятные времена: космогонии индусов, египтян, евреев, греков рисуют более или менее грандиозные картины прошлой жизни нашей планеты. Уже в них в сказочной форме содержатся две основные теории, две антитезы, развивавшиеся затем в течение многих веков, пока одна из них не одержала победы над своею соперницей.

Основная идея индийской космогонии — чередование периодов разрушения, уничтожавших земную оболочку и ее население, с периодами покоя и созидания — высказанная еще в гимнах Веды, повторяется в сочинениях Кювье, Эли де Бомона, д'Орбиньи и других. Впрочем, эта идея не только «переживала»; она развивалась и разрасталась по мере накопления геологических знаний. Теории, господствовавшие при выступлении Лайеля на ученое поприще, представляют только вариации на эту древнюю тему.

Но и противоположная идея — идея медленного развития — тоже стара. Овидий излагает в своих «Метаморфозах» воззрения Пифагора, заимствованные последним, в свою очередь у индийских мудрецов, — воззрения, согласно которым ничто не исчезает и не создается в мире вообще и на Земле в частности, но все изменяется и превращается в непрерывном процессе развития.

История геологии — это история попыток облечь эти идеи в научную форму, то есть связать их с реальными явлениями вместо вымышленных.

Гениальный Леонардо де Винчи не признавал катаклизмов, выдвигающих и разрушающих материки, вздымающих горы, истребляющих флору и фауну в мгновение ока. Медленная, но неустанная деятельность воды, атмосферы, ветра приводит, в конце концов, к преобразованию земной поверхности. «Берега растут, подвигаясь в море, рифы и мысы разрушаются, внутренние моря высыхают и превращаются в реки». Горные породы с остатками растений и животных отложились когда-то в воде, деятельность которой, по мнению Леонардо, нужно считать главнейшим геологическим фактором. Он отвергает потоп, будто бы перенесший раковины на вершины гор в то время, когда море покрывало их на десять локтей, «как утверждает тот, кто его мерил», и смеется над «другой сектой невежд», по мнению которых эти раковины образовались действием звезд. В его воззрениях вполне научно сформулирован принцип униформизма, с помощью которого значительно позднее было сооружено здание современной геологии.

Но эти воззрения не имели, да и не могли иметь никакого влияния на современников Леонардо.

Весь этот длинный, охватывающий почти три века (XVI–XVIII), период можно назвать подготовительным периодом геологии. Было доказано: материалы, из которых состоит земная кора, не перемешаны в беспорядке, а расположены более или менее однородными слоями или пластами; окаменелости постоянно сопровождают известные пласты; пласты эти различаются по древности и могут быть классифицированы сообразно своему возрасту.

От этих истин перешли, наконец, и к общим геологическим теориям. В восемнадцатом столетии появляются целых две: нептуническая и вулканическая, или теории Вернера и Геттона.

Вернер, основываясь исключительно на минералогических признаках, дал общую классификацию горных пород, разделив их на первичные, переходные и вторичные. За исключением первичных, все остальные породы — не исключая гранитов и базальтов — отложились одна за другой из первобытного океана, хаотической жидкости — «тепайиит» — содержавшей в растворе всю будущую толщу земной коры. Отложились, конечно, в виде горизонтальных пластов, но с течением времени были взбудоражены, исковерканы, изломаны, приподняты, переворочены вследствие различных причин — главным образом, провалов в подземные пустоты, образовавшиеся между различными слоями еще во время их отложения из первичной хаотической жидкости. Таким образом земная поверхность приняла современную конфигурацию с ее неровностями, морями и материками, горами и долинами.

Теория Вернера представляет собой первую попытку облечь в научную форму древнюю идею катастрофизма. Она проводит резкую грань между прошлым и настоящим нашей планеты.

В свою очередь и униформизм нашел защитника в лице шотландца Геттона, теория которого была названа плутонической, или вулканической, так как признавала подземный огонь одним из важнейших геологических деятелей.

Не из первичной хаотической жидкости и не сразу отложились породы, составляющие современную земную кору, — учил Геттон, — они представляют итог многочисленных последовательных процессов. Были материки, которые разрушались действием вод; продукты этого разрушения отлагались на дне океанов; снова вздымались в виде материков действием подземного огня и снова разрушались и размывались… Современные толщи слоистых пород — от самых древних до новейших — вовсе не первичный осадок: все это производные, позднейшие образования, результаты многократных вспучиваний и разрушений земной коры. Силы, действовавшие при этом, продолжают и ныне действовать, разницы между прошлым и настоящим нет; в истории мира неизвестно начала, не видно конца; настоящее — только момент в бесконечном и однородном процессе развития вселенной.

В числе участников образования земной коры огромную роль играли, по мнению Геттона, вулканические силы. Он доказал огненное происхождение гранита и высказал мысль, что многие из осадочных водных пород изменились впоследствии под влиянием жара (так называемые метаморфические породы). Это — два важных приобретения, которыми наука обязана шотландскому ученому.

Как общая теория, его учение немногим превосходило верне-ровское, — даром что исходило из совершенно противоположного принципа. Основная идея Геттона — единство прежних и нынешних сил природы — совершенно справедлива, но, высказанная в такой общей форме, она не объясняла происходящих в реальности явлений.

Теории Геттона и Вернера возбудили ожесточенную, продолжительную и бесплодную войну нептунистов с вулканистами, окончившуюся к общему удовольствию после того, как самые упорные бойцы обоих лагерей должны были согласиться, что земная кора прошла, так сказать, и огонь, и воду, и что она состоит из огненных (гранит, базальт и др.), водных (песчаники, известняки и пр.) и метаморфических (кристаллические сланцы) пород.

Все сильнее и сильнее сказывалась потребность в общей теории, которая связала бы накапливавшиеся материалы универсальной схемой, давая в то же время ответ на частные, конкретные, определенные вопросы, возникавшие при ближайшем ознакомлении с фактами. Такую теории создал английский ученый Лайель.

Чарлз Лайель (1797–1875) родился в графстве Форфар, в Шотландии, в отцовском имении Киннорди.

На четвертом году жизни Лайель выучился читать, а на восьмом поступил в школу доктора Дэвиса в городе Рингвуд. На девятом году его перевели в школу доктора Радклиффа в Солсбери — модную школу, где сыновья местных влиятельных людей обучались латыни. Проучившись два года в школе Радклиффа, Лайель был переведен в школу доктора Бэли в Мидгерсте. Это училище резко отличалось от предыдущих — оно не имело такого семейного, домашнего характера.

Расставшись с училищем, Лайель поступил в Оксфордский университет. Мало-помалу геология заняла господствующее место в его занятиях. Он стал предпринимать целые путешествия с геологической целью. Так, в 1817 году он посетил остров Стаффа, где осматривал Фингалову пещеру, прославленную среди эстетов песнями Оссиана, среди геологов — замечательными базальтовыми столбами, весьма любопытным геологическим явлением. В следующем году он ездил с отцом, матерью и двумя сестрами во Францию, Швейцарию и Италию.

Пять-шесть лет после окончания курса в Оксфорде Лайель беспрестанно совершал поездки по Англии и материку, имея возможность проверить и закрепить собственным наблюдением сведения, почерпнутые из книг. Много почерпнул Лайель в личном общении с наиболее выдающимися геологами Европы. Наконец, осмотр коллекций и музеев служил хорошим дополнением к материалу, почерпнутому в книгах, в поле и в беседах с учеными.

В 1822 году Лайель предпринял поездку в Винчелзи — местность, весьма интересную в геологическом отношении, так как здесь он мог наблюдать обширное пространство суши, сравнительно недавно освободившейся из-под моря.

В 1823 году он предпринял экскурсию в Суссекс и на остров Уайт, где изучил отношения некоторых слоев, остававшиеся до тех пор неясными. Следующий год Лайель посвящает геологическим экскурсиям по Англии.

Довольно скоро в одном из журналов появилась его статья, в которой он излагает свое кредо, основную идею своих дальнейших работ.

Но Лайель еще не оценил всех трудностей предстоявшей ему работы Он думал, что его роль будет ограничена, главным образом, ролью компилятора. Он решил написать учебник геологии, обыкновенный компилятивный учебник, краткий свод накопившихся в науке материалов, разумеется, иначе освещенных, чем у предыдущих исследователей. Оказалось, однако, что написать компиляцию невозможно, а можно и должно сделать нечто большее.

В 1828 году он предпринял со своим приятелем Мурчисоном продолжительную геологическую экскурсию во Францию, Италию и Сицилию.

Главной целью этой экспедиции было ближайшее ознакомление с осадками третичной эпохи. По имеющейся теории между третичной и современной эпохой был пробел, перерыв. «Ход событий изменился», старый мир погиб, уничтоженный какой-нибудь катастрофой, и воздвигся новый.

Прежние экскурсии Лайеля заставили его усомниться в справедливости этих заключений; теперь же он решился проверить свои сомнения, изучив третичные осадки на всем протяжении от Франции до Сицилии.

Исследования его совершенно уничтожили прежние воззрения. Сравнивая третичные окаменелости с современными, он сделал вывод, что они представляют одно неразрывное целое: третичные осадки, климат, население незаметно переходят в современные. Ничто не говорит в пользу громадных общих катастроф, разрывающих цепь явлений; напротив, все свидетельствует о медленном непрерывном и однородном процессе развития.

Понятно, какое громадное значение имели эти выводы для теории униформизма. Катастрофисты теряли свою главную опору: существование резкого перерыва между настоящим и прошлым.

Первый том «Основных начал геологии» Лайеля вышел в свет в 1830 году, второй — в 1832-м, третий — в 1833-м.

Трудно определить в нескольких словах значение этой книги. Оно не укладывается в краткую формулу, не выражается в ярких открытиях. Вся его книга в целом представляет открытие. В книге Лайеля деятельность современных сил природы впервые явилась в своем настоящем свете. Он показал, что, во-первых, работа этих «слабых» агентов приводит в действительности к колоссальным результатам, продолжаясь в течение неопределенного времени, и, во-вторых, что она действительно продолжается в течение неопределенного времени, незаметно сливаясь с прошлым.

Изучению современных сил посвящены первый и второй тома «Основных начал».

Теория метаморфизма, зародыш которой мы находим у Геттона, была разработана Лайелем и приведена в связь с его общей системой. Среди горных пород, составляющих земную кору, видную роль играют толщи кристаллических сланцев, обнаруживающих признаки огненной (кристаллическое слоение) и водяной (слоистость) работ. Согласно теории Лайеля, «возраст каждой метаморфической формации бывает двоякий: сначала мы должны сообразить период, когда она появилась как водяной осадок в виде ила, песка, мергеля или известняка, а потом — определить время, когда она получила кристаллическое строение. Сообразно с этим определением один и тот же пласт может быть весьма древний относительно времени своего осаждения и новый относительно того периода, в который он получил метаморфический характер». И в этом случае нет надобности приписывать прежде действовавшим силам особую энергию не в пример нынешней спокойной эпохе. Осадочные породы издревле и теперь менялись и меняются под влиянием плутонических агентов одинаковой напряженности. Но древние отложения дольше подвергались влиянию этих агентов, оттого и изменились сильнее. На первый взгляд эти сильные изменения кажутся результатом столь же сильных причин; однако детальное изучение обнаруживает в них только итог большого числа действий, таких же, как нынешние.

Наконец, не менее полно и основательно исследовал Лайель вопрос о роли органических агентов в истории земной коры. Он уничтожил прежнее мнение о перерывах в истории органического мира — об уничтожении и возникновении целых фаун и флор, — доказав (для третичной эпохи), что при более тщательном исследовании мы открываем и здесь постепенность развития, гармонирующую с постепенным преобразованием неорганической среды.

Система Лайеля положила начало геологии как строгой индуктивной науке. Метод его был воспринят в силу своей внутренней необходимости. Физическая геология, поставленная им на твердую почву, продолжала развиваться с поразительной быстротой. Чем глубже и тщательнее исследовали современные явления, тем ярче освещалась история земной коры, что, конечно, подстегивало исследователей. Во Франции, в Германии старые теории еще держались более или менее искусственно влиянием академических ученых, но наряду с ними развивалось и новое направление. В 50-60-х годах теория униформизма завоевала господство повсюду.

Геология ушла далеко со времени первого издания «Основных начал». Но можно сказать одно: наука устремилась по пути, проложенному Лайелем.

ПЛАНЕТА НЕПТУН

После открытия Гершелем Урана во многих обсерваториях мира начались тщательные наблюдения за движением новой планеты. Используя законы Ньютона и учитывая притяжение открытых к тому времени планет, астрономы уточнили орбиту Урана и уже к середине первой половины XIX века окончательно убедились в том, что видимая орбита новой планеты и результаты расчетов с каждым годом наблюдений… все больше расходятся.

Наиболее проницательные ученые высказали смелое предположение, что на движение Урана оказывает сильное влияние расположенная за ним и еще неизвестная науке довольно большая планета.

Урбен Леверье во Франции и Джон Адаме в Англии сумели математически точно определить положение и размеры неизвестной планеты, «возмущающей» орбиту Урана.

Если следовать хронологии фактически, то сначала следует изложить историю исследований английского астронома Джона Адамса.

Джон Кауч Адаме (1819–1892) родился в семье фермера в городке Лидкот (графство Корнуолл). Еще в детстве он проявил исключительные для его возраста математические способности, и в 1831 году родители послали его учиться в частную школу в Девонпорте, известную высоким уровнем преподавания. Все свободное время он проводил там, в институте механики, и здесь он впервые приобщился к научной литературе. В 1835 году он сам наблюдает комету Галлея, а в 1837 году — лунное затмение, после чего публикует свою первую небольшую заметку. Осенью 1839 года он блестяще выдерживает экзамен в колледж Сент Джона при Кембриджском университете и начинает там учебу.

Астрономия увлекает Адамса все более и более. В 1841 году он знакомится с публикацией директора Гринвичской обсерватории Эри 1832 года, в которой была изложена теория Бувара для Урана, рассказано о ее трудностях при совместном учете «старых» и «новых» наблюдений, о ее расхождениях с наблюдениями после 1820 года. Это определило научный путь Адамса на многие годы.

В том же 1841 году Адаме начинает изучать астрономию в качестве обычных студенческих курсов, в частности, теорию движения Луны и планет. Затем в течение всего 1842 года он готовится к знаменитому для Кембриджа ежегодному математическому конкурсу, который являлся официальным экзаменом на степень бакалавра по математическим наукам.

После конкурса Адаме приобретает степень бакалавра. Как первый призер он становится членом научного совета колледжа. Но проблема Урана волнует его больше всего. К этому времени у него окончательно укрепилось мнение, что неправильности в движении Урана вызваны неизвестной более далекой планетой.

Как видно из записей в дневниках Адамса, его окончательно убедила в этом научно-популярная книга Мэри Соммервиль «Связь между физическими науками». В начале лета 1843 года Адаме уезжает на время летних каникул к себе домой в Лидкот, где приступает наконец к исследованиям Урана. В октябре этого года он уже получает первые результаты.

Он продолжает работать над этой проблемой дальше. При этом он получает еще более точные с математической точки зрения решения проблемы. Всего, начиная с лета 1843 года до сентября 1845 года, Адаме получил шесть решений, каждое из которых он считал точнее предыдущего.

Хотя Адаме становился очень решительным и смелым в своих научных планах и исследованиях, но в, обыденной жизни он был невероятно скромным и робким. Так, первые пять решений проблемы о неизвестной планете, не увидев свет и никому не став в то время известными, перешли впоследствии лишь на полки архива Кембриджского колледжа Сент Джона, где и хранятся как огромная ценность до сих пор. Только шестое решение, правильнее сказать, только резюме результатов, которые выглядели наиболее полными и точными, Адаме решился показать в частном порядке осенью 1845 года Эри и Джеймсу Чэллису, профессору астрономии, директору Кембриджской обсерватории, кого он считал наибольшими авторитетами в астрономии Более или менее подробно об этом решении и о последнем, седьмом решении, полученном в 1846 году, рассказано в единственной статье, которая была представлена Адамсом в качестве доклада на заседании английского Королевского астрономического общества лишь в ноябре 1846 года (уже после фактического открытия Нептуна). По этой статье и по очень кратким высказываниям в литературе можно судить о содержании первых исследований Адамса.

Адаме пишет краткую записку, в которой объясняет, что завершено решение труднейшей задачи, беспокоившей весь астрономический мир почти пятнадцать лет. Но Эри отнесся к записке Адамса явно отрицательно. Он не пошел навстречу Адамсу ни словом, ни делом. Итак, с сентября 1845 года до июля 1846 года результаты, полученные Адамсом, не имели никакого практического эффекта. В печати о них не появилось ни слова.

Над той же задачей, что и Адаме, в то же время работал и французский астроном Леверье, ничего не зная об исследованиях английского ученого.

Урбен Жан Жозеф Леверье — один из крупнейших французских астрономов XIX века. Достаточно сказать, что и во второй половине двадцатого века французский Астрономический ежегодник предпочитал публиковать координаты Меркурия, Венеры, Земли и Марса, т. е. четырех планет из девяти, вычисляемые на основании теории и конкретных формул Леверье! Но наибольшую и всемирную славу принесло Леверье открытие Нептуна.

Урбен Леверье (1811–1877) родился в городке Сен-Ло в Нормандии. Отец — скромный служащий. Уже в школе Леверье проявил способности к науке, и родители, связывающие со своим сыном честолюбивые надежды, посылают его в 1828 году в колледж города Каена на два года для повышения знаний по математике. В 1830 году Леверье окончил колледж.

Через год он успешно выдерживает конкурс в Политехническую школу. Окончив после трех лет занятий школу с отличием, Леверье получил возможность самостоятельного выбора работы. Он стал химиком в одном из государственных учреждений.

В астрономию привел Леверье случай. В 1837 году его знания в астрономии были еще довольно слабые. Но карьера ученого благодаря его огромному таланту оказалась быстрой и блестящей. Уже в 1839 году, после двух лет очень интенсивной работы, он представил в Парижскую Академию наук доклад «О вековых возмущениях (изменениях) планетных орбит», который был в скором времени опубликован. В 1840 году Леверье публикует еще более точные результаты по этой проблеме.

В последующие три года он работает над теорией движения Меркурия. С конца 1843 года до лета 1845 года Леверье провел очень интересные исследования некоторых короткопериодических комет, и тут же опубликовал результаты, которые также вошли в золотой фонд небесной механики.

Неудивительно, что летом 1845 года Франсуа Араго, директор Парижской обсерватории и глава французской астрономии того времени, предлагает Леверье заняться актуальнейшей тогда проблемой открытия неизвестной планеты, возмущающей Уран.

Леверье сразу приступает к этой проблеме. История его исследований сравнительно короткая и успешная.

В ноябре 1845 года он представляет в Академию наук и тут же публикует первую статью, посвященную Урану. Он заново строит всю теорию движения Урана с учетом возмущений от известных планет, перекрывая и уточняя все, что было сделано Буваром. Его работа и характер самого изложения отличались тщательностью, учетом тончайших деталей, четкостью.

Всю зиму 1845 года и весну 1846 года Леверье усиленно продолжает исследования и 1 июня представляет в Академию наук вторую статью по данной проблеме. Она состоит из двух частей. В первой части Леверье заново проводит сравнение всех существующих наблюдений Урана и вычислений по своей точной теории движения Урана.

Во второй части Леверье переходит уже к гипотезе о существовании неизвестной планеты. Прежде всего, он кратко и четко анализирует другие гипотезы относительно причин неправильного поведения Урана, не соглашаясь с ними.

Далее Леверье ставит задачу, близкую по содержанию к той, которую рассматривал Адаме: определить элементы орбиты неизвестной возмущающей планеты, а также поправки к элементам первоначальной орбиты Урана так, чтобы в конце концов теория движения Урана с учетом влияния этой неизвестной планеты отвечала наблюдениям.

В этой статье он дает предварительное решение задачи. Весь анализ выглядит в целом очень солидно и не оставляет сомнения в истинности результатов. Во Франции статья Леверье была встречена с восторгом и оценена как аналитический триумф.

Однако французские астрономы, к которым Леверье обратился дрежде всего, не собирались организовывать поиски новой планеты. Он срочно ищет возможности «внедрения своей работы в практику наблюдений».

Леверье не стал обращаться к маститым астрономам и директорам обсерваторий. Он обратился к молодому немецкому астроному Иоганну Готфриду Галле, ассистенту Берлинской обсерватории.

Леверье отсылает 18 сентября письмо к Галле, в котором пишет: «…Я хотел бы найти настойчивого наблюдателя, который согласился бы уделить некоторое время наблюдениям в той области неба, где может находиться неизвестная планета. Я пришел к своему выводу на основании теории движения Урана…»

Галле получил это письмо 23 сентября. Его реакция была немедленной и положительной. В ту же ночь он сел за телескоп — 23-сантиметровый рефрактор Берлинской обсерватории.

Галле стал помогать Д'Аррест, которому пришла счастливая идея. Он предложил использовать звездную карту неба и тут же в ходе наблюдений сравнивать положения наблюдаемых и зафиксированных на карте небесных светил. Неизвестной планеты на карте быть не должно, поэтому планетой окажется та звезда, которая не отмечена на карте.

Правда, требовалась подробная и точная звездная карта, без которой подобный способ поиска планеты привел бы только к недоразумениям. Такой карты данного участка неба не было ни у английских, ни у французских астрономов. Но она оказалась в Берлинской обсерватории. Это была карта звездного атласа Берлинской академии наук, составленная Карлом Бремикером (1804–1877), напечатанная в конце 1845 года, но еще не разосланная на другие обсерватории.

Взяв карту, Галле и д'Аррест продолжили наблюдение. Галле называл по очереди звезды, а д'Аррест отмечал их на карте. Вскоре, а именно почти ровно в полночь, Галле назвал звезду примерно 8-й величины, которую д'Аррест на карте не нашел. Ее положение отличалось от того, которое было вычислено по данным Леверье, но незначительно. Следовательно, это и была так долго разыскиваемая планета. С начала наблюдений и до замечательного открытия в эту знаменательную ночь 23 сентября 1846 года прошло лишь несколько часов.

В следующую ночь удалось подтвердить открытие. Все соответствовало данным Леверье: положение, яркость, собственное движение.

Утром 25 сентября Галле пишет Леверье письмо, подтверждая факт открытия планеты: «Планета, положение которой Вы указали, действительно существует. В тот же день, когда я получил Ваше письмо, я обнаружил звезду 8-й величины, не указанную на превосходной карте (составленной доктором Бремикером) из звездного атласа, опубликованного Берлинской академией наук. Наблюдения в следующую ночь подтвердили, что это — искомая планета».

Таковы обстоятельства официального и всеми признанного открытия восьмой планеты Солнечной системы.

Метод, с помощью которого было предсказано существование Нептуна, покорил воображение ученых. За движением Нептуна стали тщательно следить и вскоре обнаружили столь значительные различия между наблюдаемой и теоретической орбитами нового светила, что это могло быть объяснено только существованием еще одной планеты, расположенной за Нептуном!

18 февраля 1930 года молодой астроном Клайд Томбо из Ловелловской обсерватории в Америке, наконец, обнаружил (на расстоянии, почти в три раза превышающем радиус орбиты Нептуна) новую планету Солнечной системы, получившую название Плутон. Томбо тем самым подтвердил расчеты известных астрономов-теоретиков Персиваля Ловелла и Вильяма Пикеринга.

Поистине, как сказал знаменитый французский оптик и астроном Франсуа Араго, «…умственные глаза могут заменять сильные телескопы…»

КОСМОНАВТИКА

В наше время полет космического корабля считается обыденным явлением. И даже порою странным кажется, что еще сто лет назад люди только могли мечтать о таких полетах.

«В XVII веке появился рассказ французского писателя Сирано де Бержерака о полете на Луну, — пишет И.А. Минасян. — Герой этого рассказа добрался до Луны в железной повозке, над которой он все время подбрасывал сильный магнит. Притягиваясь к нему, повозка все выше поднималась над Землей, пока не достигла Луны. Известный английский писатель Герберт Уэллс описал фантастическое путешествие на Луну в снаряде, корпус которого был сделан из материала, не подверженного силе тяготения.

Разные предлагались средства для осуществления космического полета, но ни один ученый, ни один писатель-фантаст за многие века не смог назвать единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть могучую силу земного притяжения и унестись в межпланетное пространство. Великая честь открыть людям дорогу к звездам выпала на долю нашего соотечественника Константина Эдуардовича Циолковского.

Скромный калужский учитель сумел рассмотреть во всем известной пороховой ракете прообраз могучих космических кораблей будущего. Его идеи до сих пор служат и еще долго будут служить основой создания ракет и освоения человеком околосолнечного пространства.

Почти две тысячи лет прошло с тех пор, как изобретатели пороха — древние китайцы — построили первые ракеты, но только Циолковский показал, что единственный летательный аппарат, способный проникнуть за атмосферу и даже навсегда покинуть Землю, — это ракета. Он не только обосновал общие принципы, но и произвел подробные практические расчеты, в результате которых замечательный ученый и пришел к выводу о необходимости создания ракетных поездов, или, как мы теперь говорим, многоступенчатых ракет, а также о необходимости создания искусственных спутников Земли».

Константин Эдуардович Циолковский (1857–1935) родился в селе Ижевском Рязанской губернии в семье лесничего. В десятилетнем возрасте Костя заболел скарлатиной и потерял слух. Мальчик не смог учиться в школе и вынужден был заниматься самостоятельно.

Вот как вспоминал о годах юности сам ученый:

«Я разбирал с любопытством и пониманием несколько отцовских книг по естественным и математическим наукам (отец некоторое время был преподавателем этих наук в таксаторских классах) И вот меня увлекает астролябия, измерение расстояния до недоступных предметов, снятие планов, определение высот. Я устраиваю высотометр. С помощью астролябии, не выходя из дома, я определяю расстояние до пожарной каланчи. Нахожу 400 аршин. Иду и поверяю. Оказывается — верно. Так я поверил теоретическому знанию…»

Когда Константину исполнилось шестнадцать лет, отец отправил его в Москву к своему знакомому Н Федорову, работавшему библиотекарем Румянцевского музея. Под его руководством Циолковский много занимался и осенью 1879 года сдал экзамен на звание учителя народных училищ. После рождества 1880 года Циолковский получил известие о назначении на должность учителя арифметики и геометрии в Боровское уездное училище…

В Боровске Циолковский проработал несколько лет и в 1892 году был переведен в Калугу. В этом городе и прошла вся его дальнейшая жизнь. Здесь он преподавал физику и математику в гимназии и епархиальном училище, а все свободное время посвящал научной работе. Не имея средств на покупку приборов и материалов, он все модели и приспособления для опытов делал собственными руками.

Круг интересов Циолковского был очень широк. Однако из-за отсутствия систематического образования он часто приходил к результатам, уже известным в науке. Например, так произошло с его первой научной работой, посвященной проблемам газовой динамики.

Но за вторую опубликованную работу — «Механика животного организма» — Циолковский был избран действительным членом Русского физико-химического общества. Эта работа заслужила положительные отзывы крупнейших ученых того времени — Менделеева и Столетова.

Столетов познакомил Циолковского со своим учеником Николаем Жуковским, после чего Циолковский стал заниматься механикой управляемого полета. Ученый построил на чердаке своего дома примитивную аэродинамическую трубу, на которой производил опыты с деревянными моделями.

Накопленный им материал был положен в основу проекта управляемого аэростата. Так Циолковский назвал дирижабль, поскольку само это слово в то время еще не придумали. Циолковский не только первым предложил идею цельнометаллического дирижабля, но и построил его работающую модель. При этом ученый создал и оригинальный прибор для автоматического управления полетом дирижабля, а также оригинальную схему регулирования его подъемной силы.

Однако чиновники из Русского технического общества отвергли проект Циолковского из-за того, что одновременно с ним с аналогичным предложением выступил австрийский изобретатель Шварц. Тем не менее Циолковскому удалось опубликовать описание своего проекта в журнале «Научное обозрение» и таким образом закрепить за собой приоритет на это изобретение.

После дирижабля Циолковский перешел к исследованию аэродинамики самолета. Он детально исследовал влияние формы крыла на величину подъемной силы и вывел соотношение между сопротивлением воздуха и необходимой мощностью двигателя самолета. Эти работы были использованы Жуковским при создании теории расчета крыла.

В дальнейшем интересы Циолковского переключились на исследования космического пространства. В 1903 году он опубликовал книгу «Исследования мировых пространств реактивными приборами», где впервые доказал, что единственным аппаратом, способным совершить космический полет, является ракета. Правда, Циолковскому не хватало математических знаний, и он не смог дать детальные расчеты ее конструкции. Однако ученый выдвинул целый ряд важных и интересных идей.

Те первые работы ученого прошли почти незамеченными. Учение о реактивном звездолете только тогда было замечено, когда начало печататься вторично, в 1911–1912 годах, в известном распространенном и богато издающемся столичном журнале «Вестник воздухоплавания». Тогда многие ученые и инженеры за границей заявили о своем приоритете. Но благодаря ранним работам Циолковского его приоритет был доказан.

В этой статье и последовавших ее продолжениях (1911 и 1914 годах) он заложил основы теории ракет и жидкостного ракетного двигателя. Им впервые была решена задача посадки космического аппарата на поверхность планет, лишенных атмосферы.

В 1926–1929 годы Циолковский решает практический вопрос: сколько нужно взять топлива в ракету, чтобы получить скорость отрыва и покинуть Землю.

И.А. Минасян: «Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Эта максимально достижимая скорость в первую очередь зависит, конечно, от скорости истечения газов из сопла ракеты. А скорость газов в свою очередь зависит, прежде всего, от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость.

Значит, для ракеты нужно подбирать самое калорийное топливо, которое при сгорании дает наибольшее количество теплоты.

Но максимальная скорость ракеты зависит не только от скорости истечения газов из сопла. Из формулы следует, что она зависит также от начальной и конечной массы ракеты, т. е. от того, какая часть ее веса приходится на горючее и какая — на бесполезные (с точки зрения скорости полета) конструкции: корпус, механизмы управления, рули и даже самую камеру сгорания и сопло.

Эта формула Циолковского является фундаментом, на котором зиждется весь расчет современных ракет Отношение общей, стартовой массы летательного аппарата к его весу в конце работы двигателя (т. е. по существу к весу пустой ракеты) в честь великого ученого названо числом Циолковского.

Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьет тем большую скорость, чем больше скорость истечения газов и чем больше отношение начальной массы ракеты к ее конечной массе, т. е. чем больше число Циолковского. Установив, что предел скорости ракеты зависит от качества топлива и отношения полезной и „бесполезной“ массы, Циолковский исследовал теплотворные возможности пороховых топлив. Его вычисления показали, что эти топлива не смогут обеспечить нужной температуры горения, а значит, и скорости истечения, необходимых для преодоления земного притяжения. Кроме того, рыхлый порох занимает большой объем, приходится увеличивать корпус и, следовательно, конечную массу ракеты».

Расчет показывает: для того чтобы жидкостная ракета с людьми развила скорость отрыва и отправилась в межпланетный полет, нужно взять топлива в сто раз больше, чем весит корпус ракеты, двигатель, механизмы, приборы и пассажиры, вместе взятые. Снова очень серьезное препятствие.

Ученый нашел оригинальный выход — ракетный поезд, многоступенчатый межпланетный корабль. Он состоит из многих ракет, соединенных между собой. В передней ракете, кроме топлива, находятся пассажиры и снаряжение. Ракеты работают поочередно, разгоняя весь поезд. Когда топливо в одной ракете выгорит, она сбрасывается, при этом удаляются опустошенные баки, и весь поезд становится легче. Затем начинает работать вторая ракета и т. д. Передняя ракета, как по эстафете, получает скорость, набранную всеми предыдущими ракетами.

Может показаться, что выгоднее сделать как можно больше ступеней ракеты. Однако расчеты убедительно доказывают, что это не так: максимальная скорость заметно увеличивается до трех-четырех ступеней, а дальше почти не растет. Скорость ракеты после шести ступеней практически остается постоянной.

Любопытно, что, не имея практически никаких приборов, Циолковский рассчитал, что оптимальной высотой для полета вокруг Земли является промежуток от трехсот до восьмисот километров над Землей. Именно на этих высотах и происходят современные космические полеты.

На много лет опередив своих современников, великий ученый с помощью точного языка математики впервые показал пути овладения человеком космическим пространством и указал реальные пути, по которым должна пойти техника межпланетных сообщений.

Узнав о работах Циолковского, немецкий ученый Герман Оберт написал ему: «Зная Ваши превосходные работы, я обошелся бы без многих напрасных трудов и сегодня продвинулся бы гораздо дальше».

Еще в 1911 году Константин Эдуардович произнес вещие слова: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».

Сегодня все мы свидетели того, как сбывается это великое предвидение.

КОНЦЕПЦИЯ ДРЕЙФУЮЩИХ КОНТИНЕНТОВ

После открытия Колумбом Америки на географических картах стали уточняться изображения американского побережья.

«Если взглянуть повнимательней на глобус или на любую карту мира, можно заметить одну особенность очертаний многих береговых линий, — пишет Борис Силкин. — Южная Америка и Африка, если их „сдвинуть“ вплотную, довольно аккуратно „вложатся“ друг в друга, как детали мозаичной картинки. Гренландия выглядит так, будто она только что вырвалась из „объятий“, с одной стороны — Северной Америки, а с другой — Северной Европы… Длинный рукав Антарктического полуострова в Западном полушарии смыкается с крайним югом Южной Америки, и так далее: множеству выступов по одну сторону моря соответствуют впадины в очертаниях суши по другую сторону.

Эти „географические странности“ люди отметили еще в те времена, когда они только учились составлять карты. Об этом размышляли знаменитый английский философ Фрэнсис Бэкон (1561–1626), французский мыслитель Франсуа Пласэ и многие другие.

Еще в 1596 году в Амстердаме вышел в свет ученый трактат фламандского картографа Абрахама Ортелия (1527–1598) „Географическая сокровищница“. Ортелий совершил два замечательных „прорыва“ в познании мира, на столетия предваривших господствующую ныне теорию дрейфа континентов. Он не только отметил „совместимость“ береговых линий Старого и Нового Света (включая и Европу), но и попытался реально представить, как шло раздвижение континентов».

Антонио Снидер в середине девятнадцатого столетия узнал о полном сходстве ископаемых растений каменноугольного периода палеозойской эры, найденных в Европе и Северной Америке. Снидер стал искать причину. Он решил, что ископаемые деревья росли в одном большом лесу, разделившемся когда-то на части. Одна половина оказалась в Европе, а другая — в Америке!

Снидер сближает на карте материки так, чтобы берега соединились, и он получил единый континент. В 1858 году его сочинение «Мироздание и его разоблаченные тайны» было опубликовано в Париже. Но современникам его идея показалась неправдоподобной, и о ней забыли.

Та же судьба постигла гипотезы еще нескольких европейских и американских ученых. Все они предполагали, что континенты наших дней — всего лишь обломки более крупных «суперконтинентов» далекого прошлого, удалившиеся друг от друга на тысячи километров.

Наконец, в 1910–1912 годах немецкий исследователь Вегенер не только вновь выдвинул эту гипотезу, но и подкрепил ее разнообразными геологическими и геофизическими данными.

Альфред Лотар Вегенер (1880–1930) родился в семье берлинского священника. Сначала Альфредизбрал профессию астронома. Он получил образование в Гейдельбергском, Инсбрукском и Берлинском университетах.

Еще в годы учебы он пишет работу о движении планет. Ее высоко оценили специалисты.

«Но он со студенческих лет мечтал заняться исследованием острова Гренландия и наукой о погоде — метеорологией, в то время делавшей практически первые шаги, — отмечает Б. Силкин. — И не только мечтал, но и готовился к этому.

Все свободное время Вегенер посвящал дальним лыжным походам, занятиям конькобежным спортом, а также изготовлению и запуску… воздушных шаров и змеев, считая, что именно эти „игрушки“ станут первыми средствами доставки измерительных приборов в относительно высокие слои атмосферы, где „делается“ погода. Вместе со своим братом Куртом в 1906 году он поставил рекорд длительности беспрерывного пребывания в воздухе на воздушном шаре — 52 часа.

„Воздушные“ и спортивные достижения Альфреда Вегенера не остались незамеченными, и вскоре он был включен в качестве метеоролога в состав датской полярной экспедиции, направлявшейся в манившую его Гренландию. Потом — преподавание метеорологии в Марбургском университете. Там он написал интересную работу о том, как ведет себя тепловая энергия в атмосфере. А в 1912 году — новая экспедиция в Гренландию. Собранные данные по метеорологии и гляциологии (науке о льде и снеге) заполнили множество томов».

Первая мировая война прервала научную работу. Вегенер становится младшим офицером германской армии. После окончания войны он становится директором Отдела метеорологических исследований Морской обсерватории в Гамбурге. В 1924 году ученый переезжает в Австрию, где получает кафедру метеорологии и геофизики в Грацском университете.

В 1929 году началась уже третья экспедиция Вегенера в Гренландию. Там он и погиб в 1930 году.

В некрологах, посвященных ученому, отмечались его заслуги в области физики атмосферы. О нем говорили, как о крупном полярном исследователе, отличном организаторе науки и преподавателе. Но об открытии Вегенера, прославившем его, не было сказано ни слова.

Трудно сказать, как немецкий ученый пришел к убеждению, что континенты способны «разъезжать» по поверхности Земли. Весьма вероятно, что, как и его предшественников, натолкнули на эту мысль характерные очертания материков нашей планеты.

Естественно, Вегенеру приходилось преодолевать огромные трудности, так как он не располагал большей частью тех фактов и знаний, которые известны в настоящее время. Тем не менее ему удалось заложить прочный фундамент современных представлений о строении и развитии Земли, включая основы теории дрейфа континентов, перемещения полюсов и подчиняющихся этим движениям перемен климата.

В наши дни гипотеза Вегенера хорошо известна, как гипотеза плавающих («дрейфующих») континентов. Единый суперконтинент палеозойской эры, позже расколовшийся и распавшийся, Вегенер назвал «Пангея», что означает «единая земля».

В январе 1912 года Вегенер представил свою гипотезу на заседании Германской геологической ассоциации во Франкфурте-на-Майне.

Гипотеза опровергала существующие в то время представления. Она стала предметом острых споров в научном мире.

Противники ученого считали, что материки движутся только в вертикальном направлении. Таким образом при поднятии земной коры образуется суша, при опускании — моря и океаны. Вегенер же убежденно говорил о горизонтальном движении континентов — они «разъезжаются», «дрейфуют». В результате этого образуются океаны. Увы, гипотеза Вегенера была большинством отвергнута. На несколько десятилетий геологи и геофизики о гипотезе забыли.

Справедливости ради надо сказать, что и в самом деле в ней имелись слабые места, на которые не замедлили указать специалисты.

Одно из слабых мест гипотезы Вегенера — это затруднение в объяснении «механизма» приводящего в движение континенты.

В тридцатые—сороковые годы такое объяснение дал шотландский геолог Артур Холмс (1890–1965). Он предположил, что силой, движущей континенты, могли бы стать потоки вещества, существующие в мантии и приводимые в движение разностью температур. При этом теплые потоки поднимаются вверх, а холодные опускаются вниз.

Движущийся базальтовый слой он уподобил «бесконечной транспортировочной ленте», передвигающей континенты. Понадобилось еще полвека, чтобы к концу шестидесятых годов двадцатого столетия представления о крупных перемещениях земной коры превратились из гипотезы в развернутую теорию, в учение о тектонике плит.

Сегодня гипотеза Вегенера является общепризнанной и развивается в соответствии с уровнем современной науки.

ЗАКОН ХАББЛА

«В 1744 году швейцарский астроном де Шезо и независимо от него в 1826 году Ольберс сформулировали следующий парадокс, — пишет в своей книге Т. Редже, — который привел к кризису тогдашних наивных космологических моделей. Представим себе, что пространство вокруг Земли бесконечно, вечно и неизменно и что оно равномерно заполнено звездами, причем их плотность в среднем постоянна. С помощью несложных вычислений Шезо и Ольберс показали, что полное количество света, посылаемое на Землю звездами, должно быть бесконечным, из-за чего ночное небо будет не черным, а, мягко говоря, залито светом. Чтобы избавиться от своего парадокса, они предположили существование в космосе обширных блуждающих непрозрачных туманностей, заслоняющих наиболее отдаленные звезды. На самом деле так выйти из положения нельзя: поглощав свет от звезд, туманности поневоле нагревались бы и сами излучали свет так же, как и звезды.

Итак, если справедлив космологический принцип, то мы не можем принять идею Аристотеля о вечной и неизменяющейся Вселенной. Здесь, как и в случае относительности, природа, похоже, предпочитает в своем развитии симметрию, а не мнимое Аристотелево совершенство».

Однако самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными великим американским астрономом Эдвином Хабблом.

Хаббл (1889–1953) родился в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэла Хаббла и его супруги Виржинии Ли Джеймс. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп.

В 1906 году Эдвин окончил школу. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.

После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию.

Летом 1913 года Эдвин возвратился на родину, но юристом так и не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где на Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали — это звездные системы на расстояниях, часто измеряемых миллионами световых лет».

В это время в астрономии приближалось большое событие — обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д.Э. Хейл, готовилась к вводу в строй крупнейшего телескопа — стодюймового рефлектора (250-сантиметрового — Прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой ученый отклонил приглашение и записался добровольцем в армию. В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.

На обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути.

В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900–1975» К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти двадцатого столетия, помещены три работы Хаббла, и первая из них — работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.

В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и стодюймовых рефлекторах. Ученый сделал вывод, что большая Туманность Андромеды действительно другая звездная система. Такие же результаты Хаббл получил и для туманности МОС 6822 и туманности в Треугольнике.

Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объем материального мира и с определенностью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звезд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звездными островами — галактиками.

Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение — открытие закона красного смещения.

Спектральные исследования спиральных и эллиптических «туманностей» были начаты в 1912 году на основе таких соображений1 если они действительно расположены за пределами нашей Галактики, то они не участвуют в ее вращении и поэтому их лучевые скорости будут свидетельствовать о движении Солнца. Ожидалось, что эти скорости будут порядка 200–300 километров в секунду, т. е. будут соответствовать скорости движения Солнца вокруг центра Галактики.

Между тем, за несколькими исключениями, лучевые скорости галактик оказались гораздо больше: они измерялись тысячами и десятками тысяч километров в секунду.

В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». В то время Хаббл уже имел возможность сопоставить скорость движения галактики с расстоянием до нее для 36 объектов. Оказалось, что эти две величины связаны условием прямой пропорциональности: скорость равна расстоянию, умноженному на постоянную Хаббла.

Это выражение получило название закона Хаббла. Численное значение постоянной Хаббла ученый в 1929 году определил в 500 км/(с х Мпк). Однако он ошибся в установлении расстояний до галактик. После многократных исправлений и уточнений этих расстояний численное значение постоянной Хаббла сейчас принимается равным 50 км/(с х Мпк).

На обсерватории Маунт-Вилсон началось определение лучевых скоростей все более удаленных галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 километров в секунду удалось зарегистрировать у члена далекого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.

«Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы, — считает Т.Редже. — Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 метр. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 метров. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 метров, будет 100 м/ мин, если учесть, что расстояние между ними увеличится от 100 до 200 метров. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: „галактики-солдаты“ по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.

Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.

Другим примером интуитивного образа может служить взрыв бомбы; в этом случае, чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин „большой взрыв“. Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров».

Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал: «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения… делают вероятным предположение, что общая структура Вселенной не стационарная».

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной. В настоящее время закон Хаббла используется для определения расстояний до далеких галактик и квазаров.

КЛАССИФИКАЦИЯ ГАЛАКТИК

История «открытия» мира галактик весьма поучительна. Больше двухсот лет назад Гершель построил первую модель Галактики, преуменьшив ее размеры в пятнадцать раз. Изучая многочисленные туманности, разнообразие форм которых он первый и обнаружил, Гершель пришел к выводу, что некоторые из них являются далекими звездными системами «типа нашей звездной системы». Он писал: «Я не считаю необходимым повторять, что небеса состоят из участков, у которых солнца собраны в системы». И еще: «…эти туманности также могут быть названы млечными путями — с малой буквы в отличие от нашей системы».

Однако, в конце концов, сам Гершель занял в отношении природы туманностей другую позицию. И это было не случайностью. Ведь ему удалось доказать, что большинство открытых и наблюдавшихся им туманностей состоят не из звезд, а из газа. Он пришел к весьма пессимистическому выводу: «Все, что за пределами нашей собственной системы, покрыто мраком неизвестности».

Английский астроном Агнесса Кларк писала в книге «Система звезд» в 1890 году: «Можно с уверенностью сказать, что ни один компетентный ученый, располагающий всеми имеющимися доказательствами, не станет придерживаться мнения, что хотя бы одна туманность является звездной системой, сравнимой по размерам с Млечным Путем. Практически установлено, что все объекты, наблюдаемые на небе (как звезды, так и туманности), принадлежат к одному огромному агрегату»…

Причина такой точки зрения была в том, что долгое время астрономы не умели определять расстояния до этих звездных систем. Так, из проведенных в 1907 году измерений будто бы следовало, что расстояние до «Туманности Андромеды» не превышает 19 световых лет. Четыре года спустя астрономы пришли к выводу, что это расстояние составляет около 1600 световых лет. И в том, и в другом случае создавалось впечатление, что упомянутая туманность и в самом деле находится в нашей Галактике.

В двадцатые годы прошлого века между астрономами Шепли и Куртисом разгорелся ожесточенный спор о природе Галактики и других объектов, видимых с помощью телескопов. В числе этих объектов находится знаменитая туманность Андромеды (М31), которая видна невооруженным глазом всего лишь как звезда четвертой величины, но разворачивается в величественную спираль, если разглядывать ее в большой телескоп. К этому времени в некоторых из этих туманностей были зарегистрированы вспышки новых звезд. Кертис предположил, что в максимуме блеска упомянутые звезды излучают столько же энергии, что и новые звезды нашей Галактики. Так, он установил, что расстояние до Туманности Андромеды равно 500 000 световых лет. Это и дало Кертису основание утверждать, что спиральные туманности — это далекие звездные вселенные, подобные Млечному Пути. С таким выводом Шепли не соглашался, и его рассуждения также были вполне логичными.

Согласно Шепли, вся Вселенная состоит из одной нашей Галактики, а спиральные туманности типа М31 представляют собой более мелкие объекты, рассыпанные внутри этой Галктики, как изюм в куличе.

Предположим, говорил он, что Туманность Андромеды имеет такие же размеры, как и наша Галактика (300 000 световых лет по его оценке). Тогда, зная ее угловые размеры, находим, что расстояние до данной туманности составляет 10 миллионов световых лет! Но тогда непонятно, почему наблюдавшиеся в Туманности Андромеды новые звезды имеют большую яркость, чем в нашей Галактике. Если же яркость новых в этой «туманности» и в нашей Галактике одинакова, то отсюда следует, что Туманность Андромеды в 20 раз меньше нашей Галактики.

Куртис, напротив, считал, что М31 представляет собой самостоятельную галактику-остров, не уступающую в достоинстве нашей Галактике и отдаленную от нее на несколько сотен тысяч световых лет. Создание больших телескопов и прогресс астрофизики привели к признанию правоты Куртиса. Измерения, проделанные Шепли, оказались ошибочными. Он очень сильно недооценил расстояние до М31. Куртис, впрочем, также ошибался: теперь известно, что расстояние до М31 — более двух миллионов световых лет.

Природу спиральных туманностей окончательно удалось установить Эдвину Хабблу, который в конце 1923 года обнаружил в Туманности Андромеды первую, а вскоре еще несколько цефеид. Оценив их видимые величины и периоды, Хаббл нашел, что расстояние до этой «туманности» составляет 900 000 световых лет. Так окончательно была установлена принадлежность спиральных «туманностей» к миру звездных систем типа нашей Галактики.

Если же говорить о расстояниях до этих объектов, то их еще предстояло уточнять и пересматривать. Так, на самом деле расстояние до галактики М 31 в Андромеде равно 2,3 миллиона световых лет.

Мир галактик оказался удивительно огромным. Но еще большее удивление вызывает многообразие его форм.

Первую и довольно удачную классификацию галактик по их внешнему виду предпринял уже Хаббл в 1925 году. Он предложил относить галактики к одному из следующих трех типов: 1) эллиптические (обозначаемые буквой Е), 2) спиральные (S) и 3) неправильные (1 г).

К эллиптическим были отнесены те галактики, которые имеют вид правильных кругов или эллипсов и яркость которых плавно уменьшается от центра к периферии. Эту группу подразделяют на восемь подтипов от ЕО до Е7 по мере увеличения видимого сжатия галактики. Линзовидные галактики SO похожи на сильно сплюснутые эллиптические системы, однако имеют четко выделенное центральное звездообразное ядро.

Спиральные галактики, в зависимости от степени развития спиралей, подразделяются на подклассы Sa, Sb и Sc. У галактик типа Sa основной составной частью является ядро, тогда как спирали выражены еще слабо. Переход к последующему подклассу — констатация факта все большего развития спиралей и уменьшения видимых размеров ядра.

Параллельно нормальным спиральным галактикам существуют еще так называемые пересеченные спиральные системы (SB). У галактик этого типа очень яркое центральное ядро пересекается по диаметру поперечной полосой. Из концов этой перемычки и начинаются спиральные ветви, причем в зависимости от степени развития спиралей эти галактики делятся на подтипы SBa, SBb и SBc.

К неправильным галактикам (Ir) отнесены объекты, у которых отсутствует четко выраженное ядро и не обнаружена вращательная симметрия. Их типичными представителями являются Магеллановы Облака.

«Я использовал ее 30 лет, — писал впоследствии известный астроном Вальтер Бааде, — и хотя упорно искал объекты, которые нельзя было бы действительно уложить в хаббловскую систему, их число оказалось столь ничтожным, что я могу пересчитать их по пальцам». Классификация Хаббла продолжает служить науке, и все последующие модификации существа ее не затронули.

Некоторое время полагали, что эта классификация имеет эволюционный смысл, т. е. что галактики «передвигаются» вдоль «камертонной диаграммы» Хаббла, последовательно меняя свою форму. Сейчас этот взгляд считается ошибочным.

Среди нескольких тысяч ярчайших галактик насчитывается 17 процентов эллиптических, 80 процентов спиральных и около 3 процентов неправильных.

В 1957 году советский астроном Б.А. Воронцов-Вельяминов открыл существование «взаимодействующих галактик» — галактик, связанных «перемычками», «хвостами», а также «гамма-форм», т. е. галактик, у которых одна спираль «закручивается», тогда как другая «раскручивается». Позже были открыты компактные галактики, размеры которых составляют всего около 3000 световых лет, и изолированные в пространстве звездные системы с поперечником всего 200 световых лет. По своему внешнему виду они практически не отличаются от звезд нашей Галактики.

Новый общий каталог (НОС) содержит перечень около десяти тысяч галактик вместе с их важнейшими характеристиками (светимость, форма, отдаленность и т. д.) — и это лишь малая толика из десяти миллиардов галактик, в принципе различимых с Земли. Сказочный гигант, способный охватить взглядом сотню-другую миллионов световых лет, разглядывая Вселенную, увидел бы, что она заполнена космическим туманом, капельками которого являются галактики. Временами встречаются скопления, состоящие из тысяч галактик, собранных вместе. Одно такое гигантское скопление находится в созвездии Девы.

БИОСФЕРА

Автор нового учения — Владимир Иванович Вернадский в своих «Очерках геохимии» отмечает, что идеи о значении жизни как совокупно действующего явления, влияющего на ход планетарных процессов, появляются уже в трудах естествоиспытателей XVII века, в частности у X. Гюйгенса. К разработке подобных идей были причастны Ж.Л. де Бюф-фон, Ф. Вик д'Азир и Ж. Ламарк. Так, в «Гидрогеологии» Ламарка содержится попытка естественнонаучного описания жизни в качестве планетарного явления. Далее Вернадский выделяет теорию нептунистов: «Теснейшим образом связанная с водой жизнь имела свое почетное место в созидании окружающей нас природы. Жизнь для нептунистов была огромной силой, а не случайным явлением в истории планеты».

Предтечей естественно-научного подхода в описании биосферы по праву может считаться и А. Гумбольдт — один из крупнейших естествоиспытателей XIX века. И в своих ранних работах, и в позднем синтетическом произведении «Космос» он обобщил понимание того, что «…живое вещество есть неразрывная и закономерная часть поверхности планеты, неотделимая от ее химической среды».

Хорошо рисовавший и наделенный могучим воображением австрийский геолог Э. Зюсс мысленно увидел нашу планету из космоса, выделив особые сферы: гидросферу (природные воды), литосферу — земную кору, биосферу. В его понимании биосфера — это лик Земли, земные ландшафты. Значение этого термина в работах Зюсса скорее метафорическое. Глубокой научной разработки здесь оно не получило.

Пожалуй, наиболее логично охарактеризовал геосферы английский океанолог Дж. Меррей в начале нашего века:

«В настоящее время естествоиспытатели обозначают термином „биосфера“ тот покров из живого вещества, который одевает земной шар всюду, где соприкасаются и смешиваются между собой атмосфера, гидросфера и литосфера. На суше живые существа не поднимаются над ее поверхностью слишком высоко и не проникают очень глубоко внутрь ее. В океане дело обстоит иначе. Жизнь существует всюду, во всей массе океанических вод — от экватора до полюсов и от поверхности до самого дна…»

Мысли Меррея стали исходной точкой для русского ученого Вернадского, началом учения о том, что живое вещество и среда жизни составляют единое целое — биосферу.

Владимир Иванович Вернадский (1863–1945) родился в Петербурге в семье профессора экономики и истории И.В. Вернадского. Дом его отца, видного экономиста и историка Петербургского университета, был одним из тех мест, где собирались корифеи отечественной науки.

С третьего класса Владимир учился в Петербургской классической гимназии — одной из лучших в России. Затем он поступил на физико-математический факультет Петербургского университета. В годы студенчества на Вернадского большое влияние оказал преподаватель минералогии В.В. Докучаев. Докучаев и предложил своему ученику заниматься минералогией и кристаллографией. Уже через несколько лет появились первые работы Владимира о грязевых вулканах, о нефти, а затем и философские статьи.

В 1885 году Владимир окончил университет и был оставлен в нем для ведения научной работы. Затем Вернадский уезжает на два года в заграничную командировку (Италия, Германия, Франция, Англия, Швейцария). Он работает в химических и кристаллографических лабораториях, совершает геологические экспедиции, знакомится с новейшей научной и философской литературой.

Вернувшись в Россию, Вернадский становится приват-доцентом кафедры минералогии Московского университета. Отлично защитив магистерскую диссертацию, начинает чтение лекций. В 1897 году приходит черед защиты докторской диссертации («Явления скольжения кристаллического вещества»). Вскоре Вернадского пригласили в Московский университет заведовать кафедрой минералогии и кристаллографии. Здесь на протяжении многих лет Владимир Иванович читал лекции и провел немало из прославивших его научных исследований.

В 1906 году Вернадского избирают членом Государственного Совета от Московского университета. Два года спустя он становится экстраординарным академиком.

С 1906 по 1918 год выходят в свет отдельные части его фундаментального труда «Опыт описательной минералогии».

Вернадский подошел к минералогии с совершенно новой точки зрения: он выдвинул идею эволюции всех минералов и тем самым поставил перед минералогией новые задачи, значительно шире и глубже прежних. Главная цель минералогии, по Вернадскому, — изучение истории минералов в земной коре.

Одним из первых профессоров университета Вернадский начал работать на открывшихся в Москве Высших женских курсах. Однако в 1911 году его деятельность в стенах университета прервалась: вместе с крупнейшими учеными того времени профессор минералогии ушел из Московского университета, протестуя против полицейского режима, который пытался ввести в российских учебных заведениях министр просвещения Кассо. Он переезжает в Петербург.

Здесь Вернадский стал директором Геологического и минералогического музея Академии наук. По инициативе и под председательством Владимира Ивановича в 1915 году создается Комиссия по изучению естественных производительных сил России при Академии наук (КЕПС).

Владимир Иванович, избранный в 1916 году председателем ученого совета при министерстве земледелия, продолжал научные исследования, публикуя статьи по минералогии, геохимии, полезным ископаемым, по истории естествознания, организации науки, метеоритике.

В 1917 году здоровье Вернадского ухудшилось. У него обнаружили туберкулез. Летом он уехал на Украину. Бурные события Гражданской войны застали его в Киеве. Здесь он активно участвует в создании Украинской академии наук и избирается ее президентом.

Но главной для Вернадского оставалась научно-теоретическая работа. В годы пребывания в Киеве, Полтаве, Староселье (на биологической станции), Харькове, затем в Ростове, Новороссийске, Ялте, Симферополе он разрабатывал основы учения о геохимической деятельности живого вещества.

Вернадский в 1919 году публикует статью «О задачах геохимического изучения Азовского моря». Глубокое изучение геохимии моря помогло ему в создании учения о биосфере.

В этой статье ученый пока ни разу не упомянул термина «биосфера», как бы не придавая ему большого значения. Но уже в следующей статье положение меняется. Она называется «О никеле и кобальте в биосфере».

Так или иначе, но в 1921 году Вернадский перешел от геохимического анализа живого вещества к познанию среды жизни, которая включает живое вещество и неживое (косное), находящиеся во взаимодействии.

В 1922 году Вернадский закончил сочинение «Живое вещество». Владимир Иванович хорошо понимал, что с этой теоретической работой открывается новая область знания на стыке биологических и геологических наук.

До этой работы существовала непреодолимая пропасть между науками биологическими, изучающими живые организмы, и науками геологическими, занятыми познанием Земли, горных пород и минералов, рельефа и геологических структур.

Вернадский здесь впервые показал, что жизнь — планетарное явление. Совокупность организмов — живое вещество — часть планеты Земля и может рассматриваться как геологический объект. Живое вещество — особая геохимическая сила, активно участвующая во всех процессах, протекающих в области жизни — биосфере.

«Всякий, кто когда-нибудь пытался с открытыми глазами и со свободным умом и сердцем побыть наедине, вне искусственной обстановки города или усадьбы, среди природы — хотя бы той резко измененной человеком, которая окружает наши города и селения, — ярко и ясно чувствовал эту неразрывную связь свою с остальным животным и растительным миром. В тишине ночи, когда замирают созданные человеком особые рамки внешней среды, среди степи или океана, на высоте гор это чувство, на века ему присущее, охватывает человека нераздельно. Особенно оно сильно в сгущениях живого вещества — на берегу моря или океана, в лесу, на великой реке или среди хотя бы мелкого далекого от поселений пруда или озера…»

Вернадский делает вывод, очень важный для науки о Земле и о жизни: «Организм нераздельно связан с земной корой и должен изучаться в тесной связи с ее изучением. Автономный организм вне связи с земной корой реально в природе не существует».

В.П. Казначеев пишет: «В.И. Вернадский в отличие от предшественников наполнил понятие „биосфера“ глубоким, систематически обоснованным научным содержанием. Во-первых, в биогеохимическом аспекте это оболочка Земли, в пределах которой распространена жизнь. Совокупность живых организмов составляет основу биосферы — живое вещество. Биосфера есть планетарно-космическое естественное явление, ее живое вещество есть новая геологическая сила в эволюции планеты.

Отметим, что понятие биосферы не эквивалентно понятию географической оболочки, под которой в литературе понимается разнородный природный комплекс поверхности планеты, основанный на взаимодействиях литосферы, гидросферы, атмосферы и оказывающий воздействие на живые организмы.

Биосфера же есть специфическое естественное природное явление, целостная саморазвивающаяся система, в которой на первое место выдвинута активность живого вещества».

Биосфера, по определению Вернадского, «закономерное проявление механизма планеты, ее верхней оболочки — земной коры». При характеристике биосферы ученый особо подчеркивал значение космических факторов. «С одной стороны, мы имеем здесь природную лабораторию, в которой господствуют резкие воздействия разных форм космической энергии… с другой — область планеты, которая непрерывно в течение миллиардов лет принимает в себя непрерывный приток космической материи и энергии, которая образовалась в условиях, чуждых нашей планете…» Вещество биосферы, по мнению ученого, сложно и имеет несколько компонентов.

Среди них ученый выделяет следующие: 1) совокупность живых организмов — живое вещество; 2) вещество, создаваемое и переработанное живыми организмами, — биогенное вещество (каменный уголь, битумы, известняки, нефть и др.); 3) косное вещество, образуемое процессами, в которых живое вещество не участвует (твердое, жидкое, газообразное и др.); 4) биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамическое равновесие системы тех и других (почти вся вода биосферы, нефть, почвы, кора выветривания и др.) — Организмы в них играют ведущую роль; 5) вещество, находящееся в процессе радиоактивного распада; 6) рассеянные атомы, которые непрерывно создаются из различных видов земного вещества под влиянием космических излучений, потоки которых непрерывно поступают в околоземное пространство. Их физический состав требует дальнейших исследований; 7) вещество космического происхождения, которое включает отдельные атомы и молекулы, входящие в ионосферу из электромагнитного поля Солнца, проникающие из космических пространств.

Определяя биосферу как естественно-природное явление, Вернадский в основе его видит, прежде всего, процесс — космопланетарную эволюцию Земли и роль в этой эволюции живого вещества как главного системообразующего фактора биосферы. Биосфера в условиях Земли является своеобразным вместилищем живого вещества, она включает его как основу. Сама биосфера предстает в этом отношении как сложная саморегулирующаяся космоплацетарная система, новая оболочка Земли.

Вернадский первым ощутил и постиг единство живого вещества в биосфере. В те годы, когда идеи Вернадского только еще входили в науку, они выглядели сугубо теоретическими, не связанными с насущными нуждами людей.

Сегодня учение о биосфере — научная основа всей деятельности человечества, направленной на преобразование природы. Оно становится основой многих как глобальных, так и региональных экологических преобразований, прогнозов, на его основе строятся многие исследования сравнительной планетологии, космической экологии и антропоэ-кологии.

НООСФЕРА

«Этап за этапом пути эволюции живых организмов изучают преимущественно биологи и палеонтологи, — пишет Р. Баландин. — Но живое вещество — лишь часть биосферы, всецело от нее зависящая. А биосфера — часть планеты, неотделимая от потока лучистой энергии Солнца. Все происходящее на Земле есть проявление не только земных, но и космических сил. И человечество, как часть живого вещества биосферы и планеты, — явление космическое, а его появление, развитие, бытие — естественные процессы саморазвития природы.

До Вернадского подобные идеи были известны. Более двух столетий они в разной форме встречаются в философских и научных трактатах, своеобразно и ярко они были высказаны уже в XVIII веке философом Гердером, натуралистом Бюффоном, поэтом и мыслителем Гете, а позже — естествоиспытателем Александром Гумбольдтом, географами Ф. Ратцелем и Э. Реклю… Значит ли это, что Вернадский просто-напросто пересказал давно известные и отчасти забытые мысли других мудрецов?

Нет, конечно… Вернадский сумел по-новому организовать разрозненные сведения о взаимодействии человека и природы, о саморазвитии материи. Осенью 1924 года он начал работу над статьей „Идеи о прогрессе и автотрофности человечества“. Написал ее по-французски и опубликовал в Париже под измененным названием — „Автотрофность человечества“, очень неполно отражающим содержание этой работы. Вернадский выделил особо важную, с его точки зрения, мысль о будущем переходе человека от гетеротрофности (питания живыми организмами) к автотрофности (питанию синтетической пищей без уничтожения живого)».

Развивая идеи об эволюции биосферы, появлении на Земле человечества, русский ученый делает шаг к новому обобщению — к идее перехода биосферы в ноосферу. При этом Вернадский опирается на данные многих естественных наук, как минералогия, геология, космохимия, биогеохимия и др. Им подчеркнутаы неизбежность этого процесса как особого естественно-природного явления, которое коренным образом меняет строение биосферы нашей планеты. Вернадский отмечает: «Научная мысль человечества работает только в биосфере и в ходе своего появления в конце концов превращает ее в ноосферу, геологически охватывает ее разумом. Научная мысль есть часть структуры — организованности — биосферы и ее в ней проявления, ее создание в эволюционном процессе жизни является величайшей важности событием в истории биосферы, в истории планеты».

Вот что говорил на лекциях Вернадский:

«В нашу геологическую эпоху — психозойную эру, эру Разума — появляется новый геохимический фактор капитальной важности. В течение последних тысяч лет геохимическое воздействие человечества, захватившего посредством земледелия живое вещество, стало необыкновенно интенсивным и разнообразным. Мы видим удивительную быстроту роста геохимической работы человечества. Мы видим все более яркое влияние сознания и коллективного разума человека на геохимические процессы. Раньше организмы влияли на историю только тех атомов, которые были нужны для их роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и для создания цивилизованных форм жизни. Человек действует здесь не как Homo Sapiens (человек разумный), а как Homo Faber (человек творящий).

И он распространяет свое влияние на все химические элементы. Он изменяет геохимическую историю всех металлов, он образует новые соединения, воспроизводит их в количествах того же порядка, какой создался для минералов, продуктов природных реакций. Этот факт исключительной важности в истории всех химических элементов. Мы видим в первый раз в истории нашей планеты образование новых соединений, невероятное изменение земного лика. С геохимической точки зрения все эти продукты — массы свободных металлов, таких, как железо, медь, олово или цинк, массы угольной кислоты, произведенной обжиганием извести или сгоранием каменных углей, огромные количества серного ангидрида или сероводородов, образовавшихся во время химических и металлургических процессов, и все увеличивающееся количество других технических продуктов — не отличаются от минералов. Они изменяют вечный бег геохимических циклов…

Где остановится этот новый геологический процесс? И остановится ли он?.. Изучение геохимии доказывает важность этого процесса и его глубочайшую связь со всем химическим механизмом земной коры. Он находится еще в состоянии эволюции, конечный результат которой от нас еще скрыт…

Человек всюду увеличивает количество атомов, выходящих из старинных циклов — геохимических „вечных циклов“. Он усугубляет нарушение этих процессов, вводит туда новые, расстраивает старые. С человеком, несомненно, появилась новая огромная геологическая сила на поверхности нашей планеты».

На лекциях в Сорбонне, прочитанных Вернадским, присутствовали французские ученые, друзья: математик и философ Ле Руа и палеонтолог, еще в юности вступивший в иезуитский орден «Общество Иисуса», Тейяр де Шарден. Выступления русского ученого не могли оставить их равнодушными.

Лекции Вернадского и беседы с Тейяром де Шарденом, знатоком древней истории, вдохновили Ле Руа на создание двух крупных работ, изданных в 1928 и 1929 годах. Он описал эволюцию человека, этапы формирования человечества и создание на Земле ноосферы. Впервые новый термин — ноосфера — вошел в науку. Вернадский постоянно использовал его в своих трудах.

Пьер Тейяр де Шарден (1881–1955) прославился как один из первооткрывателей в 1929 году древнейшего предка человека — синантропа. Его главную работу «Феномен человека» опубликовали лишь в 1961 году, уже после смерти автора. Тогда же началось на Западе широкое увлечение его учением. Тейяра де Шардена вскоре стали называть крупнейшим французским мыслителем двадцатого века.

Французский ученый признавал теорию возникновения жизни из неживого, постоянного усложнения организации организмов и естественного закономерного появления человека разумного.

«Какова бы ни была группа животных (позвоночные или антропоиды), при изучении ее эволюции обнаруживается замечательный факт, что во всех случаях нервная система со временем увеличивается в объеме и усложняется по устройству и одновременно концентрируется в верхней головной части тела… Если рассматривать ее с точки зрения развития мозговых ганглий, то все формы жизни, вся жизнь движется… как один нарастающий вал, в направлении все большего мозга».

«Человек и только он один, — последний по времени возникновения, самый свежий, самый сложный, самый радужный, многоцветный из последовательных пластов жизни».

О ноосфере Тейяр де Шарден писал так: «Гармоничная общность сознаний эквивалентна своего рода сверхсознанию. Земля не только покрывается мириадами крупинок мысли, но окутывается единой мыслящей оболочкой, образующей… одну обширную крупинку мысли в космическом масштабе. Множество индивидуальных мышлений группируется и усиливается в акте одного единодушного мышления».

«Ноосфера стремится стать одной замкнутой системой, где каждый элемент в отдельности видит, чувствует, желает, страдает так же, как все другие, и одновременно с ними».

Тейяр де Шарден основном началом в мире считает жизне неуловимые силы синтеза, обозначенные им как «плазматическая роль живой психеи». Такой акцент в трактовке жизни сближает его с иррационали-стическими представлениями.

«Здесь он становится на точку зрения, — пишет В.П. Казначеев, — которая противоположна естественно-научному биогеохимическому подходу В. И. Вернадского при анализе явлений жизни (земного живого вещества) В рамках естественно-научного,биогеохимического анализа прослеживаются реально действующие на явления жизни материальные факторы, которые и определяют организованность биосферы (космические излучения, энергия радиоактивного распада, миграция химических элементов, связанная с биогеохимическими функциями, и т. д.). На этом фоне словоупотребления типа „живая психея“, „тангенциальная“ физическая энергия, „радиальная“ психическая энергия выглядят, скорее, как метафорические обороты, а не содержательные научные или интеллектуально-философские понятия…

Следующая ступень космогенеза — ноогенез, или сфера разума, — у П. Тейяр де Шардена отражает определенные особенности социально-природного развития человечества, поскольку здесь подчеркнута значимость культурных традиций, интеллектуальных достижений, свойственных человеку. Однако основой становления феномена человека в этой концепции утверждается направленность к теосфере, некоторому финальному мистическому состоянию ноогенеза, переход к которому определяется точкой Омега (высшим полюсом мира). В этом пункте описание поступательного (ступенчатого) развития мирового целого особенно отчетливо перекрывается и элиминируется теолого-католическим мировоззрением».

Эволюция ноосферы у Шардена имеет конечной ступенью теосфе-ру, приносится в жертву теосфере — мистическому положению католического миросозерцания.

Вернадский же имел в виду в первую очередь геологическую деятельность человечества, активную перестройку биосферы Земли и космическое расширение ноосферы. Для Вернадского в ноосфере соединялись, взаимодействуя, мысль и работа человечества.

«…С биогеохимической точки зрения важны, конечно, не научная мысль, не научный аппарат, не орудия науки, но тот реальный результат, который сказывается в геохимических явлениях, вызванных мыслью и работой человека, в новом состоянии биосферы, которое им создается… в ноосфере».

Вернадский такое важнейшее явление общества, как культура, рассматривает в планетарном масштабе, оценивая его наряду с научной мыслью как явление планетное. В своей работе «Размышления натуралиста», оценивая новую форму энергии — жизнедеятельность человеческого общества, он пишет: «Эта новая форма биогеохимической энергии, которую можно назвать энергией человеческой культуры или культурной биогеохимической энергией, является той формой биогеохимической энергии, которая создает в настоящее время ноосферу».

В.П. Казначеев пишет: «В соответствии с проведенным анализом космопланетарной среды биосферы и живого вещества, определением ноосферы как нового, социально-исторического и социально-природного по своей сути явления, возникающего в этой среде, следует характеризовать превращение биосферы в ноосферу как процесс естественно-исторический. Формирование ноосферы протекает как развертывание новой геокосмической силы, управляющей всей дальнейшей эволюцией планеты — космического тела Солнечной системы. Это влияние социальной деятельности и знания постепенно, но неизбежно превратится в управление всеми космопланетарными силами, включая всю планетную систему и ее космическую среду. Таковы, как указывалось выше, сформулированные В.И. Вернадским основные черты превращения биосферы в ноосферу — сферу, охваченную трудовой, социальной деятельностью человека. Здесь научная мысль становится мощнейшим инструментом управления планетой, гарантируя собственное прогрессивное развитие человечества в обозримом уже не только социальном, но и космогеологическом времени».

В те же примерно годы ученик Вернадского Ферсман тоже писал о геологической роли человека. В отличие от Тейяр де Шардена, уделявшего основное внимание разуму, и Вернадского, отдававшего приоритет соединению в ноосфере мысли и действия, Ферсман писал почти исключительно о технической деятельности человечества.

В особом разделе своей четырехтомной «Геохимии» советский ученый дает характеристику геохимии техногенеза, то есть технической деятельности. Здесь Ферсман ноосферу даже не упоминает. Будучи геологом, он интересовался не причинами явлений, не побуждениями человека, не разумом самим по себе, а лишь результатами технического воздействия на биосферу. Основываясь на многочисленных фактах, он пришел к выводу:

«Хозяйственная и промышленная деятельность человека по своему масштабу и значению сделалась сравнимою с процессами самой природы. Вещество и энергия не беспредельны в сравнении с растущими потребностями человека, их запасы по величине одного порядка с потребностями человечества; природные геохимические законы распределения и концентрирования элементов сравнимы с законами техно-химии, т. е. химическими преобразованиями, вносимыми промышленностью и народным хозяйством. Человек геохимически переделывает мир». О переделываемой биосфере Ферсман говорит скорее как о техносфере — области технической деятельности человечества.

Как отмечает Р.Баландин: «Такова была творящая сила идей Вернадского: от его учения о геологической деятельности человека и формирования сферы разума, как от могучего древесного ствола, отделилось учение о ноосфере Ле Руа и Тейяра де Шардена, а также учение Ферсмана о техногенезе (техносфере).

До сих пор эти три течения научной и философской мысли сохраняют свое значение и свою популярность. Каждое из них имеет своих приверженцев и своих критиков. Однако надо помнить, что у истоков всех трех течений стоит научный гений Вернадского».

КОНЦЕПЦИЯ «БОЛЬШОГО ВЗРЫВА»

Возможность расширения Вселенной была предсказана теоретически как одно из следствий применения к решению космологических проблем общей теории относительности. Первые труды в этой области принадлежат талантливому советскому математику Александру Александровичу Фридману (1888–1925). Он широко известен как геофизик-метеоролог, специалист по прикладным вопросам динамики атмосферы. Но много времени Фридман отдал математическому анализу решений космологических уравнений Эйнштейна. Незадолго до смерти Фридман получил серию решений уравнений Эйнштейна. Выходило, что расширение может явиться одним из основных общих свойств Вселенной — важнейшим атрибутом ее эволюции. Работы русского ученого поначалу не привлекли к себе должного внимания. Они были оценены по достоинству лишь в связи с открытием Э. Хабблом красного смещения и развитием современных представлений о первоначально горячей Вселенной и Большом Взрыве.

В 1927 году Ж. Леметр, студент из Эддингтона, независимо от Фридмана выдвинул свою идею возникновения Вселенной и ее дальнейшего расширения из точки. Ей дали на некоторое время название «атома-отца». Сам Леметр категорически был против подобного образа и вообще теологической трактовки своей теории. Процесс возникновения Вселенной Леметр представил в форме Большого Взрыва. Молодой ученый первым попытался найти и вероятные следы начального Взрыва. Леметр допускал, что таким отголоском могли быть космические лучи. Его гипотезу астрономы заметили лишь после выступления в 1933 году, когда Леметр выдвинул новый вариант концепции расширения Вселенной — из плотного сгустка материи конечных, но очень малых размеров.

Задача формирования более конкретной, физически разработанной эволюционной космолого-космогонической модели расширяющейся Вселенной была решена в основном американским физиком Гамовым, русским по происхождению. Джордж (Георгий Антонович) Гамов (1904–1968) впервые предложил в 1946 году теорию, получившую затем наименование «теории Большого Взрыва» (а точнее — «Большого Удара»). Согласно ей, вся современная наблюдаемая Вселенная представляет собой результат катастрофически быстрого разлета материи, находившейся до того в сверхплотном состоянии, недоступном для описания в рамках современной физики.

Удаление галактик подчиняется необычным математическим закономерностям. Оно происходит с различными скоростями. Чем больше расстояние между галактиками, тем выше оказывается скорость их взаимного удаления.

«Мы в силах построить модель описанного выше „разбегания“ галактик, — пишет А.А. Гурнштейн, — если не будем рассматривать реальное бесконечное пространство трех измерений, а ограничимся в своей модели лишь поверхностью — пространством двух измерений. Представим себе, что „вся Вселенная“ расположена на некоторой замкнутой поверхности, которая подобна поверхности постоянно раздуваемого резинового шара. Пусть галактики в нашей модели изображаются точками, нанесенными на поверхности этого шара. По мере его раздувания все расстояния между „галактиками“, измеренные по поверхности шара, действительно будут систематически увеличиваться, причем скорость разбегания „галактик“ окажется тем больше, чем больше было первоначальное расстояние между ними».

Как считал Гамов, начавшееся при этом расширение материи — в форме неразделимой вначале высокотемпературной смеси излучения и вещества (элементарных частиц) — наблюдается и в наши дни в виде эффекта «красного смещения».

Гамов вместе со своими сотрудниками Р. Альфером и Р. Германом в 1948 году предсказал, что должно наблюдаться и остывшее первичное изотропное электромагнитное излучение тепловое с температурой около 5 К.

«Однако развитию теории в значительной степени препятствовало общее скептическое отношение астрофизиков тех лет к возможности решения столь фантастической задачи — понять „начало истории всей Вселенной в целом“, — пишут в своей книге „История астрономии“ А.И. Еремеева и Ф.А. Цицин. — С другой стороны, уловить в мировом пространстве с помощью имевшейся аппаратуры тепловое радиоизлучение столь низкой температуры специалисты-радиофизики считали совершенно невозможным уже из-за того, что подобный сигнал был бы заглушён радиоизлучением звезд, галактик, межзвездной среды, короче, космическим радиошумом.

Почти два десятилетия концепция Большого Взрыва для большинства астрономов оставалась „игрой ума“ немногих физиков и космологов. И только позднее стало ясно, что более раннему решению проблемы в немалой степени помешал тот разрыв в научных контактах, который все еще существует между современными теоретиками и наблюдателями. Сыграла существенную негативную роль и дифференцированность науки, из-за которой специалисты, даже работающие в близких областях, порой мало знают о проблемах своих соседей».

Следствием концепции первоначально горячей Вселенной явился вывод, что в наследство от этой эпохи, если только она действительно имела место, должно повсеместно сохраниться во Вселенной остаточное, или, как его называют, реликтовое, излучение в радиодиапазоне.

Канадский астрофизик Э. Мак-Келлар в 1941 году столкнулся с необычным явлением — возбужденным состоянием молекул межзвездного циана. Температура возбуждения составляла 2,3 К. Подобный факт мог стать основанием для вывода о наличии в мировом пространстве соответствующего излучения-возбудителя. Однако, похоже, авторы теории Большого Взрыва ничего не знали об этом открытии. Лишь много позднее то, что такое состояние молекул циана вызвано именно реликтовым излучением, доказали советский астрофизик И.С. Шкловский и независимо ряд других авторов.

Расчеты А.Г. Дорошкевича и И.Д. Новикова в 1964 году показали, что реликтовое излучение в принципе регистрируемо, и, следовательно, вывод теории Большого Взрыва возможно проверить с помощью наблюдений. Гораздо позднее задним числом выяснилось, что ко времени указанного расчета реликтовое излучение уже было открыто в СССР и в Японии. В СССР это открытие было опубликовано аспирантом Пулковской обсерватории Т.А. Шмаоновым в 1957 году.

«Но беда заключалась в том, — пишет Гурнштейн, — что наблюдатели и теоретики работали в отрыве друг от друга. Между ними не было обмена информацией. Наблюдатель не знал, как правильно истолковать свои странные результаты. Замечательная же статья теоретиков осталась незамеченной.

К середине шестидесятых годов радиоастрономы-экспериментаторы вознамерились построить специальную аппаратуру для обнаружения реликтового излучения. Но их опередили инженеры, выполнявшие исследования по борьбе с радиошумами при связи с искусственными спутниками Земли».

В 1965 году радиоинженеры А. Пензиас и Р. Вильсон (США) при испытании рупорной антенны для наблюдения американского спутника «Эхо» случайно открыли существование микроволнового (на волне 7,35 сантиметра) космического радиошума, не зависящего от направления антенны.

На протяжении 1966–1967 годов это открытие — открытие реликтового радиоизлучения Вселенной — было независимо друг от друга подтверждено рядом исследователей в разных странах. Особенности этого явления, соответствующего общему тепловому излучению Вселенной с температурой около 2,7 К, совпали с предсказаниями теории Большого Взрыва.

Авторы книги «История астрономии» отмечают: «Открытие реликтового излучения стало величайшим достижением в астрономии XX века и в значительной степени явилось результатом развития радиоастрономической техники и того, что сама научная атмосфера созрела для его восприятия. Это открытие сделало достоверным фактом по меньшей мере то, что Вселенная (Метагалактика) действительно эволюционирует. Наконец, открытие реликтового излучения стало мощным стимулом для дальнейшей разработки идеи Большого Взрыва.

Новым этапом развития представлений о ранних стадиях эволюции Вселенной стала „теория горячей Вселенной“, особенно в работах академика Я.Б. Зельдовича (1914–1987) и его школы. Представление о характере начального расширения Вселенной в наши дни сильно изменилось. Помимо главной трудности в описании такого „начала“ (недоступности его для современной теоретической физики), обнаружились другие серьезные трудности при попытке описать и последующую, уже в принципе доступную современной физике, но еще очень раннюю историю расширения Вселенной как целого.

С целью преодоления этих трудностей в 80-е годы была предложена концепция раздувающейся (или инфляционной) Вселенной (А. Гут, США; А Д. Линде, СССР). Обсуждается идея множественности и неоднократного возникновения в разные моменты времени самих раздувающихся вселенных. Таким образом, древнейшая идея возрождения Вселенной, идея бесконечной цепи рождений и гибели миров всех масштабов, как и концепция островных вселенных, родившаяся уже в результате соединения гравитационной теории и наблюдений, в наши дни возрождаются, но уже на несравненно более высоком уровне — как в отношении масштабов, так и качественного многообразия объектов. Эти идеи могут рассматриваться как предвестник, а может быть и начало уже третьей революции в космологической картине мира».

ТАЙНЫ ЖИВОГО

ОСНОВЫ АНАТОМИИ

В Средние века внимание к телу считалось греховным и преследовалось; вскрытия были запрещены или ограничивались единичными случаями. При таких условиях изучение анатомии не могло получить развития. Наоборот, культура эпохи Возрождения, поставив в центре внимания человека, начала изучать его тело. Анатомией занимались не только врачи, но и ученые, по своей основной деятельности далеко от нее стоящие. Так, Леонардо да Винчи был и анатомом.

В сотрудничестве с врачами Леонардо в течение многих лет производил в больницах вскрытия и анатомические зарисовки. Дань анатомии отдали и многие другие художники данной эпохи — Микеланджело, Альбрехт Дюрер.

Стремление овладеть природой, подчинить ее себе, открыть ее тайны не могло не выдвинуть и задачи преодоления болезней. А это для передовых людей данной эпохи значило изучить реально, на практике, в чем выражается болезнь, какие явления она вызывает. Значит, прежде всего, нужно было изучить тело человека.

Создателем современной анатомии и основателем школы анатомов справедливо считается бельгиец (фламандец) Везалий.

Андреас Везалий (настоящая фамилия Виттинг) (1514–1564) родился в Брюсселе Андреас вырос в семье потомственных медиков. Врачами были его дед и прадед, а отец служил аптекарем при дворе императора Карла V. Интересы окружающих, несомненно, повлияли на интересы и стремления юного Везалия. Учился Андреас сначала в школе, а затем в университете города Лувена, где получил разностороннее образование, изучил греческий и латинский языки, благодаря чему мог знакомиться с трудами ученых уже в юные годы. Очевидно, он прочел о медицине немало книг древних и современных ему ученых, так как труды его говорят о глубоких знаниях. Везалий самостоятельно, из костей казненного, собрал полный скелет человека. Это было первое анатомическое пособие в Европе.

С каждым годом все больше проявлялся интерес Везалия к изучению медицины, к анатомическим исследованиям. В свободное от учения время он у себя дома тщательно препарировал тела животных: мышей, кошек, собак, — с увлечением изучал строение их организма.

Стремясь совершенствовать свои знания в области медицины, особенно анатомии, Везалий в возрасте семнадцати лет направился в университет Монпелье, а в 1533 году он впервые появился на медицинском факультете Парижского университета, чтобы слушать лекции прославленного анатома Сильвия. Юный Везалий уже мог критически отнестись к методу преподавания анатомии.

В предисловии к трактату «О строении человеческого тела» он писал: «Мои занятия никогда бы не привели к успеху, если бы во время своей медицинской работы в Париже я не приложил к этому делу собственных рук… И сам я, несколько изощренный собственным опытом, публично провел самостоятельно треть из вскрытий».

Везалий задает на лекциях вопросы, которые свидетельствуют о его сомнениях в правоте учения Галена Гален — непререкаемый авторитет, его учение следует принимать без всяких оговорок, а Везалий доверяет больше своим глазам, чем трудам Галена.

Ученый справедливо считал анатомию основой медицинских знаний, и целью его жизни стало стремление возродить опыт далекого прошлого, развить и усовершенствовать метод изучения анатомии человека. Однако церковь, препятствовавшая развитию естественных наук, запрещала вскрытие трупов человека, считая это кощунством. Много трудностей пришлось преодолеть молодому анатому.

Для того чтобы иметь возможность заниматься анатомированием, он использовал любую возможность. Если заводились в кармане деньги, он договаривался с кладбищенским сторожем, и тогда в его руки попадал труп, годный для вскрытия. Если же денег не было, он, прячась от сторожа, вскрывал могилу сам, без его ведома. Что делать, приходилось рисковать!

Везалий так хорошо изучил кости скелета человека и животных, что мог, не глядя на них, на ощупь назвать любую кость.

Три года провел Везалий в университете, а потом обстоятельства сложились так, что он должен был покинуть Париж и снова отправиться в Лувен.

Там Везалий попал в неприятную историю. Он снял с виселицы труп казненного преступника и произвел вскрытие. Лувенское духовенство потребовало строжайшего наказания за такое кощунство. Везалий понял, что споры тут бесполезны, и счел за благо покинуть Лувен и отправился в Италию.

После получения в 1537 году докторской степени, Везалий стал преподавать анатомию и хирургию в Падуанском университете. Правительство Венецианской республики поощряло развитие науки о природе и стремилось расширить работу ученых в этом направлении.

Блестящий талант молодого ученого был замечен. Двадцатидвухлетнего Везалия, уже получившего за свои труды звание доктора медицины, назначили на кафедру хирургии с обязанностью преподавать анатомию.

Он с вдохновением читал лекции, которые всегда привлекали много слушателей, занимался со студентами и, главное, продолжал свои исследования. А чем глубже изучал он внутреннее строение организма, тем большое укреплялся в мысли, что в учении Галена немало весьма значительных ошибок, которых просто не замечали те, кто находился под влиянием галеновского авторитета.

Четыре долгих года работал он над своим трудом. Он изучал, переводил и переиздавал труды ученых-медиков прошлого, своих предшественников-анатомов. И в их трудах он нашел немало ошибок. «Даже крупнейшие ученые, — писал Везалий, — рабски придерживались чужих оплошностей и какого-то странного стиля в своих непригодных руководствах». Ученый стал доверять самой подлинной книге — книге человеческого тела, в которой нет ошибок. Ночами, при свете свечей, Везалий анатомировал трупы. Он поставил целью решить великую задачу — правильно описать расположение, формы и функции органов человеческого тела.

Результатом страстного и упорного труда ученого явился знаменитый трактат в семи книгах, появившийся в 1543 году и озаглавленный «О строении человеческого тела». Это был гигантский научный труд, в котором вместо отживших догм излагались новые научные взгляды. Он отразил культурный подъем человечества в эпоху Возрождения.

Книгопечатание быстро развивалось в Венеции и в Базеле, где Везалий печатал свой труд. Его книгу украшают прекрасные рисунки художника Стефана Калькара, ученика Тициана. Характерно, что изображенные на рисунках скелеты стоят в позах, свойственных живым людям, и пейзажи, окружающие некоторые скелеты, говорят о жизни, а не о смерти. Весь этот труд Везалия был направлен на пользу живого человека, на изучение его организма, чтобы найти возможность сохранить его здоровье и жизнь. Каждая заглавная буква в трактате украшена рисунком, изображающим детей, изучающих анатомию. Так было в древности: искусство анатомирования преподавалось с детства, знания передавались от отца сыну. Великолепная художественная композиция фронтисписа книги изображает Везалия во время публичной лекции и вскрытия трупа человека.

Везалий указал ряд ошибок Галена, касающихся строения руки, тазового пояса, грудной кости и др., но, прежде всего, строения сердца.

Гален утверждал, что в сердечной перегородке взрослого имеется отверстие, сохраненное с утробного возраста, и что поэтому кровь проникает из правого желудочка непосредственно в левый. Установив непроницаемость сердечной перегородки, Везалий не мог не прийти к мысли, что должен иметься какой-то другой путь проникновения крови из правого сердца в левое. Описав клапаны сердца, Везалий создал основные предпосылки для открытия легочного кровообращения, но это открытие было сделано уже его преемниками.

«Труд Везалия, — писал знаменитый русский ученый И. Павлов, — это первая анатомия человека в новейшей истории человечества, не повторяющая только указания и мнения древних авторитетов, а опирающаяся на работу свободного исследующего ума».

Труд Везалия взволновал умы ученых. Смелость его научной мысли была настолько необычна, что наряду с оценившими его открытия последователями у него появилось много врагов. Немало горя испытал великий ученый, когда его покидали даже ученики. Знаменитый Сильвий, учитель Везалия, назвал Везалия «Везанус», что означает — безумный. Он выступил против него с резким памфлетом, который назвал «Защита против клеветы на анатомические работы Гиппократа и Галена со стороны некоего безумца».

Большинство именитых медиков действительно стало на сторону Сильвия. Они присоединились к его требованию обуздать и наказать Везалия, посмевшего подвергнуть критике великого Галена. Такова была сила признанных авторитетов, таковы были устои общественной жизни того времени, когда всякое новшество вызывало настороженность, всякое смелое выступление, выходившее за рамки установленных канонов, расценивалось как вольнодумство. Это были плоды многовековой идеологической монополии церкви, насаждавшей косность и рутину.

Вскрыв десятки трупов, тщательно изучив скелет человека, Везалий пришел к убеждению, что мнение, будто у мужчин на одно ребро меньше, чем у женщин, совершенно неверно. Но такое убеждение выходило за рамки медицинской науки. Оно затрагивало церковное вероучение.

Не посчитался Везалий и с другим утверждением церковников. В его времена сохранялась вера в то, что в скелете человека есть косточка, которая не горит в огне, неуничтожима. В ней-то якобы и заложена таинственная сила, с помощью которой человек воскреснет в день страшного суда, чтобы предстать перед Господом Богом. И хотя косточку эту никто не видел, ее описывали в научных трудах, в ее существовании не сомневались. Везалий же, описавший строение человеческого тела, прямо заявил, что, исследуя скелет человека, он не обнаружил таинственной косточки.

Везалий отдавал себе отчет, к каким последствиям могут привести его выступления против Галена. Он понимал, что выступает против сложившегося мнения, задевает интересы церкви: «Я поставил себе задачу показать строение человека на нем самом. Гален же производил вскрытия не людей, а животных, особенно обезьян. Это не его вина — он не имел другой возможности. Но виноваты те, кто теперь, имея перед глазами органы человека, упорствуют в воспроизведении ошибок. Разве уважение к памяти крупного деятеля должно выражаться в повторении его ошибок? Нельзя, подобно попугаям, повторять с кафедр содержание книг, не делая собственных наблюдений. Тогда слушателям лучше учиться у мясников».

Везалий был новатором не только в изучении, но и в преподавании анатомии. Свои лекции он сопровождал демонстрациями трупа, а также скелета и натурщика Анатомические демонстрации он сопровождал разнообразными опытами на живых животных. В труде Везалия особое внимание обращает характер рисунков, нигде у него труп не изображен лежа, неподвижно, а всюду динамически, в движении, в рабочих позах. Эта своеобразная манера передачи тела представляла переход от описательной анатомии к физиологии. Рисунки в книге Везалия дают представление не только о строении, но отчасти и о функциях организма.

БОЛЬШОЙ КРУГ КРОВООБРАЩЕНИЯ

Есть истины, которые сегодня, с высот наших знаний, кажутся совершенно очевидными, и трудно предположить даже, что было время, когда люди не знали их, а, обнаружив, еще оспаривали их. Одна из таких истин — большой круг кровообращения в живых организмах — рождалась особенно мучительно и трудно. В течение полутора тысяч лет господства культа Галена в медицине, очевидно, самого долгого и реакционного культа в истории науки, люди считали, будто артериальная и венозная кровь — жидкости суть разные, и коль первая «разносит движение, тепло и жизнь», то вторая призвана «питать органы».

Инакомыслящие были нетерпимы. Испанский врач Мигель Сервет в своем сочинении уделил несколько страниц кровообращению: описал открытый им малый круг кровообращения. В том же 1553 году церковники сожгли его как «богоотступника» вместе с написанной им «еретической» книгой и лишь три ее экземпляра не попали в протестантский костер, который испепелил в Женеве ее автора. Поистине семь кругов ада прошли те, кто пришел к кругу кровообращения. Их было несколько, этих мужественных первопроходцев, которым люди поставили памятники: в Мадриде — Мигелю Сервету, в Болонье — Карло Руини, в Пизе — Андреа Чезальпино, в Англии — Вильяму Гарвею, — тому, кто поставил последнюю точку.

Уильям Гарвей (1578–1657) родился в Фолкстоуне в графстве Кент, в семье преуспевающего купца. Старший сын и главный наследник, Вильям с радостью поменял «дело» сначала на узкую скамью Кентерберийского колледжа, а затем на долгие годы добровольно заточил себя под своды Кембриджа. В двадцать лет Гарвея влекут естественные науки. По обычаю школяров того времени Вильям отправляется в пятилетнее путешествие. Сначала он едет во Францию, а потом в Германию.

В 1598 году Гарвей отправился в Падуанский университет. Здесь он слушает лекции знаменитого анатома Фабрицио д'Аквапенденте. Этот ученый открыл в венах особые клапаны, однако так и не понял их значения. Для него они были лишь деталью строения вен.

А вот Гарвей задумался над ролью этих клапанов. Он решается на эксперимент над самим собой. Туго перевязав свою руку, Вильям увидел, как рука ниже перевязки вскоре затекла, вены набухли, а кожа потемнела. Следующий опыт Гарвей произвел над собакой. Он перевязал ей шнурком обе ноги. И снова ниже перевязок ноги начали отекать, а вены набухать. Когда набухшая вена на одной ноге была надрезана, из пореза закапала густая темная кровь. После же надреза на другой ноге выше перевязки из пореза не вытекло ни одной капли крови.

Стало ясно, что ниже перевязки вена переполнена кровью, а над перевязкой крови в ней нет. Ответ напрашивался сам собой, но Гарвей не спешил с выводами. Осторожный исследователь, он много раз проверял свои опыты и наблюдения.

В 1602 году Вильям получил степень доктора и поселился в Лондоне. В 1607 году он получил кафедру в Лондонской коллегии врачей, а в 1609 году Гарвей занял место доктора в госпитале св. Варфоломея. В 1625 году Гарвей становится почетным медиком при дворе Карла I.

Он делает прекрасную карьеру, но наука его интересует больше. Гарвей вскрывает различных животных, но чаще всего кошек, собак, телят. Препарирует ученый и трупы людей: запрещения вскрывать трупы уже не существовало. И всякий раз он рассматривал вены и артерии, разрезал сердце, изучал желудочки и предсердия. С каждым годом Гарвей все лучше и лучше разбирался в сети кровеносных сосудов, строение сердца перестало быть для него загадкой.

В 1616 году ему предложили кафедру анатомии и хирургии в коллегии врачей, а уже на следующий год он излагал свои взгляды на кровообращение. Во время лекции Гарвей впервые высказал убеждение, что кровь в организме непрерывно обращается — циркулирует, и что центральной точкой кровообращения является сердце. Делая подобное заключение, Гарвей опровергал теорию Галена о том, что центром кровообращения является печень.

Загадка пути крови в теле была разгадана. Гарвей наметил схему кровообращения. Но, рассказав о своем открытии на лекции, он не спешил опубликовать его. Вильям занялся новыми опытами и наблюдениями. Ученый, как всегда, обстоятелен и нетороплив. Только в 1628 году, когда Гарвею уже пятьдесят лет, выходит его «Анатомическое исследование о движении сердца и крови у животных», ричем появляется труд в свет не дома, в Англии, а в далеком Франкфурте. Небольшая книга в 72 страницы сделала его бессмертным.

В ней ученый подробно описал результаты тридцатилетних опытов, наблюдений, вскрытий и раздумий. Содержание ее сильно противоречило многому из того, во что крепко верили анатомы и врачи не только давних времен, но и современники Гарвея.

Гарвей считал, что сердце — это мощный мышечный мешок, разделенный на несколько камер. Действуя подобно насосу, оно нагнетает кровь в сосуды (артерии). Толчки сердца — это последовательные сокращения его отделов: предсердий, желудочков, это внешние признаки работы «насоса». Кровь движется по двум кругам, все время возвращаясь в сердце. В большом круге кровь движется от сердца к голове, к поверхности тела, ко всем его органам. В малом круге кровь движется между сердцем и легкими. В сосудах воздух отсутствует, поскольку они наполнены кровью. Общий путь крови: из правого предсердия — в правый желудочек, оттуда — в легкие, из них — в левое предсердие. Это и есть малый круг кровообращения. Честь открытия малого круга кровообращения принадлежит испанцу Сервету. Гарвей этого знать не мог, ведь книга Сервета была сожжена.

Из левого желудочка кровь выходит на пути большого круга. Сначала по крупным, потом по все более и более мелким артериям она течет ко всем органам, к поверхности тела. Обратный путь к сердцу (в правое предсердие) кровь совершает по венам. И в сердце, и в сосудах кровь движется лишь в одном направлении Это происходит потому, что клапаны сердца не допускают обратного тока. Клапаны в венах открывают путь лишь в сторону сердца.

Гарвей, конечно, не знал, как попадает кровь из артерий в вены. Без микроскопа путь крови в капиллярах проследить невозможно. Капилляры открыл итальянский ученый Мальпиги в 1661 году, т е. через четыре года после смерти Гарвея. Вместе с тем Гарвей понимал, что переход крови из артерий в вены нужно искать там, где находятся мельчайшие разветвления артерий и вен.

Не знал Гарвей и роли легких. В его время не только не имели представления о газообмене, но и состав воздуха был неизвестен. Гарвей только утверждал, что в легких кровь охлаждается и изменяет свой состав.

Рассуждения и доказательства, приведенные в книге Гарвея, были очень убедительны. И все же, как только книга появилась, на Гарвея посыпались нападки со всех сторон. Авторитет Галена и других древних мудрецов был еще слишком велик. В числе противников Гарвея были и крупные ученые, и множество врачей-практиков. Взгляды Гарвея были встречены враждебно. Ему даже дали прозвище «Шарлатан». Одним из первых подверг Гарвея уничижительной критике «Царь анатомов», личный врач Марии Медичи — Риолан. За Риоланом — Пои Патен (Мольер отомстил ему за Гарвея, высмеяв в своем «Мнимом больном»), за Патеном — Гоф-фман, Черадини, — противников было куда больше, чем страниц в его книге. «Лучше ошибки Галена, чем истины Гарвея!» — таков был их боевой клич.

Гарвею пришлось пережить много неприятностей, но затем с его учением стали считаться все больше и больше. Молодые врачи и физиологи пошли за Гарвеем, и ученый под конец жизни дождался признания своего открытия. Медицина и физиология вступили на новый, подлинно научный путь. Открытие Гарвея создало коренной перелом в развитии медицинской науки

МИКРОБЫ

Отдельные наиболее прозорливые умы и ранее высказывали смутные догадки о существовании каких-то мельчайших, не видимых простым глазом существ, повинных в распространении и возникновении заразных болезней. Но все эти догадки так и оставались только догадками. Ведь никто никогда не видел таких мелких организмов.

Первым, кому выпала великая честь приоткрыть завесу в неведомый дотоле мир живых существ — микроорганизмов, которые играют огромную роль в природе и в жизни человека, стал голландец Левенгук.

Антони ван Левенгук (1632–1723) родился в голландском городе Делфте в семье Антонизона ван Левенгука и Маргарет Бел ван ден Берч. Детство его было нелегким. Никакого образования он не получил. Отец, небогатый ремесленник, отдал мальчика на учение к суконщику. Вскоре Антони стал самостоятельно торговать мануфактурой.

Затем Левенгук был кассиром и бухгалтером в одном из торговых учреждений в Амстердаме. Позднее он служил стражем судебной палаты в родном городе, что по современным понятиям соответствует должностям дворника, истопника и сторожа одновременно. Знаменитым Левенгука сделало его необычное увлечение.

Еще в молодости Антони научился изготовлять увеличительные стекла, увлекся этим делом и достиг в нем изумительного искусства. На досуге он любил шлифовать оптические стекла и достиг в этом виртуозного мастерства. В те времена самые сильные линзы увеличивали изображение лишь в двадцать раз. «Микроскоп» Левенгука — это, по существу, очень сильная лупа. Она увеличивала до 250–300 раз. Эти замечательные линзы и оказались окном в новый мир.

В начале 1673 года доктор Грааф прислал письмо на имя секретаря Лондонского Королевского общества. В этом письме он сообщал «о проживающем в Голландии некоем изобретателе по имени Антони ван Левенгук, изготавливающем микроскопы, далеко превосходящие известные до сих пор микроскопы Евстахия Дивины».

Наука должна быть благодарна доктору Граафу за то, что он, узнав о Левенгуке, успел написать свое письмо: в августе того же года Грааф в возрасте 32 лет умер. Возможно, если бы не он — мир так и не узнал бы о Левенгуке, талант которого, лишенный поддержки, зачах бы, а его открытия были бы сделаны еще раз другими, но уже много позднее. Королевское общество связалось с Левенгуком, и началась переписка.

Проводя свои исследования без всякого плана, ученый-самоучка сделал множество важных открытий. В то время биологическая наука находилась на очень низкой ступени развития. Основные законы, управляющие развитием и жизнью растений и животных, еще не были известны. Мало знали ученые и о строении тела животных и человека. И множество удивительных тайн природы раскрывалось перед взором каждого наблюдательного натуралиста, обладавшего талантом и упорством.

Левенгук был одним из наиболее выдающихся исследователей природы. Он первый подметил, как кровь движется в мельчайших кровеносных сосудах — капиллярах Левенгук увидел, что кровь — это не какая-то однородная жидкость, как думали его современники, а живой поток, в котором движется великое множество мельчайших телец. Теперь их называют эритроцитами. В одном кубическом миллиметре крови находится около 4–5 миллионов эритроцитов.

Очень важно и другое открытие Левенгука: в семенной жидкости он впервые увидел сперматозоиды — те маленькие клетки с хвостиками, которые, внедряясь в яйцеклетку, оплодотворяют ее, в результате чего возникает новый организм.

Рассматривая под своей лупой тоненькие пластинки мяса, Левенгук обнаружил, что мясо, а точнее говоря, мышцы, состоит из микроскопических волоконец.

Левенгук стал одним из первых, кто начал проводить опыты на себе. Это из его пальца шла кровь на исследование, и кусочки своей кожи он помещал под микроскоп, рассматривая ее строение на различных участках тела, и подсчитывая количество сосудов, которые ее пронизывают. Изучая размножение таких малопочтенных насекомых, как вши, он помещал их на несколько дней в свой чулок, терпел укусы, но узнал, в конце концов, каков у его подопечных приплод.

Он изучал выделения своего организма в зависимости от качества съеденной пищи. Левенгук испытывал на себе и действие лекарств. Заболевая, он отмечал все особенности течения своей болезни, а перед смертью скрупулезно фиксировал угасание жизни в своем теле.

Но главным было то, что в 1673 году Левенгук первым из людей увидел микробов. Долгие, долгие часы он рассматривал в микроскоп все, что попадалось на глаза: кусочек мяса, каплю дождевой воды или сенного настоя, хвостик головастика, глаз мухи, сероватый налет со своих зубов и т. п. Каково же было его изумление, когда в зубном налете, в капле воды и многих других жидкостях он увидел несметное множество живых существ. Они имели вид и палочек, и спиралей, и шариков. Иногда эти существа обладали причудливыми отростками или ресничками. Многие из них быстро двигались.

Вот что писал Левенгук в лондонское королевское общество о своих наблюдениях: «После всех попыток узнать, какие силы в корне (хрена — А) действуют на язык и вызывают его раздражение, я положил приблизительно пол-унции корня в воду: в размягченном состоянии его легче изучать. Кусочек корня оставался в воде около трех недель. 24 апреля 1673 года я посмотрел на эту воду под микроскопом и с большим удивлением увидел в ней огромное количество мельчайших живых существ.

Некоторые из них в длину были раза в три-четыре больше, чем в ширину, хотя они и не были толще волосков, покрывающих тело вши… Другие имели правильную овальную форму. Был там еще и третий тип организмов, наиболее многочисленный, — мельчайшие существа с хвостиками». Так свершилось одно из великих открытий, положившее начало микробиологии — науке о микроскопических организмах.

«В своих наблюдениях я провел времени больше, чем некоторые думают, — писал Левенгук. — Однако занимался ими с наслаждением и не заботился о болтовне тех, кто об этом так шумит: „Зачем затрачивать столько труда, какая от него польза?“, но я пишу не для таких, а только для любителей знаний».

Не известно точно, мешал ли кто деятельности Левенгука, но однажды он написал: «Все мои старания направлены к одной только цели — сделать очевидной истину и приложить полученный мной небольшой талант к тому, чтобы отвлечь людей от старых и суеверных предрассудков».

В 1680 году научный мир официально признал достижения Левенгука и избрал его действительным и равноправным членом Лондонского королевского общества — несмотря на то, что он не знал латыни и по тогдашним правилам не мог считаться настоящим ученым. Позднее он был принят и во Французскую академию наук.

Письма Левенгука в Королевское общество, к ученым, к политическим и общественным деятелям своего времени — Лейбницу, Роберту Гуку, Христиану Гюйгенсу — были изданы на латинском языке еще при его жизни и заняли четыре тома. Последний вышел в 1722 году, когда Левенгуку было 90 лет, за год до его смерти.

Левенгук так и вошел в историю как один из крупнейших экспериментаторов своего времени. Восславляя эксперимент, он за шесть лет до смерти написал пророческие слова: «Следует воздержаться от рассуждений, когда говорит опыт».

Со времени Левенгука и до наших дней микробиология добилась большого прогресса. Она выросла в широко разветвленную область знания и имеет очень большое значение и для всей человеческой практики (медицины, сельского хозяйства, промышленности), и для познания законов природы. Десятки тысяч исследователей во всех странах мира неутомимо изучают огромный и многообразный мир микроскопических существ. И все они чтят Левенгука — выдающегося голландского биолога, с которого началась история микробиологии.

КЛАССИФИКАЦИЯ РАСТЕНИЙ

В XVIII столетии, когда биологические науки еще находились в зародыше, не было того дробления науки о природе на множество отдельных специальных наук. По мере накопления знаний, огромное количество нового материала все более и более затрудняло исследование, подавляло собою науку, и в начале XVIII столетия в описательной зоологии и ботанике царил страшный хаос.

Причиной такого печального состояния этих наук было отсутствие ясных и точных методов исследования. Два главных недостатка тормозили дальнейшее развитие их и производили бесконечную путаницу: отсутствие точных описаний и обозначений различных видов, с одной стороны, и неумелая и неправильная классификация — с другой.

Понятие о виде в том смысле, в каком оно теперь существует в науке, было выработано впервые во второй половине XVII века англичанином Реем. Когда мы имеем перед собою известное количество экземпляров какого-либо животного, во всем почти между собою сходных, но некоторые из них по какому-нибудь постоянному признаку отличаются от остальных, мы их выделяем и относим к особому виду — если, конечно, эта разница не зависит от пола или возраста животного. Эти отличительные признаки представляют из себя видовые признаки и передаются строгопо наследству. Это правило применяется одинаково к животным и растениям. «Формы, представляющие между собою видовые отличия, сохраняют их неизменно, и никогда один вид (растений) не происходит от семян другого, и наоборот», — говорит Рей. Это определение заключало в себе зародыш учения о неизменяемости видов, которое впоследствии, в эпоху Линнея и Кювье, обратилось в научную догму и долгое время царствовало в науке, пока Дарвин не положил конец его господству.

Таким образом, зоология и ботаника того времени занимались в основном изучением и описанием видов, но в распознавании их царила огромная путаница. Описания, которые автор давал новым животным или растениям, были обыкновенно так сбивчивы и неточны, что впоследствии часто не было возможности доискаться, о каком именно виде идет речь, и трудно было узнать описанную форму в природе. Отсутствие собственных названий для огромного большинства вновь изучаемых организмов влекло за собою многосложные, неуклюжие определения, которыми один вид отличался в литературе от другого.

Вторым основным недугом тогдашней науки было отсутствие мало-мальски сносной и точной классификации. Существовала острая необходимость располагать их в таком порядке, чтобы данное растение, например, всегда можно было отыскать в книге, заранее зная, где его нужно искать; чтобы, имея перед собою неизвестный вид, можно было легко сравнить его с описаниями всех сходных видов и установить, новый это вид или уже описанный. Понятно, что уже древнейшие ученые по естественным наукам, распределяя свой материал на определенные категории, определяли известные группы форм, сходных между собой. Но незнание строения организмов и значение отдельных органов, отсутствие точных наблюдений, неумение отличить важные и постоянные признаки от неважных и изменчивых делали всякую классификацию случайной, произвольной и совершенно неточной. Растения, весьма между собой сходные, часто относились к разным группам.

В конце XVII века Реем, Турнефором и другими было сделано несколько попыток водворить порядок в распределении растений, но попытки эти не были особенно успешны. В основу деления клалось обыкновенно строение одного какого-нибудь органа, например, плода или цветка. Турнефор, система которого пользовалась особенным успехом, делил растения на классы главным образом на основании внешнего вида цветка. Но в большинстве случаев форма цветка крайне изменчива даже у близких форм, и, кроме того, строго определить форму венчика как воронковидного, колокольчикового или другого — более чем затруднительно.

Эти основные недостатки систематической ботаники и были исправлены гением Карла Линнея. Оставаясь на той же почве изучения природы, на которой стояли его предшественники и современники, он явился могущественным реформатором науки. Заслуга его — чисто методологическая.

Линней воспользовался учением о виде в той форме, как оно было высказано Реем, и ввел, для обозначения отдельных видов и отличия их друг от друга, бинарную (двойную) номенклатуру, сохранившуюся в науке и до сих пор.

Карл Линней (1707–1778) родился в Швеции, в деревеньке Розгульт. Когда мальчику минуло десять лет, его отдали в начальную школу в городке Вексие. По окончании гимназии Карл поступает в Лундский университет, но вскоре переходит оттуда в один из самых престижных университетов Швеции — в Упсала. Линнею было всего 23 года, когда профессор ботаники Олуас Цельзий взял его к себе в помощники, после чего сам, Карл еще будучи студентом, начал преподавать в университете.

Весной 1735 года Линней прибыл в Голландию, в Амстердам. В маленьком университетском городке Гардервике он сдал экзамен и 24 июня защитил диссертацию на медицинскую тему — о лихорадке, — заготовленную им еще в Швеции. Там же Линней составил и напечатал первый набросок своего знаменитого труда «Systema naturae», положившего основание систематической зоологии и ботаники в современном смысле. С этого издания начинается ряд быстрых научных успехов Линнея.

В новые его трудах, изданных в 1736–1737 годах, уже заключались в более или менее законченном виде его главные и наиболее плодотворные идеи: система родовых и видовых названий, улучшенная терминология, искусственная система растительного царства.

В это время ему поступило блестящее предложение стать личным врачом Георга Клиффорта с жалованием в 1000 гульденов и полным содержанием. В его имении Гартекампе, около Гарлема, был знаменитый в Голландии сад, в котором он, не считаясь с издержками, в огромных размерах занимался культурой и акклиматизацией чужеземных растений, — растений Южной Европы, Азии, Африки, Америки. При саде у него были и гербарии, и богатая ботаническая библиотека. Все это способствовало научной работе Линнея.

Несмотря на успехи, которые окружали Линнея в Голландии, его начинает мало-помалу тянуть домой. В 1738 году он возвращается на родину. В короткий период своей стокгольмской жизни Линней принял участие в основании Стокгольмской академии наук.

В 1742 году сбылась мечта Линнея: он становится профессором ботаники в своем родном университете. Кафедру он занимал более тридцати лет и покинул ее лишь незадолго до смерти.

Но основным делом своей жизни Линней все же считал систематизацию растений. Главная работа «Система растений» заняла целых 25 лет, и только в 1753 году он опубликовал этот труд.

Идея Линнея состояла в следующем: сходные между собою виды ученый соединил в роды. Несколько видов, сходных между собою по главным признакам и отличающихся лишь второстепенными чертами, причисляются к одному роду и получают одно общее название. Так, например, родовое название смородины будет Ribes. Отдельные же виды этого рода обозначаются путем прибавления видовых названий к родовому. Так красная смородина будет Ribes rubrum, черная — Ribes nigrum. Крыжовник настолько близок к этим кустарникам, что причисляется к тому же роду и называется Ribes grossularia.

До Линнея же каждый вид отличался от смежных неуклюжей характеристикой, кратким описанием, всегда недостаточным для полного определения. Вот как, например, обозначался старинными ботаниками обыкновенный шиповник: rosa silvestris vulgaris flore odorato incarnato (он же назвал ее Rosa canina, и никакая другая роза не могла подразумеваться под этим именем. При двойной номенклатуре, встречая название неизвестного растения, по его родовому названию мы сразу можем видеть, с каким видом оно имеет наиболее сходства. Линнеевская система представляет большие практические удобства. Так как родов на Земле, конечно, несравненно меньше, чем видов, то необходимость создавать новые названия этим значительно облегчается. В различных родах можно употреблять одинаковые видовые названия без опасения вызвать путаницу: одни и те же прилагательные встречаются в систематике на каждом шагу, никого не затрудняя.

Но для того чтобы новая номенклатура оказалась плодотворной, необходимо было, чтобы виды, получившие условное название, в то же время были настолько точно и подробно описаны, чтобы их невозможно было смешать с другими видами того же рода. Линней это и делал. Он первый ввел в науку строго определенный, точный язык и точное определение признаков. Специальная терминология, которая всегда так запугивает новичков при первом знакомстве с ботаникой или зоологией, представляет из себя единственный способ сориентироваться в массе органических форм и служит драгоценным ключом к их изучению. Линней был творцом строгого научного языка в зоологии и ботанике.

Выработав, таким образом, основания научного определения видов, Линней в своих сочинениях описал множество растительных и животных форм. Он сам же и показал пример, как пользоваться созданным им научным языком: его краткие диагнозы видов отличаются сжатостью и точностью.

Линней первым создал удобную, точную и строгую систему растений, хотя и на искусственных началах. Искусственная она потому, что при определении сходства растений и классификации их он принимал во внимание не все черты сходства и различия, не совокупность всех морфологических признаков растения — совокупность, которая одна может определить истинное родство двух форм, а построил всю свою систему исключительно на основании одного только органа — цветка. В этом его система сходна с системой Турнефора. Однако вместо расплывчатой, неопределенной и обманчивой общей формы он принял за основу деления число — и этим создал простой, остроумный и точный ключ к изучению ботанической систематики.

Общее представление о способах размножения растений, о существовании у них, как у животных, мужского и женского пола и полового размножения, существовало еще у древних. В XVII веке вопросу о размножении растений был посвящен целый ряд исследований различных ученых, благодаря которым были открыты мужские и женские органы цветка — тычинки и пестики — и описан акт опыления. Линней еще студентом в Упсале познакомился с сочинением Вальяна, ученика Турнефора, где были изложены новые данные о размножении растений. Уже тогда, по-видимому, у Линнея появилась мысль воспользоваться этими важными органами для классификации растений. Исполнение этой идеи и привело его к знаменитой искусственной системе растений.

Принцип его чрезвычайно нагляден и прост: в основу деления положены тычинки и пестики цветка. Отдельные классы характеризуются числом и расположением тычинок.

Разделив сначала растения на явнобрачные (с цветком, тычинками и пестиками) и тайнобрачные (бесцветковые), Линней создал из первых 23 класса, а последние соединил в один.

Практические достоинства новой системы были очень велики. Всякий новый вид растения легко находил в ней себе место. Определение растений, систематическое распределение их чрезвычайно облегчалось. Все это способствовало ее быстрому распространению.

Недостаток этой системы в том, что она искусственна. Число тычинок не находится в тесной связи со всей организацией растения, и потому классы Линнея представляют из себя в сущности беспорядочный калейдоскоп форм, механически втиснутых в одну рамку. Применение такого одностороннего критерия часто приводило к насильственному разделению очень близких, несомненно, родственных форм в разные классы. Эти недостатки Линней ясно сознавал. Он и сам смотрел на свою систему как на временную, как на удобный метрд для изучения растений в ожидании более естественной их классификации. Поэтому он нередко сам нарушает строгость своей системы, уступая требованию близкого сходства организмов, родства их. «Естественная система», которая владела умами ученых прошлого столетия, выражала собой бессознательное искание родства, общности происхождений растений.

Линней не открывал новых областей знания и неизвестных дотоле законов природы, но он создал новый метод, ясный, логический, и при помощи его внес свет и порядок туда, где до него царили хаос и сумятица, чем дал огромный толчок науке, могущественным образом проложив дорогу для дальнейшего исследования. Огромное количество органических форм, давившее своим богатством науку и неподдававше-еся описанию и распределению, с помощью методов, созданных Линнеем, подверглось быстрой разработке и легко могло быть приведено в систему, удобную для изучения. Это был необходимый шаг в науке, без которого был бы невозможен дальнейший прогресс.

ТЕОРИЯ ЭВОЛЮЦИИ ОРГАНИЧЕСКОГО МИРА

В 1909 году в Париже было большое торжество: открывали памятник великому французскому натуралисту Жану Батисту Ламарку в ознаменование столетия со дня выхода в свет его знаменитого сочинения «Философия зоологии». На одном из барельефов этого памятника изображена трогательная сцена: в кресле в грустной позе сидит слепой старик — это сам Ламарк, потерявший в старости зрение, а рядом стоит молодая девушка — его дочь, которая утешает отца и обращается к нему со словами:

«Потомство будет восхищаться вами, мой отец, оно отомстит за вас».

Жан-Батист де Моне шевалье де Ламарк родился 1 августа 1744 года во Франции, в небольшом местечке. Он был одиннадцатым ребенком в обедневшей аристократической семье. Родители хотели сделать его священником и определили в иезуитскую школу, но после смерти отца шестнадцатилетний Ламарк оставил школу и вступил в 1761 году добровольцем в действующую армию. Там он проявил большую храбрость и получил звание офицера. После окончания войны Ламарк приехал в Париж, повреждение шеи заставило его оставить военную службу. Он стал учиться медицине. Но он больше интересовался естественными науками, в особенности ботаникой. Получая незначительную пенсию, он для заработка поступил в один из банкирских домов.

После ряда лет усиленных занятий трудолюбивый и талантливый молодой ученый написал большое сочинение в трех томах — «Флора Франции», изданное в 1778 году. Там описано множество растений и дано руководство к их определению. Эта книга сделала имя Ламарка известным, и в следующем году его избрали членом Парижской академии наук. В Академии он с успехом продолжал заниматься ботаникой и приобрел большой авторитет в этой науке. В 1781 году его назначили главным ботаником французского короля.

Другим увлечением Ламарка была метеорология. С 1799 по 1810 год он издал одиннадцать томов, посвященных этой науке. Занимался он физикой и химией.

В 1793 году, когда Ламарку уже было под пятьдесят, его научная деятельность в корне изменилась. Королевский ботанический сад, где работал Ламарк, был преобразован в Музей естественной истории. Свободных кафедр ботаники в музее не оказалось, и ему предложили заняться зоологией. Трудно было пожилому человеку оставить прежнюю работу и перейти на новую, но огромное трудолюбие и гениальные способности Ламарка все преодолели. Лет через десять он сделался таким же знатоком в области зоологии, каким был в ботанике.

Прошло немало времени, Ламарк состарился, перешагнул рубеж в шестьдесят лет. Он знал теперь о животных и растениях почти все, что было известно науке того времени. Ламарк решил написать такую книгу, в которой не описывались бы отдельные организмы, а были бы разъяснены законы развития живой природы. Ламарк задумал показать, как появились животные и растения, как они изменялись и развивались и как достигли современного состояния. Говоря языком науки, он захотел показать, что животные и растения не созданы такими, каковы они есть, а развивались в силу естественных законов природы, т. е. показать эволюцию органического мира.

Это была нелегкая задача. Лишь немногие ученые до Ламарка высказывали догадки об изменяемости видов, но только Ламарку с его колоссальным запасом знаний удалось разрешить эту задачу. Поэтому Ламарк заслуженно считается творцом первой эволюционной теории.

Представления об изменяемости окружающего мира (в том числе живых существ) сложились еще в античности. Об изменяемости мира размышляли, например, древнегреческие философы Гераклит Эфесский, Эмпедокл, Демокрит, древнеримский философ Тит Лукреций Кар. Позднее появилась система мировоззрения, основанного на религиозных догмах о неизменности созданного Творцом мира, — креационизм. Затем в XVII–XVIII веках сформировались новые представления об изменяемости мира и о возможности исторического изменения видов организмов, получившие название — трансформизм.

Среди естествоиспытателей и философов-трансформистов стали известны имена Роберта Гука, Жоржа Луи Леклерка Бюффона, Дени Дидро, Жюльена Офре де Ламетри, Иоганна Вольфганга Гете, Эразма Дарвина, Этьена Жоффруа Сент-Илера. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды. При этом большинство трансформистов еще не имели целостной и последовательной концепции эволюции.

Свою революционную книгу Ламарк напечатал в 1809 году и назвал ее «Философия зоологии», хотя там речь идет не только о животных, но и о всей живой природе. Не следует думать, что все интересовавшиеся в то время наукой обрадовались этой книге и поняли, что Ламарк поставил перед учеными великую задачу. В истории науки часто бывало, что великие идеи оставались современникам непонятными и получали признание лишь много лет спустя.

Так случилось и с идеями Ламарка. Одни ученые не обратили на его книгу никакого внимания, другие посмеялись над ней. Наполеон, которому Ламарк вздумал преподнести свою книгу, так выбранил его, что тот не мог удержаться от слез.

Под конец жизни Ламарк ослеп и, всеми забытый, умер 18 декабря 1829 года 85 лет от роду. С ним оставалась лишь его дочь Корнелия. Она заботилась о нем до самой смерти и писала под его диктовку.

Слова Корнелии, запечатленные на памятнике Ламарку, оказались пророческими потомство действительно оценило труды Ламарка и признало его великим ученым. Но это случилось не скоро, через много лет после смерти Ламарка, после того, как появилось в 1859 году замечательное сочинение Дарвина «Происхождение видов». Дарвин подтвердил правильность эволюционной теории, доказал ее на многих фактах и заставил вспомнить о своем забытом предшественнике.

Сущность теории Ламарка заключается в том, что животные и растения не всегда были такими, какими мы их видим теперь. В давно прошедшие времена они были устроены иначе и гораздо проще, чем теперь. Жизнь на Земле возникла естественным путем в виде очень простых организмов. С течением времени они постепенно изменялись, совершенствовались, пока не дошли до современного, знакомого нам состояния Таким образом, все живые существа происходят от непохожих на них предков, более просто и примитивно устроенных.

Отчего же органический мир, или, иначе говоря, все животные и растения, не стоял неподвижно, как часы без завода, а двигался вперед, развивался, изменялся, как изменяется и теперь? Ламарк дал ответ и на этот вопрос.

Он приводит два основных закона эволюции.

«Первый закон. У всякого животного, не достигшего предела своего развития, более частое и более длительное употребление какого-нибудь органа укрепляет мало-помалу этот орган, развивает и увеличивает его и придает ему силу, соразмерную длительности употребления, между тем как постоянное неупотребление того или иного органа постепенно ослабляет его, приводит к упадку, непрерывно уменьшает его способности и, наконец, вызывает его исчезновение.

Второй закон. Все, что природа заставила особей приобрести или утратить под влиянием условий, в которых с давних пор пребывает их порода, и, следовательно, под влиянием преобладания употребления или неупотребления той или иной части (тела), — все это природа сохраняет путем размножения у новых особей, которые происходят от первых, при условии, если приобретенные изменения общи обоим полам или тем особям, от которых новые особи произошли».

Совершенствуя и уточняя свою теорию, Ламарк во «Введении» к «Естественной истории беспозвоночных» дал новую, несколько расширенную редакцию своих законов эволюции.

«1. Жизнь свойственными ей силами стремится непрерывно увеличивать объем всех своих тел и расширять размеры их до пределов, установленных ею.

2. Образование нового органа в теле животного происходит от новой появившейся и продолжающей чувствоваться потребности и от нового движения, которое эта потребность порождает и поддерживает.

3. Развитие органов и сила их действия всегда зависит от употребления этих органов.

4. Все, что приобретено, отмечено или изменено в организации индивидуумов в течение их жизни, сохраняется путем генерации и передается новым видам, которые происходят от тех, кто испытал это изменение».

Ламарк иллюстрировал свое теоретическое построение примерами.

«Птица, которую влечет к воде потребность найти добычу, необходимую ей для поддержания жизни, растопыривает пальцы ног, когда хочет грести и двигаться по поверхности воды. Благодаря этим непрерывно повторяющимся движениям пальцев кожа, соединяющая пальцы у их оснований, приобретает привычку растягиваться. Так, с течением времени образовались те широкие перепонки между пальцами ног, которые мы видим теперь у уток, гусей и т д.».

«…Береговая птица, не любящая плавать, но которая все же вынуждена отыскивать пищу у самого берега, постоянно подвергается опасности погрузиться в ил. И вот, стремясь избегнуть необходимости окунать тело в воду, птица делает всяческие усилия, чтобы вытянуть и удлинить свои ноги. В результате длительной привычки, усвоенной данной птицей и прочими особями ее породы, постоянно вытягивать и удлинять ноги, все особи этой породы как бы стоят на ходулях, так как мало-помалу у них образовались длинные голые ноги…»

Как отмечает Николай Иорданский: «Ламарк впервые выделил два самых общих направления эволюции: восходящее развитие от простейших форм жизни ко все более сложным и совершенным и формирование у организмов приспособлений в зависимости от изменений внешней среды (развитие „по вертикали“ и „по горизонтали“). Как ни странно, обсуждая взгляды Ламарка, современные биологи чаще вспоминают только вторую часть его теории (развитие приспособлений у организмов), которая была очень близка ко взглядам трансформистов — предшественников и современников Ламарка, и оставляют в тени её первую часть. Однако именно идея восходящей, или прогрессивной, эволюции — наиболее оригинальная часть теории Ламарка. Ученый полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования, повышения общего уровня организации, которое Ламарк назвал градацией. Движущей силой градаций Ламарк считал „стремление природы к прогрессу“, изначально присущее всем организмам и заложенное в них Творцом…

…Ламарк считал, что изменения, которые растения и животные приобретают в течение жизни, наследственно закрепляются и передаются потомкам; ученые называют их модификациями.

Современники сочли доводы Ламарка противоречивыми и шаткими и не приняли его теорию. Однако некоторые идеи Ламарка до сих пор привлекают внимание леченых и в XX столетии дали начало нескольким неоламаркистским концепциям».

СРАВНИТЕЛЬНАЯ АНАТОМИЯ

Кювье справедливо считается основоположником сравнительной анатомии, или как, говорят сегодня — сравнительной морфологии. Но у Кювье на этом поприще были предшественники — в частности, Вик д'Азир. Заслуга Кювье — и притом никем не превзойденная — заключается в том, что он широко и щедро раздвинул базу аргументов в защиту учения об аналогах, гомологах и корреляции, углубил интерпретацию задач морфологии, великолепно формулировал ее первые «законы»…

Жорж Леопольд Христиан Дагобер Кювье (1769–1832) родился в небольшом эльзасском городке Монбельяре. Мальчик поражал ранним умственным развитием. В четыре года он уже читал. Чтение стало любимым занятием, а потом и страстью Кювье. Его любимой книгой была «Естественная история» Бюффона. Иллюстрации из нее Кювье постоянно перерисовывал и раскрашивал.

В школе он учился блестяще. Пятнадцати лет Кювье поступил в Каролинскую академию в Штутгарте, где избрал факультет камеральных наук. Здесь он изучил право, финансы, гигиену и сельское хозяйство. Но больше всего его влекло к изучению животных и растений. Почти все его товарищи бьши старше его. Среди них нашлось несколько молодых людей, интересующихся биологией. Кювье организовал кружок и назвал его «академией».

Через четыре года Кювье окончил университет и вернулся домой. Родители постарели, пенсии отца едва хватало, чтобы сводить концы с концами. Кювье узнал, что граф Эриси ищет для своего сына домашнего учителя. Кювье поехал в Нормандию в 1788 году, накануне французской революции. Там, в уединенном замке, провел он самые бурные в истории Франции годы.

Поместье графа Эриси находилось на берегу моря, и Кювье впервые увидел живьем морских животных, знакомых ему по рисункам. Он вскрывал этих животных и изучал внутреннее строение рыб, крабов, мягкотелых, морских звезд, червей. Он с изумлением нашел, что у так называемых низших форм, у которых ученые его времени предполагали простое строение тела, существует и кишечник с железами, и сердце с сосудами, и нервные узлы с отходящими от них нервными стволами. Кювье проник своим скальпелем в новый мир, в котором еще никто не делал точных и тщательных наблюдений. Результаты исследований он подробно описал в журнале «Зоологический вестник».

Когда в 1794 году сыну графа Эриси пошел двадцатый год, служба Кювье окончилась, и он опять оказался на распутье. Парижские ученые пригласили Кювье работать в только что организованный Музей естественной истории.

Весной 1795 года Кювье приехал в Париж. Он очень быстро выдвинулся и в том же году занял в парижском университете — Сорбонне — кафедру анатомии животных. В 1796 году Кювье был назначен членом национального института, в 1800 году занял кафедру естественной истории в College de France. В 1802 году занял кафедру сравнительной анатомии в Сорбонне.

Первые научные работы Кювье были посвящены энтомологии. В Париже, изучая богатые коллекции музеи, Кювье постепенно убедился, что принятая в науке система Линнея не вполне соответствует действительности. Линней разделял животный мир на 6 классов: млекопитающие, птицы, гады, рыбы, насекомые и черви. Кювье же предложил другую систему. Он считал, что в мире животных существует четыре типа строения тела, совсем несходных между собой.

Глубокие познания в анатомии животных позволили Кювье восстанавливать облик вымерших существ по их сохранившимся костям. Кювье убедился, что все органы животного тесно связаны друг с другом, что каждый орган нужен для жизни всего организма.

Каждое животное приспособлено к той среде, в которой оно живет, находит корм, укрывается от врагов, заботится о потомстве. Если это животное травоядное, его передние зубы приспособлены срывать траву, а коренные — растирать ее. Массивные зубы, растирающие траву, требуют крупных и мощных челюстей и соответствующей жевательной мускулатуры. Стало быть, у такого животного должна быть тяжелая, большая голова, а так как у него нет ни острых когтей, ни длинных клыков, чтобы отбиться от хищника, то оно отбивается рогами. Чтобы поддерживать тяжелую голову и рога, нужны сильная шея и большие шейные позвонки с длинными отростками, к которым прикреплены мышцы. Чтобы переваривать большое количество малопитательной травы, требуется объемистый желудок и длинный кишечник, а, следовательно, нужен большой живот, нужны широкие ребра. Так вырисовывается облик травоядного млекопитающего.

«Организм, — говорил Кювье, — есть связное целое. Отдельные части его нельзя изменить, не вызывая изменения других». Эту постоянную связь органов между собой Кювье назвал «соотношением частей организма».

Задача морфологии — вскрыть закономерности, которым подчинена структура организма, а методом, позволяющим установить каноны и нормы организации, служит систематически проведенное сравнение одного и того же органа (или одной и той же системы органов) через все разделы животного царства. Что же дает это сравнение? Оно точно устанавливает, во-первых, место, занимаемое определенным органом, в теле животного, во-вторых, все модификации, испытываемые этим органом на различных ступенях зоологической лестницы, и, в-третьих, взаимосвязь между отдельными органами, с одной стороны, а также ими и организмом в целом — с другой. Вот эту-то взаимосвязь Кювье квалифицировал термином «органические корреляции» и сформулировал так: «Каждый организм образует единое замкнутое целое, в котором ни одна из частей не может измениться, чтоб не изменились при этом и другие».

«Изменение одной части тела, — говорит он в другом своем произведении, — оказывает влияние на изменение всех других». Примеров, иллюстрирующих «закон корреляции», можно привести сколько угодно. И не удивительно, говорит Кювье: на нем ведь держится вся организация животных. Возьмите какого-нибудь крупного хищника: связь между отдельными частями тела его бьет в глаза своею очевидностью. Тонкий слух, острое зрение, хорошо развитое обоняние, крепкая мускулатура конечностей, позволяющая делать прыжки в сторону добычи, втяжные когти, ловкость и быстрота в движениях, сильные челюсти, острые зубы, простой пищеварительный тракт и т. д. — кому неизвестны эти «соотносительно развитые» особенности льва, тигра, леопарда или пантеры? А посмотрите на любую птицу: вся ее организация составляет «единое, замкнутое целое», и это единство в данном случае сказывается как своего рода приспособленность к жизни в воздухе, к полету. Крыло, мускулатура, приводящая его в движение, сильно развиты гребень на грудине, полости в костях, своеобразное строение легких, образующие воздушные мешки, высокий тонус сердечной деятельности, хорошо развитый мозжечок, регулирующий сложные движения птицы, и т. д. Попробуйте изменить что-нибудь в этом комплексе структурных и функциональных особенностей птицы: любая такая перемена, говорит Кювье, неминуемо скажется в той или иной степени, если не на всех, то на многих других особенностях птицы. Параллельно с корреляциями морфологического характера идут корреляции физиологические. Строение органа связано с его функциями. Морфология не оторвана от физиологии. Всюду в организме наряду с корреляцией наблюдается и иная закономерность. Ее Кювье квалифицирует как соподчинение органов и соподчинение функций.

Субординация органов связана с соподчинением функций, развиваемых этими органами. Однако и то, и другое в такой же мере связано с образом жизни животного. Тут все должно находиться в некотором гармоничном равновесии. Раз эта относительная гармония поколеблена, то немыслимым будет и дальнейшее существование животного, ставшего жертвой нарушенного равновесия между его организацией, отправлениями и условиями существования.

«При жизни органы не просто объединены, — пишет Кювье, — но и влияют друг на друга и конкурируют все вместе во имя общей цели.

Нет ни одной функции, которая не нуждалась бы в помощи и соучастии почти всех других отправлений и не чувствовала бы в большей или меньшей мере степень их энергии…

Очевидно, что надлежащая гармония между взаимно действующими органами является необходимым условием существования того животного, которому они принадлежат, и что если какая-либо из этих функций будет изменена вне соответствия с изменениями других отправлении организма, то он не сможет существовать».

Итак, знакомство со строением и отправлениями нескольких органов — а часто и всего лишь одного органа — позволяет судить не только о структуре, но и об образе жизни животного. И наоборот: зная условия существования того или иного животного, мы можем представить себе и его организацию. Впрочем, прибавляет Кювье, не всегда можно судить об организации животного на основании его образа жизни: как, в самом деле, связать жвачность животного с наличием у него двух копыт или рогов?

Насколько Кювье был проникнут сознанием постоянной связанности частей тела животного, видно из следующего анекдота. Один из его учеников захотел пошутить над ним. Он нарядился в шкуру дикого барана, ночью вошел в спальню Кювье и, став возле его кровати, диким голосом закричал: «Кювье, Кювье, я тебя съем!» Великий натуралист проснулся, протянул руку, нащупал рога и, рассмотрев в полутьме копыта, спокойно ответил: «Копыта, рога — травоядное; ты меня не можешь съесть!»

Создав новую область знания — сравнительную анатомию животных, — Кювье проложил в биологии новые пути исследования. Тем самым было подготовлено торжество эволюционного учения.

ОСНОВЫ ЭМБРИОЛОГИИ

«Ab ovo» — гласит древнелатинская поговорка. Это означает «от яйца», «начать с начала». Как зарождается жизнь человека и животных, с чего она начинается? Отрывочные эмбриологические наблюдения производились уже Аристотелем. Однако еще в XVII и XVIII веках господствовала так называемая теория преобразования, или эволюции. По этой теории будущий организм предсуществует в яйце готовый, со всеми своими частями. Этих частей в ранних стадиях не видно только потому, что они очень малы и прозрачны. Прямым следствием этой теории было допущение, что в микроскопическом зародыше предсуществуют уже и те зародыши, которых он впоследствии произведет на свет; в этих зародышах также вложены зародыши и так далее, — целые поколения будущих организмов предобразованы в каждом яйце. Так как в то время натуралисты, какие бы теории им в голову ни приходили, старались согласовать их со Священным Писанием, то некоторые досужие головы стали вычислять, сколько зародышей было вложено в яичниках праматери рода человеческого Евы, и определяли число их приблизительно в 200 000 миллионов.

Мало того, так как для развития яйца необходимо оплодотворение, то есть соединение яйца с живчиком, то возникал вопрос: в котором же из соединяющихся элементов вложены зародыши, в яйце или в живчике? Вопрос этот разделил ученых на две школы: овистов, утверждавших, что зародыши вложены в яйцо, а живчик служит лишь для возбуждения развития, — и сперматиков, которые были убеждены, что зародыши находятся в живчике, а яйцо доставляет лишь питательный материал для них.

Только во второй половине XVIII века появилась знаменитая «Theoria Generations» берлинского врача Каспара Фридриха Вольфа (1734–1794), положившая начало теории эпигенеза, то есть постепенного образования органов зародыша из первоначально простой (по Вольфу даже неорганизованной) основы. Сочинение это обозначает собою эпоху в эмбриологии, но мысли, проводимые в нем, не были при появлении диссертации Вольфа оценены. Сама диссертация, пройдя почти незаме-ченною, была так основательно забыта, что лишь в 1812 году, когда Меккель отыскал ее и перевел с латинского языка на немецкий, на теорию эпигенеза обратили надлежащее внимание. Тот же Вольф положил основание и теории зародышевых пластов, или листков, показав, что зародыш состоит из слоев, идущих каждый на развитие известных органов. Это открытие Вольфа также не было поначалу оценено по достоинству. Окен среди прочего, критикуя работу Вольфа, говорит: «Этого не может быть, так как организм возникает не из листков, а из пузырей».

В 1817 году Пандер, занимаясь развитием цыпленка, опубликовал свое исследование, содержавшее много ценных данных и подтвердившее теорию Вольфа об эпигенезе и о зародышевых пластах. Но работа Пандера, как и диссертация Вольфа, не была понята современниками. Не понял ее и тот, кто по праву считается основателем эмбриологии — Карл Бэр.

Карл Эрнст Бэр (1792–1876) родился в местечке Пип, в Гервенском округе Эстляндской губернии. Маленький Карл рано начал интересоваться разными предметами природы и нередко приносил домой разные окаменелости, улиток и тому подобные вещи. Семилетним мальчиком Бэр не только не умел еще читать, но и не знал ни одной буквы. Впоследствии он очень был доволен тем, что «не принадлежал к числу тех феноменальных детей, которые, из-за честолюбия родителей лишаются светлого детства».

Затем с Карлом занимались домашние учителя. Одиннадцатилетний Карл уже знаком с алгеброй, геометрией и тригонометрией. В августе 1807 года мальчика отвезли в дворянскую школу при городском соборе в Ревеле. В первой половине 1810 года Карл окончил курс школы. Он поступает в Дерптский университет. Здесь Бэр решает избрать медицинскую карьеру.

Когда в 1812 году последовало вторжение Наполеона в Россию и армия Макдональда угрожала Риге, многие из дерптских студентов, в том числе и Бэр, отправились, как истинные патриоты, на театр военных действий.

В 1814 году Бэр выдержал экзамен на степень доктора медицины. Им была представлена и защищена диссертация «Об эндемических болезнях в Эстляндии». Но все же осознавая недостаточность полученных знаний, он попросил отца отправить его для довершения медицинского образования за границу.

Бэр отправился за границу, избрав для продолжения своего медицинского образования Вену, где преподавали такие тогдашние знаменитости, как Гильдебранд, Руст, Беер и другие. Осенью 1815 года Бэр прибыл в Вюрцбург к другому известному ученому — Деллингеру. Всю свою жизнь Бэр хранил живейшую благодарность Деллингеру, который не жалел ни времени, ни труда для его обучения.

Затем он поступает прозектором к профессору Бурдаха, на кафедру физиологии в Кенигсбергском университете. В качестве прозектора Бэр тотчас же открыл курс сравнительной анатомии беспозвоночных животных, носивший прикладной характер, так как он состоял преимущественно из показывания и объяснения анатомических препаратов и рисунков.

С этих пор преподавательская и научная деятельность Бэра вошла в свою постоянную колею. Он руководил практическими занятиями студентов в анатомическом театре, читал курсы по анатомии человека и антропологии. Бэр находит также время подготавливать и публиковать специальные самостоятельные работы.

В 1819 году ему удалось получить повышение: его назначили экстраординарным профессором зоологии, с поручением приняться за устройство при университете зоологического музея.

В 1826 году Бэр был назначен ординарным профессором анатомии и директором анатомического института с освобождением от лежавших до сих пор на нем обязанностей прозектора.

То было время подъема научной деятельности ученого. Самый большой успех принесли Бэру эмбриологические исследования.

Когда Бэр работал у Деллингера, последний предложил ему заняться исследованиями развития цыпленка — классическим объектом эмбриологов благодаря доступности материала и величине яйца. Бэр в то время еще колебался в выборе карьеры, а работа требовала большой затраты времени и денег. Поэтому он уговорил взяться за эту работу своего приятеля Пандера.

Получив диссертацию Пандера, изданную без рисунков, он не смог ее понять. И лишь когда Пандер прислал ему более полное издание своей работы, снабженное рисунками, Бэр несколько уяснил себе ее содержание. Однако полного понимания ее он достиг только тогда, когда взялся за самостоятельное исследование истории развития цыпленка.

Эта непонятность работы Пандера зависела, во-первых, от неясного изложения, а во-вторых, по-видимому, от того, что автор, добросовестно наблюдая и описывая все, что он видел, не имел при этом никакой руководящей, обобщающей идеи.

Бэр, приступая к изучению эмбриологии цыпленка, находился благодаря своей широкой сравнительно-анатомической подготовке, совершенно в иных условиях, чем Пандер. Владея уже представлением о типе позвоночных, он был подготовлен к тому, чтобы уловить черты этого типа в эмбриональном развитии. И вот, наблюдая ту раннюю стадию развития, когда на зародышевой пластинке образуются два параллельных валика, впоследствии смыкающиеся и образующие мозговую трубку, Бэр делает вывод, что «тип руководит развитием, зародыш развивается, следуя тому основному плану, по которому устроено тело организмов данного класса». Он обратился к другим позвоночным животным и в развитии их нашел блестящее подтверждение своей мысли: как бы не были различны позвоночные животные — везде появляются спинные валики и образующаяся из них нервная трубка, везде пищеварительный канал образуется желобоватым загибом нижнего зародышевого листка, везде пупок образуется на брюшной стороне, обращенной к желтку. Обратившись к развитию животных иных типов, Бэр увидел, что и там в каждом типе есть свой рано выражающийся порядок и способ развития. Так, у членистых животных весьма рано замечается поперечное расчленение зародыша, образуется и обращается наружу прежде брюшная сторона, а не спинная, и если есть пупок, то он находится на спине.

Громадное значение «Истории развития животных», опубликованной Бэром в 1828 году, состоит не только в отчетливом выяснении основных эмбриологических процессов, но главным образом в гениальных выводах, собранных в конце первого тома этого сочинения под общим названием «Схолии и короллярии». Английский ученый Гексли, который в 1855 году перевел отрывок из этих «схолий» на английский язык, выражает в предисловии сожаление, что в его стране так долго было неизвестно сочинение, которое содержит самую глубокую и здравую философию зоологии и даже биологии вообще. Другой знаменитый зоолог, Бальфур, говорит, что все исследования по эмбриологии позвоночных, которые вышли после Бэра, могут быть рассматриваемы как дополнения и поправки к его труду, но не могут дать ничего столь нового и важного, как результаты, добытые Бэром. Укажем лишь на некоторые из этих результатов.

Задавая себе вопрос о сущности развития, Бэр отвечает на него: всякое развитие состоит в преобразовании чего-либо ранее существующего.

«Это положение так просто и безыскусно, — говорит Розенберг, автор прекрасной речи о заслугах Бэра, — что оно кажется почти бессодержательным. И однако оно имеет большое значение». Дело в том, что в процессе развития каждое новое образование возникает из более простой предсуществующей основы. Так, например, легкое возникает как выпячивание первоначально простой пищеварительной трубки; глаз — как вырост мозгового пузыря; слуховой лабиринт образуется как углубление кожи, отшнуровывающейся от нее в виде мешочка, и так далее. Таким образом, выясняется важный закон развития, что в зародыше появляются сперва общие основы, и из них обособляются все более и более специальные части. Этот процесс постепенного движения от общего к специальному известен в настоящее время под именем дифференциации.

Выяснив принцип дифференциации зародыша, Бэр тем самым положил раз и навсегда конец теории предобразования, или эволюции, и обеспечил окончательное торжество Вольфову принципу эпигенеза.

Другое общее положение Бэра, находящееся в тесной связи с только что рассмотренным, гласит: история развития индивида есть история растущей индивидуальности во всех отношениях. Опять-таки, на первый взгляд, очевидный вывод. На деле, однако, вывод этот получить было нелегко и содержание его далеко немаловажно. «Опыт показывает, — говорит Бэр, — что выводы бывают вернее, когда результаты их предварительно достигнуты наблюдением; если бы это было иначе, то человек должен был бы получать гораздо большее духовное наследство, чем это есть в действительности». Главное значение только что произведенного вывода Бэра тотчас выясняется, если его изложить несколько подробнее. Дело в том, что развивающееся существо, как подметил Бэр, первоначально обнаруживает лишь принадлежность к тому или другому типу. Затем выступают понемногупризнаки класса, то есть если, например, мы наблюдаем развитие позвоночного, то выясняется, имеем ли дело с будущею птицею, млекопитающим и так далее. Еще позднее выясняются признаки отряда, семейства, рода, вида и, наконец, после всего выступают уже чисто индивидуальные признаки.

При этом зародыш не проходит через непрерывный ряд форм, соответствующих готовым существам разной степени совершенства, как представляли себе развитие животных натурфилософы, — но скорее отделяется, отграничивается все более и более от всех форм, кроме той, к которой стремится его развитие.

Бэр, устанавливая своими эмбриологическими исследованиями принцип постепенного расхождения признаков, подготовил возникновение идеи о родственной связи органов в виде сложного, обильно разветвленного генеалогического дерева:

«Чем более ранние стадии развития мы исследуем, тем более сходства находим мы между различными животными. Поэтому возникает вопрос: не одинаковы ли в существенных чертах все животные в самом начале своего развития и нет ли для них одной общей исходной формы?.. По выводу нашей второй схолии, зародыш может быть рассматриваем как пузырь, которым в яйце птиц обрастает желток постепенно… в яйце лягушки является еще ранее, чем обнаруживается тип позвоночного, а у млекопитающих уже с самого начала окружает незначительную массу желтка. Но так как зародыш есть не что иное, как целое животное, только недоразвитое, то не без основания можно утверждать, что простая форма пузыря есть общая основная форма, из которой развились все животные, и не только в идеальном смысле, но исторически».

Для всякого, кто мало-мальски знаком с эмбриологией, из этой выписки ясно, что Бэр совершенно правильно подметил и оценил весьма важную эмбриональную фазу, известную в настоящее время под именем бластулы.

ТОПОГРАФИЧЕСКАЯ АНАТОМИЯ

Основателем топографической анатомии по праву считается великий русский хирург и ученый Пирогов.

Николай Иванович Пирогов (1810–1881) родился в Москве. Когда Николаю исполнилось четырнадцать лет, он поступил на медицинский факультет Московского университета. Для этого ему пришлось прибавить себе два года, но экзамены он сдал не хуже своих старших товарищей.

Закончив университет, Пирогов направился для подготовки к профессорской деятельности в Дерптский университет. В то время этот университет считался лучшим в России. Здесь в хирургической клинике Пирогов проработал пять лет, блестяще защитил докторскую диссертацию и в двадцать шесть лет стал профессором хирургии.

Темой диссертации он избрал перевязку брюшной аорты, выполненную до того времени — и то со смертельным исходом — лишь однажды английским хирургом Эстли Купером. Выводы пироговской диссертации были одинаково важны и для теории, и для практики. Когда Пирогов после пяти лет пребывания в Депте отправился в Берлин учиться, прославленные хирурги, к которым он ехал с почтительно склоненной головой, читали его диссертацию, поспешно переведенную на немецкий. Учителя, более других сочетавшего в себе все то, что искал в хирурге Пирогов, нашел в Геттингене, в лице профессора Лангенбека. Геттин-генский профессор научил его чистоте хирургических приемов.

Возвращаясь домой, Пирогов тяжело заболел и был оставлен для лечения в Риге. Едва Пирогов встал с госпитальной койки, он взялся оперировать. До города и прежде доходили слухи о подающем великие надежды молодом хирурге. Теперь предстояло подтвердить бежавшую далеко впереди добрую славу.

Он начал с ринопластики: безносому цирюльнику выкроил новый нос. Потом он вспоминал, что это был лучший нос из всех изготовленных им в жизни. За пластической операцией последовали неизбежные литотамии, ампутации, удаления опухолей. В Риге он впервые оперировал как учитель. Из Риги Пирогов направился в клинику в Дерпте.

Здесь в 1837 году и появилось на свет одно из самых значительных сочинений Пирогова — «Хирургическая анатомия артериальных стволов и фасций». Оно стало результатом восьмилетних трудов, сочинением классическим по широте и завершенности.

Может быть разный подход к сведениям о строении человеческого тела, и об этом пишет Пирогов: «…Хирург должен заниматься анатомией, но не так, как анатом… Кафедра хирургической анатомии должна принадлежать профессору не анатомии, а хирургии… Только в руках практического врача прикладная анатомия может быть поучительна для слушателей. Пусть анатом до мельчайших подробностей изучит человеческий труп, и все-таки он никогда не будет в состоянии обратить внимание учащихся на те пункты анатомии, которые для хирурга в высшей степени важны, а для него могут не иметь ровно никакого значения».

Причина неудач большинства «анатомо-хирургических трактатов», составленных предшественниками Пирогова, — в недооценке прикладного значения анатомии, в уходе от «частной цели» — служить руководством для хирурга. Между тем именно этой «частной цели», только ей, должно быть все подчинено.

Пирогов, разумеется, был хорошо знаком с трудами предшественников — видных французских ученых Вельпо и Бландена. Внимательно рассматривал знаменитый атлас Буяльского. Он задает себе вопрос: «Может ли молодой хирург руководствоваться при своих оперативных упражнениях на трупе, не говоря уже об операциях на живых, рисунками артериальных стволов в лучших трудах по хирургической анатомии, каковы труды Вельпо и Бландена?»

И отвечает решительно: нет!

«Обыкновенный способ препарирования, принятый анатомами… не годится для наших прикладных целей: удаляется много соединительной ткани, удерживающей различные части в их взаимном положении, вследствие чего изменяются их нормальные отношения. Мышцы, вены, нервы удаляются на рисунках друг от друга и от артерии на гораздо большее расстояние, чем это существует в действительности».

Пирогов подверг критике атлас Буяльского: «…Вы видите, например, что на одном из рисунков, изображающем перевязку подключичной артерии, автор удалил ключицу: таким образом, он лишил эту область главнейшей, естественной границы и совершенно запутал представление хирурга об относительном положении артерий и нервов к ключице, служащей главною путеводного нитью при операции, и о расстоянии расположенных здесь частей друг от друга».

Блистательные для своего времени попытки Вельпо и Буяльского потускнели перед новым словом Пирогова.

В своем сочинении целую науку, хирургическую анатомию, Пирогов разрабатывает и утверждает на базе совершенно конкретного и на первый взгляд не очень-то объемного учения о фасциях. Фасциями до Пирогова почти не занимались. Знали, что есть такие оболочки, пластинки, окружающие группы мышц или отдельные мышцы, видели их на трупе, натыкались на них во время операций, разрезали их — и не придавали им значения, относились к ним как к некоей «анатомической неизбежности».

Опорная идея Пирогова совершенно конкретна: изучить ход фасциальных оболочек. Он добирается до мельчайших подробностей и уже здесь находит много нового. Досконально изучив частное — ход каждой фасции, — он идет к общему: выводит определенные закономерности взаимоотношений фасциальных оболочек с кровеносными сосудами и окружающими тканями. То есть открывает новые анатомические законы. Но все это нужно ему не само по себе, а чтобы найти рациональные методы производства операций, «найти правильный путь для перевязки той или иной артерии», как он сам говорит.

«Отыскать сосуд подчас нелегко, — пишет в своей книге о Пирогове В.И. Порудоминский. — Человеческое тело сложно — гораздо сложнее, чем представляется неспециалисту, узнавшему о нем из плакатов-схем школьного курса анатомии. Чтобы не заблудиться, нужно знать ориентиры». Пирогов опять ругает (не устает!) «ученых, которые не хотят убедиться в пользе хирургической анатомии», «знаменитых профессоров» в «просвещенной Германии», «которые с кафедры говорят о бесполезности анатомических знаний для хирурга», профессоров, чей «способ отыскивания того или другого артериального ствола сводится исключительно на осязание: „следует ощупать биение артерии и перевязывать все то, откуда брызжет кровь“ — вот их учение!!» Если голова «не уравновешивает» руку обширными анатомическими познаниями, нож хирурга, даже опытного, плутает, как дитя в лесу. Опытнейший Грефе возился три четверти часа, пока отыскал плечевую артерию. Пирогов объясняет: «Операция оттого сделалась трудною, что Грефе попал не в артериальное влагалище, а в волокнистую сумку». Вот для того-то, чтобы не случалось такого, Пирогов подробнейше изучал фасции, искал их отношения к кровеносным сосудам и близлежащим тканям. Он указывал путешественникам-хирургам подробнейшие ориентиры, расставлял вехи, — по меткому определению профессора хирургии Льва Левшина, выработал «прекрасные правила, как следует идти с ножом с поверхности тела в глубину, чтобы легко и скоро перевязать различные артерии человеческого организма».

В каждом разделе своего труда Пирогов, во-первых, очерчивает границы области, в пределах которой производится операция; во-вторых, перечисляет слои, которые проходит хирург, пробираясь вглубь; в-третьих, дает точнейшие оперативные замечания.

«Хирургическая анатомия артериальных стволов и фасций» — это текст и свыше полусотни таблиц. К иллюстрациям Пирогов всегда относился особенно придирчиво. Он писал, что «хороший анатомо-хирургический рисунок должен служить для хирурга тем, чем карта-путеводитель служит путешествующему: она должна представлять топографию местности несколько иначе, чем обыкновенная географическая карта, которую можно сравнить с чисто анатомическим рисунком».

Каждую операцию, о которой говорится в книге, Пирогов проиллюстрировал двумя или тремя рисунками. Никаких скидок, величайшая тонкость и точность рисунков, отражающие тонкость и точность пироговских препаратов, — пропорции не нарушены, сохранена и воспроизведена всякая веточка, всякий узелок, перемычка. По такой карте хирург пойдет безошибочно.

Среди тех, кто восхищался «Хирургической анатомией артериальных стволов и фасций», был и известный парижский профессор Альфред Арман Луи Мари Вельпо.

Но Николай Иванович на этом не успокоился. Привычный метод препарирования удовлетворял тех, кто изучал устройство органов. Пирогов выдвинул на первый план топографию. Он хотел, чтобы для хирурга человеческое тело было как бы прозрачным. Чтобы хирург мысленно представлял себе положение всех частей в разрезе, проведенном в любом направлении через любую точку тела.

Чтобы узнать, как расположены различные части тела, анатомы вскрывали полости, разрушали соединительную ткань. Воздух, врываясь в полости, искажал положение органов, их форму.

Однако добиться точного разреза обычным способом было невозможно. Расположение частей, их соотношения, искаженные уже при вскрытии полостей, окончательно изменялись под ножом анатома. Сложилась ситуация, иногда встречающаяся в науке: сам эксперимент мешал получить точные результаты, ради которых он проводился. Нужно было искать новый путь.

Существует легенда, связывающая случайный эпизод из жизни Пирогова с идеей, которая повернула на новый путь всю анатомическую науку. «Мы, люди обыкновенные, — пишет один из приверженцев Пирогова, — проходим без внимания мимо того предмета, который в голове гениального человека рождает творческую мысль; так и Николай Иванович, проезжая по Сенной площади, где зимой обыкновенно были расставлены рассеченные поперек замороженные свиные туши, обратил на них особое внимание и стал применять замеченное к делу».

И действительно, есть связь между распиленными тушами на Сенной площади и новым направлением в анатомических исследованиях. Но идея возникла у Николая Ивановича гораздо раньше. Рассказывая о своих спорах с Амюсса в Париже, хирург-ученый пишет: «Я заявил ему о результате моего исследования направления мочевого канала на замороженных трупах». А ведь в Париж Пирогов ездил еще дерптским профессором!

Примерно в те же годы Буяльский сделал интересный опыт в академии: на замороженном трупе, которому придали красивую позу, обнажил мышцы; скульпторы изготовили форму и отлили бронзовую фигуру — по ней будущие художники изучали мускулатуру тела. Следовательно, идея использования холода в анатомических исследованиях появилась задолго до путешествий по Сенной площади. Трудно предположить, что Пирогов с его тягой ко всему новому, с его размахом жил в неведении. Видимо, Сенная площадь опять-таки подсказала способ, методику, а не родила идею.

«По какому же пути пошел Пирогов, добиваясь точных данных о топографии человеческого тела? — спрашивает В.И. Порудоминский и отвечает. — Он держал труп два-три дня на холоде и доводил „до плотности твердого дерева“. А затем он „мог и обходиться с ним точно так же, как с деревом“, не опасаясь „ни вхождения воздуха по вскрытии полостей, ни сжатия частей, ни распадения их“.

Как с деревом! Пирогов распиливал замороженные трупы на тонкие параллельные пластинки.

Он проводил распилы в трех направлениях — поперечном, продольном и переднезаднем. Получались целые серии пластинок-„дисков“. Сочетая их, сопоставляя друг с другом, можно было составить полное представление о расположении различных частей и органов. Приступая к операции, хирург мысленно видел поперечный, продольный, передне-задний разрезы, проведенные через ту или иную точку, — тело становилось прозрачным.

Простая ручная пила для этой цели не подошла. Пирогов приспособил другую, привезенную со столярного завода, — там с ее помощью разделывали красное, ореховое и палисандровое дерево. Пила была огромной — занимала в анатомическом театре целую комнату.

В комнате было холодно, как на улице. Пирогов замерзал, чтобы не оттаивали трупы. Работа длилась часами. Она потеряла бы смысл, если бы каждую пластинку разреза не удалось сохранить навсегда, сделать достоянием всех. Пирогов составлял атлас разрезов. Атлас назывался: „Иллюстрированная топографическая анатомия распилов, проведенных в трех направлениях через замороженное человеческое тело“. Тут же в холодной комнате проледеневшие пластинки-распилы накрывали расчерченным на квадраты стеклом и точно перерисовывали в натуральную величину на бумагу, покрытую такой же сеткой».

Пирогов бился над «ледяной анатомией» около десяти лет. За это время он открыл еще один способ «приложения холода» к своим исследованиям — придумал «скульптурную анатомию». Теперь распилов не делалось. Труп замораживали еще сильнее — «до плотности камня». А затем на замороженном трупе с помощью долота и молотка обнажали из оледеневших слоев нужные для изучения части и органы. «Когда, с значительными усилиями, удается отнять примерзлые стенки, должно губкою, намоченною в горячей воде, оттаивать тонкие слои, пока, наконец, откроется исследуемый орган в неизменном его положении».

Если каждый анатомический атлас Пирогова — ступень в познании человеческого тела, то «Ледяная анатомия» — вершина. Раскрылись новые закономерности — очень важные и очень простые. Стало, например, известно, что, за исключением трех небольших полостей (зева, носа и ушного барабана) и двух каналов (дыхательного и кишечного), ни в какой части тела в нормальном состоянии никогда не встречается пустого пространства. Стенки всех прочих полостей плотно прилегают к стенкам заключенных в них органов.

Пирогов замораживал трупы в разных позах — потом на распилах показывал, как изменяются форма и соотношение органов при изменении положения тела. Он изучал отклонения, вызванные различными заболеваниями, возрастными и индивидуальными особенностями. Приходилось делать десятки распилов, чтобы найти один, достойный воспроизведения в атласе. Всего в «ледяной анатомии» тысяча рисунков!

Анатомический атлас Пирогова стал незаменимым руководством для врачей-хирургов. Теперь они получили возможность оперировать, нанося минимальные травмы больному. Этот атлас и предложенная Пироговым методика стали основой всего последующего развития оперативной хирургии.

НАРКОЗ

Люди веками искали победы над болью. История сохранила упоминания о средствах обезболивания у ассирийцев и древних египтян. Известно, что египтяне применяли с этой целью жир крокодила и порошок из его кожи. Гомер рассказывает в одиннадцатой песне «Илиады» о том, как Патрокл, вырезав стрелу из тела раненого героя, присыпал рану горьким, истертым корнем, «который ему совершенно боль утолил». Греки и римляне готовили болеутоляющие снадобья из мандрагоры. Историк Плиний говорит о них: «Пьют при укусах змей, а также перед разрезами и проколами, чтобы не чувствовать боли». В одном из старинных русских «лечебников» записано: «…Дают коренья мандрагорово болящему нити или ясти у коих распаляется огнь палящий и они от того толь крепко спять, что они не чують егда лекарь у них уды отрезывает или отсекает».

Наркотические вещества (опий, индийская конопля, алкоголь), которые в безопасных дозах не вызывали обезболивания, а в больших нередко приводили к смерти; одавливание нервов или сосудов шеи; резкое охлаждение с помощью льда и снега — все это были лишь блуждания на очень далеких подступах к «божественному», по словам Гиппократа, «искусству уничтожать боль». Начавшееся в конце XVIII века стремительное развитие химии помогло за короткий срок сделать гигантский шаг к цели — один шаг, стоивший тысячелетий предыдущих поисков.

«В 1800 году, — пишет в своей книге В.И. Порудоминский, — великий английский ученый Хэмфри Дэви, произведя опыты на кошке, а потом и на себе самом, сообщил, что вдыхание закиси азота вызывает опьянение и невосприимчивость к боли. Дэви в юности был учеником хирурга, но тут и не подумал об использовании своего открытия в медицине. Через восемнадцать лет Майкл Фарадей, великий ученик Дэви, открыл, что пары серного эфира могут привести к такому же состоянию, как и закись азота. Фарадей опубликовал даже работу на эту тему. Медики снова прошли мимо. Еще через десять лет лондонский хирург Гикман повторил опыты Дэви. Врач-профессионал, он понял важность открытия и помчался с докладом в Парижскую академию хирургии. Его осмеяли. Только старик Ларрей горячо поддержал его.

„Веселящий газ“ (так назвал Дэви закись азота) не обрел пристанища в операционных, зато был взят „на вооружение“ бродячими артистами и фокусниками, стал частым и излюбленным гостем ярмарочных балаганов. Здесь-то и познакомился с ним американский зубной врач Горасий Уэлс. На следующий день он попросил другого дантиста, Джона Риггса, удалить ему зуб, однако перед операцией надышался в палатке странствующего проповедника Колтона „веселящего газа“. Эффект превзошел ожидания. Это случилось в 1844 году в американском городке Хартфорде. „В зубоврачебном деле настает новая эра!“ — вскричал Уэлс. Он не понял, что стоит на пороге новой эры во всей медицине.

Это понял известный бостонский хирург Уоррен. Он предоставил Уэлсу свою клинику для демонстрации публичного опыта. Но случилось непредвиденное: едва дантист стал тащить зуб, усыпленный пациент закричал. Громкий смех публики — и Уэлсу показали на дверь.

После публичной неудачи Уэлс еще продолжал экспериментировать — ведь за его спиной был и многообещающий опыт на себе. Но в чем-то он ошибался: дальнейшие опыты не приносили успеха. Отчаявшись, тридцатидевятилетний Уэлс покончил самоубийством. Его судьба трагична. Он шел правильным путем и впрямь мог получить титул „первооткрывателя“ наркоза. Хирургия еще возвратилась к закиси азота, правда, значительно позже, в шестидесятые годы. „Веселящий газ“ на время был отброшен с пути, этому способствовали неудачи Уэлса и победное шествие эфира и хлороформа».

Зубной техник Уильям Мортон решил изучать медицину у доктора Чарльза Джексона, бывшего также профессором химии. Джексон многое рассказал ученику о действии эфира, к которому Мортон проявлял большой интерес.

До того как пары серного эфира получили права гражданства в хирургии, они были излюбленной потехой студентов-химиков. Юные служители науки то и дело прикладывались к бутыли с эфиром, нюхали, пьянели и от души хохотали, когда кто-нибудь, «хватив лишку», начинал шататься и нести ахинею.

Знания Джексона оказались весьма обширны. Он провел, в частности, удачный опыт на себе, сконструировал также приборы для вдыхания паров эфира. Выуживая из доверчивого наставника все новые сведения об эфире, Мортон делал дома опыты на собаках, несколько раз усыплял себя. Старательно сохраняя тайну, он торопливо шел к цели.

Осенью 1846 года, после особенно успешного опыта на себе, Мортон уверенно предложил свои услуги хирургу Уоррену из Бостона. 16 октября 1846 года произошло событие, означавшее революцию в хирургии. В этот день была сделана первая операция под наркозом. Доктор Уоррен безболезненно удалил опухоль на шее пациента. Уильям Мортон, усыпив больного, обратился к хирургу: «Приступайте, мистер Уоррен. Ваш пациент уже так далеко!» Уоррен благополучно завершил операцию, воскликнул изумленно: «Джентльмены, это не обман!..»

Оскорбленный Джексон решил оспаривать первенство. Тяжба тянулась два десятилетия. В итоге Джексон умер в сумасшедшем доме, а Мортон — нищим на нью-йоркской улице.

Тем временем, выдержав первое испытание, эфирный наркоз решительно зашагал по свету. В начале 1847 года его уже применяли Мальгень во Франции, Диффенбах в Германии, Шу в Австрии, Листон в Англии. Листон удалил одному больному под наркозом ноготь, а затем ампутировал другому бедро. Восхищенный, повернулся к зрителям: «Ура! Радость! Скоро без этого не будут делать ни одной операции. Радость!»

Первую в России операцию под эфирным наркозом сделал Федор Иванович Иноземцев в Москве. Седьмого февраля 1847 года он вырезал у мещанки Елизаветы Митрофановой пораженную раком грудную железу. Не прошло и недели, Иноземцев произвел новые операции с применением обезболивания — удалил двум мальчикам камни из мочевого пузыря.

Физиолог Филомафитский создал специальные комитеты для изучения наркоза, которые провели целую серию важных экспериментов на животных.

За год в тринадцати городах России было совершено шестьсот девяносто операций под наркозом. Триста из них сделал великий хирург Пирогов.

А главное, он ответил на множество вопросов. Какими путями действуют пары эфира на организм? Можно ли свести к нескольким типам многообразные явления, возникающие после введения наркоза? Зависит ли успешное применение наркоза от техники усыпления? Нужны ли изменения в конструкции аппаратов для «эфирования»? Пирогов старался, например, достигнуть обезболивания не только путем вдыхания паров эфира, но и другими способами — введением наркоза в артерии, вены, трахею, прямую кишку. Он стремительно обгонял время. Некоторые предложенные им методы введения наркоза в организм стали применять на практике лишь спустя десятилетия.

«Я уверился, — писал он, — что эфирный пар есть действительно великое средство, которое в известном отношении может дать совершенно новое направление всей хирургии».

10 ноября 1847 года Симпсон доложил об открытии нового вида наркоза — хлороформа. Последний показался многим соблазнительнее эфира: усыпляющее его действие было сильнее, сон после него наступал быстрее, для его применения не требовалось специальных аппаратов — платок или кусок марли, смоченный в хлороформе, мог заменить маску.

Против Симпсона, который использовал хлороформ для обезболивания родов, восстали церковники. «Это противно Священному Писанию, — твердили они. — Там сказано: „В муках будет рожать Ева детей“». Научные аргументы в расчет не принимались, но находчивый акушер побил неприятеля его же оружием. Он заявил: «Мои противники забывают 21-й стих второй главы книги Бытия. Там упоминается о первой в истории хирургической операции. И что же? Творец, прежде чем вырезать у Адама ребро для сотворения Евы, погрузил его в глубокий сон». Этот довод решил спор.

Хлороформный наркоз зашагал по свету еще быстрее, чем эфирный. Русские хирурги приняли его на вооружение всего через месяц после доклада Симпсона. В конце декабря 1847 года, на обратном пути с Кавказа, за хлороформ взялся Пирогов.

К началу 1849 года он уже подвел итоги трехсот операций под хлороформом, а еще через пять лет их число выросло до двух с лишним тысяч. При этом Пирогов не только сделал эти две тысячи операций, но и проанализировал их. Да еще сопоставил для сравнения с итогами подобных же операций, произведенных без наркоза, для чего разобрал архив Обуховской больницы за двадцать лет! И окончательно вывел: «Итак, и наблюдение, и опыт, и цифра говорят в пользу анестезирования, и мы надеемся, что после наших статистических исчислений, сделанных совестливо и откровенно, ни врачи, ни страждущие не будут более, увлекаясь одними предположениями и предрассудками, восставать против нового средства, столь важного в нравственном и терапевтическом отношении».

Сегодня без наркоза не делается практически ни одна сложная операция.

ПРОИСХОЖДЕНИЕ ВИДОВ

Сегодня очень немногие станут оспаривать значение основного открытия, сделанного английским ученым Чарлзом Дарвином, — теории эволюции. Однако в его время все обстояло совершенно иначе. После публикации основной книги Дарвина — «Происхождение видов» — церковь восприняла его идеи как прямой вызов теории божественного создания мира, изложенной в Библии. Многие ученые вольно или невольно своим трудами способствовали появлению теории Дарвина. Жюсье, Декандоль, Броун, Кювье, создавая естественные классификации растений и животных, обнаружили факт родства между организмами, подавший повод к смутным теориям «единства плана», «единства строения». Кювье, Агассиц, Ричард Оуэн, Броньяр, изучая ископаемые остатки, указали на постепенность в появлении организмов: простейшие формы предшествуют более сложным, сборные типы.

Бэр, Ремак, Гушке, изучая законы эмбрионального развития, установили как общий вывод своих исследований, что развитие зародыша есть переход от простого к сложному. Они обнаружили, что различные (у взрослых животных) органы образуются из одинакового зародыша, а последовательные стадии развития зародыша соответствуют последовательным ступеням животного царства.

К одной общей цели вели открытия Шлейдена, Шванна, Мирбеля, Гуго фон Моля, Дюжардена, Штейна, Ценковского, Лейкарта, Зибольда, Гексли, Волластона, Форбеса, Гукера. Сравнительная анатомия, эмбриология, палеонтология, систематика, география растений и животных — все они обнаруживали родство между организмами, связь между формами, с виду совершенно различными, постепенность перехода от простого к сложному: в истории древних обитателей нашей планеты, в строении современных, в развитии индивидуума.

Но этот общий, основной, универсальный факт требовал объяснения, тем более что наряду с ним обнаруживались другие факты — совершенно противоположного характера. В самом деле, принимая линнеевскую гипотезу о независимом происхождении каждого вида, натуралист с недоумением останавливался над ясными признаками родства и общности происхождения: переходными формами, рудиментарными органами, одинаковым «планом строения» таких с виду различных органов, как, например, рука человека и ласт тюленя, и прочее, и прочее. Принимая гипотезу общего происхождения, он с таким же недоумением останавливался перед фактами обособленности органических форм.

Такого рода противоречия сбивали с толку натуралистов. Надо было объяснить их. Надо было отыскать причины, которые объясняли бы факты родства организмов, констатируемые всеми науками так же, как и факты обособленности, опять-таки констатируемые теми же науками. Эту задачу выполнил Дарвин.

Естественный отбор, или выживание наиболее приспособленного, — вот, собственно, принадлежащее ему открытие. Оно объясняет нам: как, в силу каких причин простейшие формы раздроблялись на более и более сложные, почему, несмотря на постепенность развития, между различными формами образовались пробелы (вымирание менее приспособленных). В этом, собственно, и заключается великая заслуга Дарвина. Не он первый высказал мысль об общем происхождении видов. Ламарк, Сент-Илер, Чамберс, Окен, Эразм Дарвин, Гете, Бюффон и многие другие высказывали и развивали эту мысль. Но в их изложении она являлась бездоказательной. Эволюционное учение не выходило из той стадии, которая характеризуется словом «вера».

Чарлз Роберт Дарвин (1809–1882) родился в городе Шрюсбери, где его отец занимался врачебной практикой. Он был неспособен к школьному обучению и не чувствовал к нему никакой охоты. На девятом году отдали его в элементарную школу. Здесь он оставался год, а в следующем году перешел в гимназию доктора Бетлера, где пробыл семь лет.

Однако уже в восемь лет у Чарлза обнаружились любовь и интерес к природе. Он собирал растения, минералы, раковины, насекомых и тому подобное, рано пристрастился к рыбной ловле и целые часы проводил с удочкой, — но особенно полюбил охоту.

В 1825 году, убедившись, что из школьных занятий Чарлза не выйдет особенного толку, отец взял его из гимназии и отправил в Эдинбургский университет готовить к медицинской карьере. Два года Дарвин оставался в Эдинбурге. Наконец, убедившись, что сын не имеет никакой склонности к медицине, отец предложил ему избрать духовное поприще. Дарвин подумал-подумал и согласился и 1828 году поступил на богословский факультет Кембриджского университета, намереваясь принять сан священника.

Занятия его и здесь сохранили прежний характер: весьма посредственные успехи в школьных предметах и усердное собирание коллекций — насекомых, птиц, минералов, — охота, рыбная ловля, экскурсии, наблюдения над жизнью животных.

В 1831 году Дарвин вышел из университета в числе «многих» — так назывались ученики, кончившие курс удовлетворительно, но без особенных отличий.

Помочь сделать Дарвину окончательный выбор помог профессор ботаники Джон Хенслоу. Он заметил способности Дарвина и предложил ему место натуралиста в экспедиции в Южную Америку. Перед отплытием Дарвин прочел труды геолога Чарлза Лайеля. Только что вышедшую книгу он захватил с собой в путешествие. Это была одна из немногих книг, имевших известное значение в его развитии. Лайель, один из величайших мыслителей того времени, оказался близок по духу Дарвину.

Экспедиция отплыла в 1831 году на корабле «Бигл» и продолжалась 5 лет. За это время исследователи посетили Бразилию, Аргентину, Чили, Перу и Галапагосские острова — десять скалистых островков у побережья Эквадора в Тихом океане, на каждом из которых существует своя фауна.

Дарвин на подсознательном уровне выделял те факты и явления, которые находились в теснейшей связи с величайшими проблемами естествознания. Вопрос о происхождении органического мира еще не возник перед ним в ясной форме, а между тем он уже обращает внимание на те явления, в которых находился ключ к решению этого вопроса.

Так, с самого начала путешествия он заинтересовался вопросом о способах переселения растений и животных. Фауна океанических островов, заселение новых земель занимали его в течение всего путешествия, и Галапагосские острова, особенно тщательно исследованные им в этом отношении, сделались классическою землею в глазах натуралистов.

Большой интерес возбудили в нем переходные формы — предмет досады и пренебрежения со стороны систематиков, отыскивающих «хорошие», то есть четко определенные виды. Дарвин замечает по поводу одного из таких семейств: «Оно принадлежит к числу тех, которые, соприкасаясь с другими семействами, в настоящее время только затрудняют натуралистов-систематиков, но в конце концов могут содействовать познанию великого плана, по которому были созданы организованные существа».

В пампасах Южной Америки он наткнулся на другой разряд фактов, легших в основу эволюционной теории, — геологическую преемственность видов. Ему удалось найти много ископаемых остатков, и родство этой вымершей фауны с современными обитателями Америки, — например, гигантских мегатериев с ленивцами, ископаемых броненосцев с ныне живущими, — тотчас бросилось ему в глаза.

В этой экспедиции Дарвин собрал огромную коллекцию горных пород и окаменелостей, составил гербарии и коллекцию чучел животных. Он вел подробный дневник экспедиции и впоследствии воспользовался многими материалами и наблюдениями, сделанными в ней.

2 октября 1836 года Дарвин вернулся на родину. Изданный им дневник путешествия имел большой успех. Несколько месяцев он прожил в Кембридже, а в 1837 году переселился в Лондон, где оставался пять лет, вращаясь, главным образом, в кругу ученых.

Вообще, эти годы были самым деятельным периодом в жизни Дарвина. Он часто бывал в обществе, много работал, читал, делал сообщения в ученых обществах и в течение трех лет состоял почетным секретарем Геологического общества. Поселившись в Доуне, Дарвин провел в нем сорок лет спокойной, однообразной, но деятельной жизни.

В июле 1837 года Дарвин начал собирать факты для решения вопроса о происхождении видов. Его основные идеи намечены уже в записной книжке, относящейся к 1837–1838 годам.

Первый набросок теории был составлен в 1842 году; второй, более подробный и уже содержавший в сжатом виде все существенные аргументы «Происхождения видов», — в 1844-м. Этот последний набросок Дарвин дал прочесть своему другу, Д. Гукеру.

По прошествии 12 лет накопилась масса материала, а Дарвин все не решался приступить к составлению книги. В этом случае его научная строгость переходила в излишнюю щепетильность.

Наконец Лайель, знавший о его планах, убедил его составить извлечение из своего труда для печати. Это «извлечение», начатое Дар-вином в 1856 году, должно было иметь объем втрое или вчетверо больший, чем «Происхождение видов». Бог знает, когда бы оно было окончено, если бы неожиданный случай не ускорил дело. Известие о работах Алфреда Рассела Уоллеса (1823–1913) — английского натуралиста, который независимо пришел к сходным эволюционным выводам, «подстегнуло» публикацию результатов.

В ноябре 1859 года она вышла в свет под заглавием «Происхождение видов путем естественного отбора».

Гэксли писал об этой книге: «Я думаю, что большинство из моих современников, серьезно размышлявших об этом предмете, находились приблизительно в таком же настроении, как и я, то есть готовы были крикнуть тем и другим — сторонникам отдельного творчества и эволюционистам: „Чума на оба ваши дома!“ — и обратиться к разработке фактов… И потому я должен признаться, что появление статей Дарвина и Уоллеса в 1858 году, а еще более „Происхождение видов“ в 1859-м, произвело на нас действие яркого света, внезапно указавшего дорогу людям, заблудившимся среди ночной темноты… Это было именно то, чего мы искали и не могли найти: гипотеза о происхождении органических форм, опиравшаяся на деятельность только таких причин, фактическое существование которых может быть доказано. В 1857 году я не мог ответить на вопрос о происхождении видов, и в таком же положении были и другие. Прошел год, и мы упрекали себя в глупости… Факты изменчивости, борьбы за существование, приспособление к условиям были достаточно известны, но никто из нас не подозревал, что в них находится ключ к решению проблемы о видах, пока Дарвин и Уоллес не рассеяли тьму».

«Происхождение видов» было встречено кратковременным, но тем более оглушительным взрывом ругательств. «Поверхностное учение, позорящее науку», «грубый материализм», «безнравственный ум» и тому подобные малоубедительные, но достаточно крепкие выражения посыпались градом со стороны ортодоксальных натуралистов и теологов. Последние в особенности подняли «плач, и рыдание, и вопль великий».

Одну из причин успеха теории нужно искать в достоинствах самой книги Дарвина. Недостаточно высказать идею — необходимо еще и связать ее с фактами, и эта часть задачи — едва ли не самая трудная. Он не только открыл закон, но и показал, как этот закон проявляется в разнообразных сферах явлений.

Очевидные факты изменений животных и растений под влиянием селекции и одомашнивания были несомненными доказательствами изменяемости видов. Изменчивость организмов возникает под влиянием меняющихся внешних условий. Дарвин выделил основные формы изменчивости: определенную, когда все (или почти все) потомство организмов, подвергшихся действию измененных условий, меняется одинаково; и неопределенную, характер которой не соответствует изменениям внешних условий.

Очевидно, одной неопределенной наследственной изменчивости недостаточно, чтобы объяснить процесс выведения новых форм одомашненных растений и животных. Силу, которая из незначительных различий отдельных животных и растений формирует устойчивые природные признаки, Дарвин нашел в практике селекционеров. Для дальнейшего разведения они отбирают только те организмы, которые обладают полезными для человека признаками. В результате отбора эти признаки от поколения к поколению становятся все более выраженными.

Занявшись поиском аналогичных процессов в природе, Дарвин собрал многочисленные факты, подтвердившие, что в природе существуют все формы изменчивости организмов, которые наблюдались в одомашненном состоянии. При этом ученый показал, что незначительные и неустойчивые индивидуальные различия между отдельными особями данного вида переходят в более устойчивые различия разновидностей (или подвидов), а затем в отчетливые наследственные различия между разными видами. Оставалось найти аналог искусственного отбора в природе — механизм, который складывает незначительные и неопределенные индивидуальные различия и формирует из них у организмов необходимые приспособления, а также межвидовые различия. Так Дарвин подошел к важнейшему открытию — естественному отбору, согласно которому выживают и оставляют потомство наиболее приспособленные к существующим условиям особи данного вида.

Естественный отбор в природе возникает в результате борьбы за существование, под которой Дарвин понимал совокупность взаимоотношений организмов данного вида друг с другом (внутривидовая конкуренция), с другими видами организмов (межвидовые отношения) и с неживыми факторами внешней среды. Естественный отбор, по Дарвину, — это неизбежный результат борьбы за существование и наследственной изменчивости организмов.

В процессе естественного отбора организмы адаптируются к условиям существования. В результате конкуренции разных видов, имеющих сходные жизненные потребности, хуже приспособленные виды вымирают. Совершенствование приспособлений у организмов приводит, по Дарвину, к тому, что постепенно усложняется уровень их организации — происходит эволюционный прогресс. Однако естественный отбор не несет в себе никаких предпосылок, которые направляли бы эволюцию обязательно по пути общего совершенствования организации: если для данного вида по каким-то причинам такое совершенствование невыгодно, отбор не будет ему способствовать. Дарвин полагал, что в простых жизненных условиях высокий уровень организации скорее вреден. Поэтому на Земле всегда одновременно существуют и сложные, высокоорганизованные виды, и формы, сохраняющие простое строение.

И сегодня, спустя сто пятьдесят лет, биологическая наука следует по направлению, намеченному Чарлзом Дарвином.

БИОЛОГИЧЕСКАЯ ТЕОРИЯ БРОЖЕНИЙ

В 1680 году голландец Антони Ван-Левенгук впервые увидел пивные дрожжи в свой самодельный микроскоп. Он описал их в письме, адресованном в Королевское общество, и дал рисунок, на котором видны почкующиеся круглые клетки, образующие скопления. Так было начато изучение морфологии дрожжей. Эти наблюдения значительно опередили состояние науки того времени. Только в 1835 году появились сообщения Каньяр де Латура во Франции, Шванна и Кютцинга в Германии, в которых было доказано, что дрожжи относятся к низшим растительным организмам, имеющим ядро, размножающимся почкованием на питательных средах, содержащих сахар, и вызывающим брожение. Однако это биологическое направление в исследованиях, связанных с выяснением причин брожения, не получило в первой половине XIX века всеобщего признания.

В середине девятнадцатого века широкое распространение имела химическая теория брожения. Скажем, Сталь утверждал, что гниющие вещества могут передавать это состояние другому, не гниющему в данное время веществу. Гниение сопровождается движением, и способность вызывать гниение связана с передачей движения покоящемуся телу. Ферменты также находятся в движении, и их способность вызывать брожение связана с передачей движения.

Выдающиеся химики того времени Либих и Берцелиус развили эту точку зрения. Берцелиус не видел принципиальной разницы между различными видами брожений и гниением — все это различные стадии одного и того же процесса. Брожение возможно только при наличии двух условий: в среде должна находиться клейковина или другое азотистое органическое вещество и сбраживаемая жидкость, содержащая клейковину, должна быть подвержена действию кислорода воздуха. В этом случае на дне сосуда образуется нерастворимый осадок, способный вызывать новое брожение. Все процессы брожения Либих связывал с разложением и гниением органических веществ, последние, подвергаясь гниению, становятся ферментами и уже могут вызвать сбраживание и негниющих веществ, например сахара.

При соприкосновении гниющих веществ со сбраживаемым происходит распад последнего на частицы. Либих не отрицал, что для сбраживания сахара нужны дрожжи, но не обязательно живые, так как именно отмирающие и разлагающиеся дрожжи вызывают брожение как всякое гниющее вещество.

Таковы в самых общих чертах основы химической теории брожения, пока свои исследования по брожениям не начал французский ученый Пастер.

Луи Пастер (1822–1895) родился во французском местечке Доль. Луи вырос в большой дружной семье. Несмотря на слабое здоровье и недостаток средств, Пастер с успехом завершил обучение сначала в колледже в Арбуа, а затем в Безансоне. Окончив здесь курс со степенью бакалавра, он поступил в 1843 году в Высшую нормальную школу, готовящую учителей для средней школы.

Окончив школу в 1847 году, Пастер сдал экзамены на звание доцента физических наук. А спустя год защитил докторскую диссертацию. Тогда Пастеру еще не было и26 лет, но он уже приобрел известность своими исследованиями в области строения кристаллов. Молодой ученый дал ответ на вопрос, который до него оставался нерешенным, несмотря на усилия многих крупнейших ученых. Он открыл причину неодинакового влияния луча поляризованного света на кристаллы органических веществ. Это выдающееся открытие привело в дальнейшем к возникновению стереохимии — науки о пространственном расположении атомов в молекулах.

В том же 1848 году Пастер стал адъюнкт-профессором физики в Дижоне. Через три месяца он занимает новую должность адъюнкт-профессора химии в Страсбурге. Пастер принимал активное участие в революции 1848 года и даже вступил в Национальную гвардию.

В 1854 году Пастер был назначен деканом только что организованного физико-математического факультета Лилльского университета. Этот район Франции славился своей сахарной и бродильной промышленностью. Владельцы местных заводов неоднократно обращались к Пастеру с просьбой помочь рационализировать производство, улучшить его, руководствуясь последними достижениями науки. Знакомясь с работой заводов, Пастер не мог не прийти к выводу, что современные научные знания в этой области были более чем скромны, и это побудило его начать изучение брожений.

Он приступил к изучению этого вопроса. Результатом его исследований стала монография. Первый опубликованный мемуар был посвящен молочнокислому брожению. Он произвел особенно большое впечатление в научном мире, так как это было новым брожением — все предшествующие исследования касались преимущественно спиртового брожения.

«Все свои исследования по брожениям Пастер проводил с целью выяснить, в какой мере его собственные экспериментальные данные могут подтвердить или опровергнуть химическую теорию брожений, — пишет в своем труде о ученом А.А. Имшенецкий. — Результаты его экспериментов могут быть резюмированы следующим образом.

1. Для возникновения брожения воздух, вопреки мнению сторонников химической теории брожения, не нужен. Молочнокислое брожение протекает без доступа воздуха так же, как и спиртовое. Это позволяет дать общую формулу „брожение — это жизнь без кислорода“. Для обоснования этого тезиса исключительное значение имело открытие Пастером маслянокислого брожения, вызываемого строго анаэробными бактериями, которые не только не нуждаются в кислороде, но последний действует на них как яд. До этого открытия считалось, что жизнь без кислорода невозможна, и не случайно Гей-Люссак связывал устойчивость продуктов в консервах Аппера к гниению с отсутствием в банках кислорода. Открытие анаэробиоза встретило резкие возражения со стороны Брефельда и других ученых, но оно оказалось настолько убедительным, что вскоре было всеми признано.

2. Каждое брожение вызывается особым возбудителем. Пастер впервые установил, что молочнокислое брожение связано с развитием микробов, отличающихся по своей морфологии от дрожжей. Масляная кислота образуется в результате жизнедеятельности особого вида микробов. Уксуснокислое и спиртовое брожения, так же как и брожение мочевины, имеют своих возбудителей. Нет ничего удивительного в том, что Пастер, исходя из современного ему состояния систематики низших растительных организмов, не всегда давал правильные названия описываемым им организмам. Так, маслянокислых бактерий он относил к представителям животного мира, уксуснокислых бактерий обозначал как Mycoderma и т. д. Все это не меняло основного вывода, — различные брожения вызываются различными микробами.

3. Брожение связано с жизнью микробов, с их размножением, а не с гибелью и разложением, как это считали сторонники химической теории брожения. Вес микробов во время брожения постоянно увеличивается и сбраживаемые ими вещества используются дрожжами также для построения своего тела.

4. Для брожения совершенно не обязательно присутствие в среде частиц белковых веществ (клейковины), которые, по мнению адептов химической теории, приходят в движение и, передавая его другим частицам, тем самым вызывают брожение или гниение. Сбраживание сахара с образованием спирта или молочной кислоты может происходить в среде, совершенно не содержащей белка, а имеющей в качестве единственного источника азота неорганическое соединение, например сернокислый аммоний».

Результаты экспериментальных исследований Пастера нанесли решительный удар по теории Либиха. Его сторонники не могли больше объяснять брожение передачей движения частиц и связывать его со смертью, с разложением гниющих веществ.

Но уже в самом начале шестидесятых годов Бертло прямо высказал мысль, что такая ограниченная биологическая точка зрения не должна удовлетворять физиолога, а тем более химика. Исходя из термохимических данных, Бертло утверждал, что брожение и жизнедеятельность дрожжевых клеток не связаны друг с другом, так как для синтеза живого вещества дрожжей нет необходимости в притоке энергии извне.

Развитие биохимии и ферментологии все более и более побуждало выдающихся ученых возвращаться к идеям Бертло. Постепенно число открытых «растворимых ферментов», т. е. энзимов, увеличивалось, и стало возможным осуществлять бесклеточный гидролиз ди- и полисахаридов, разложение белка, различные окислительные процессы. Все это привело к тому, что К.А. Тимирязева в лекции 1895 года заявил: «…Бертло, полемизируя с Пастером, указывал, что воззрение на брожение как на химический процесс, лежащий в основе того физиологического явления, которое наблюдал Пастер, — что это воззрение вытекает из неизбежного исторического хода развития всех наук и, в частности, физиологии, по которому сложные явления сводятся к простым и, следовательно, физиологические — к физическим и химическим. И, как мы видим, история уже оправдывает верность этой ссылки на нее Бертло…»

Надо сказать, что Пастер никогда не отрицал участия ферментов в брожении. Да это было бы и нелогично, так как, будучи химиком, он не мог себе представить превращение молекулы в спирт без цепи химических реакций, которые протекают внутри клетки: «…Прибавлю, что для меня всегда было загадкой, на каком основании думают, что мне было бы неудобно, если бы было сделано открытие растворимых ферментов в брожении или если было бы доказано превращение сахара в спирт независимо от жизнедеятельности клетки».

Бесспорно, что изучение бесклеточного брожения, исследования с дрожжевым соком и другими препаратами дали много ценного. Именно они позволили установить ту схему брожения, в частности спиртового, которая вошла во все руководства и является сейчас общепризнанной. «Но все эти исследования отвечают на вопрос, „как“ происходит этот процесс, — отмечает А.А. Имшенецкий, — но не отвечают на вопрос, „почему“ стало возможно это гармоничное, это исключительно сложное функционирование ферментов внутри дрожжевой клетки и „зачем“ те или иные процессы брожения возникли. Это лишь детализация основной идеи, которую развил тогда Пастер, а не противопоставление химической теории брожения биологической.

Пастер впервые как гениальный биолог дал исчерпывающий ответ, почему возникли брожения. Он объяснил целесообразность этих процессов и показал, что они необходимы для жизнедеятельности клеток, и если бы они не носили приспособительный характер, то не могли бы возникнуть в природе. Это иногда забывается в химических исследованиях.

Пастер указал на энергетическое значение брожений и показал, что они имеют экологическое значение. В своих исследованиях он неоднократно отмечает ту большую роль, которую играют продукты собственной жизнедеятельности бродящих микроорганизмов в изменении окружающей среды. Устанавливая, что один вид микроба вытесняет продуктами собственной жизнедеятельности другой, Пастер решает одну из интереснейших экологических задач. Здесь же следует заметить, что он отказался, в отличие от современных ему немецких исследователей, от поисков универсальной питательной среды, на которой могли бы расти все виды микробов без исключения, и впервые применил среды, исходя из экологии, т. е. условий существования микробов. Поэтому мы вправе считать Пастера также основоположником только еще развивающейся молодой отрасли микробиологии — экологии микроорганизмов».

Разгадка явлений брожения имела огромное практическое значение не только для французского виноделия, терпевшего огромные убытки от «болезней вина», но и сыграла исключительную роль в развитии биологической науки, практики сельского хозяйства и промышленности. Глубокое познание природы брожений дает возможность управлять их процессами. Это очень важно для хлебопечения, виноделия, изготовления многих пищевых веществ.

ОСНОВЫ ГЕНЕТИКИ

Человечеству потребовалось более 2500 лет, чтобы суметь раскрыть закономерности наследственности. «…Древние натурфилософы и врачи не могли правильно понять явления наследственности ввиду ограниченности и частично ошибочности их знания анатомии и физиологии органов размножения и процессов оплодотворения и даже развития, — отмечает известный советский генетик А.Е. Гайсинович. — Им было наиболее доступно изучение строения животных, и неудивительно, что они переносили на человека обнаруженные у животных особенности анатомии их половых органов…Происхождение мужского семени было неизвестно в древности, и это привело к созданию ошибочных представлений об образовании семени из частиц, отделяемых всеми органами тела и повторяющих в миниатюре их форму и строение. Это была в сущности первая теория наследственности, проявившая необычайную живучесть вплоть до XIX века, когда ее возродил Ч. Дарвин в своей гипотезе пангенезиса…» Боролись две точки зрения. Первая, допускавшая существование женского семени и его участие в оплодотворении. И вторая, одним из ярких представителей которой был Аристотель. Он считал, что форма будущего зародыша определяется только мужским семенем. Эпигенетическая теория развития Аристотеля и теории пангенезиса и преформации претерпели многовековую борьбу.

«Возрожденная в XVII веке У. Гарвеем, — пишет А.Е. Гайсинович, — она тем не менее была отклонена большинством биологов на основе наблюдений микроскопистов XVII–XVIII веков. Лишь во второй половине XVIII века было поколеблено учение о преформации и были сделаны новые попытки сформулировать эпигенетические теории развития и наследственности, основанные на признании существования мужского и женского семени и принципа пангенезиса (П. Мопертюи, Ж. Бюффон). Хотя К.Ф. Вольфу удалось заложить первые основы эмбриологии, однако познание сущности процессов оплодотворения осталось скрытым от него, и его представления о явлениях изменчивости и наследственности были преждевременными и ошибочными. Большим шагом вперед в изучении явлений наследственности было использование растений для экспериментов по их гибридизации. Опыты гибридизаторов XVIII века окончательно подтвердили смутно предполагавшееся еще в древности наличие двух полов у растений и одинаковое их участие в явлениях наследственности (И. Кельрейтер и многие другие). Однако учение о неизменности видов и мнимое его подтверждение при межвидовой гибридизации не позволили им достоверно доказать независимую передачу по наследству отдельных видовых и индивидуальных признаков».

Это стало огромной заслугой монаха-ученого Грегора Менделя, по праву считающегося основоположником науки о наследственности.

Грегор Иоганн Мендель (1822–1884) родился в Гейзендорфе, что в Силезии, в семье крестьянина. В начальной школе он обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скопленным для нее приданым. На эти средства Мендель смог проучиться еще некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.

Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп — человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 года он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.

Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, Мендель был одним из любимейших учителей. Последние пятнадцать лет жизни Мендель был настоятелем монастыря.

С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным ученым-биологом, Мендель постоянно экспериментировал с различными растениями и пчелами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха.

Мендель трудился в крохотном, менее двух с половиною соток гектара, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов.

Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака («гладкие — морщинистые») подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.

Мендель так сформулировал цель этой серии опытов: «Задачей опыта и было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков».

С опытов Менделя начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно «помеченные» исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.

Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время, и каждый по-своему, к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, которое наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. «Проверяя алгеброй гармонию» происходящих изменений в полученных поколениях гороха, ученый вводит буквенные обозначения. Он отмечает заглавной буквой доминантное, а строчной — рецессивное состояние одного и того же гена.

Перемножив комбинационные ряды. (А+2Аа+а)х(В-2ВЬ+Ь), Мендель находит все возможные типы сочетания.

«Ряд состоит, следовательно, из 9 членов, из которых 4 представлены в нем по одному разу каждый и константны в обоих признаках; формы АВ, ab схожи с исходными видами, обе другие представляют единственные, кроме них, возможные константные комбинации между соединившимися признаками А, а, В, Ь. Четыре члена встречаются по два раза каждый и в одном признаке константны, в другом — гибридны. Один член встречается 4 раза и является гибридным в обоих признаках… Этот ряд представляет собой бесспорно комбинационный ряд, в котором связаны почленно оба ряда развития для признаков А и а, В и Ь».

В результате Мендель приходит к следующим выводам: «Потомки гибридов, соединяющих в себе несколько существенно различных признаков, представляют собой членов комбинационного ряда, в котором соединены ряды развития каждой пары различающихся признаков. Этим одновременно доказывается, что поведение в гибридном соединении каждой пары различающихся признаков независимо от других различий у обоих исходных растений», и поэтому «константные признаки, которые встречаются у различных форм родственной растительной группы, могут вступить во все соединения, которые возможны по правилам комбинаций».

Обобщенно результаты работы ученого выглядят так:

1) все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;

2) среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3: 1;

3) два признака в потомстве ведут себя независимо и во втором поколении.

4) необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);

5) объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.

В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брно, один из рядовых его членов — Грегор Мендель — сообщил о результатах своих многолетних исследований, завершенных в 1863 году. Несмотря на то что его доклады были довольно холодно встречены членами кружка, он решился опубликовать свою работу. Она увидела свет в 1866 году в трудах общества под названием «Опыты над растительными гибридами».

Современники не поняли Менделя и не оценили его труд. Слишком уж простой, бесхитростной представилась им схема, в которую без труда и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же, в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из «виновниц» его неудач была ястребинка.

Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка — чрезвычайно неудобное для искусственного скрещивания растение, так как оно очень мелкое. Приходилось напрягать зрение, а оно все больше и больше ухудшалось. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не половогб размножения ястребинки, возражения профессора Негели, главного оппонента Менделя, были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.

Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б.Л. Астауров: «Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности. Сам Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой „апогамии“. Неудача кропотливых и напряженных опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования».

Слава и почет придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не «уложившейся» в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве. Слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому еще не готов. Лишь в 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчетов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно исчезли.

Революционизирующая роль менделизма в биологии становилась все более очевидной. К началу тридцатых годов нашего столетия генетика и лежащие в ее основе законы Менделя стали признанным фундаментом современного дарвинизма. Менделизм сделался теоретической основой для выведения новых высокоурожайных сортов культурных растений, более продуктивных пород домашнего скота, полезных видов микроорганизмов Он же дал толчок развитию медицинской генетики.

Знаменитый физик Эрвин Шредингер считал, что применение законов Менделя равнозначно внедрению квантового начала в биологии

ФОТОСИНТЕЗ

Несколько лет французские химики Пельтье (1788–1842) и Каванту (1795–1877) работали вместе. Это плодотворное сотрудничество привело к открытию стрихнина и бруцина. Самую большую славу принесло им открытие хинина — верного средства против малярии. В 1817 году ученые опубликовали «Заметку о зеленой материи листьев».

Именно Пельтье и Каванту и открыли хлорофилл — то вещество, что придает всем растениям зеленый цвет. Правда, они не придали этому слишком большого значения.

Ученые залили свежие листья спиртом. Спирт окрасился в зеленый цвет, а листья стали совершенно бесцветными. Кроме того, Пельтье и Каванту промыли полученную полужидкую зеленую массу водой. Удалив водно-растворимые примеси, они затем просушили ее и получили зеленый порошок.

Ученые назвали это вещество хлорофиллом (от греческих «хлорос» — зеленый и «филлон» — лист). Начало было положено.

Вильштеттер (1872–1942), сын торговца текстилем, немецкий биохимик, свои научные интересы связал с растительными пигментами (хлорофилл — один из них). В 1913 году вместе с ближайшим учеником Артуром Штоллем он выпустил фундаментальный труд «Исследования хлорофилла». В 1915 году за эти работы Вильштеттер был удостоен Нобелевской премии по химии.

Научные результаты школы Вильштеттера были значительны.

Тимирязев писал позднее, что работа Вильштеттера «останется надолго исходной точкой в дальнейшем изучении хлорофилла, и будущий историк отметит два периода в этом изучении — до Вильштеттера и после „него“».

«Прежде всего Вильштеттер, — пишет Ю Г Чирков, — выделил в зелени два начала — хлорофилл а (он самый важный) и хлорофилл b. Второе достижение: Вильштеттер установил химический состав молекулы хлорофилла.

Присутствие в хлорофилле углерода, водорода, азота, кислорода ожидалось. Но магний — это для ученых был сюрприз! Хлорофилл оказался первым соединением в живой ткани, содержащим этот элемент.

И, наконец, третье: Вильштеттер задался целью определить, у всех ли растений хлорофилл одинаков? Ведь сколько на планете разных растений, как сильно разнятся условия их обитания, так неужели все они обходятся одной и той же, так сказать, стандартной молекулой хлорофилла?

И тут Вильштеттер вновь показал свой научный характер. Ни у современников, ни у потомков не должно было возникнуть и тени сомнений в достоверности добытых им фактов!

Гигантский труд длился целых два года. В Цюрих, где в то время работал Вильштеттер, многочисленные помощники доставляли тьму растений из самых разных мест. Растения наземные и водные, из долин и со склонов гор, с севера и юга, из рек, озер и морей. И из каждого полученного экземпляра извлекали хлорофилл и тщательно анализировали его химический состав».

В итоге ученый убедился, что состав хлорофилла везде одинаков!

За красный цвет крови «отвечает» гем. В основе и гема, и хлорофилла лежит порфин. «…Ханс Фишер в начале изучал гем, — отмечает Чирков. — Дробя эту молекулу, он вскоре убедился: ее основу составляет порфин. Кольцо из колечек. То же было и у хлорофилла. Отличие заключалось лишь в хвостиках, коротких цепочках атомов, прикрепленных к восьми углам порфина…

Труд Фишера по расшифровке и синтезу гема был увенчан Нобелевской премией. Но ученый не захотел успокоиться на достигнутом: теперь его увлекла загадка хлорофилла.

Быстро было установлено: основу хлорофилла составляет все тот же порфин IX, однако вместо атома железа в него „вкраплен“ атом магния (присутствие последнего доказал еще Вильштеттер)…

…Продолжая свои научные розыски, Фишер убедился: в том месте, где у молекулы гема висит трехуглеродный хвостик, у молекулы хлорофилла торчит громадный хвостище — двадцатиуглеродная цепь, названная фитолом…

Сейчас в любом учебнике по физиологии растений можно найти „портрет“ этой знаменитой молекулы. Структурная формула хлорофилла занимает целую страницу. Хотя истинные его размеры предельно скромны — 30 ангстрем…

Молекула хлорофилла похожа на головастика: у нее плоская квадратная голова (хлорофиллин) и длиннющий хвост (фитол). В центре головы, словно глаз циклопа или алмаз в царской короне, красуется атом магния.

Если оторвать у головастика фитольный хвост, а атом магния заменить атомом железа, получим гем. И будто по волшебству, изменится цвет пигмента: зеленое станет красным!»

Американец Дрэпер, а вслед за ним англичанин Добени и немцы Сакс и Пфеффер в результате проведенных экспериментов сделали вывод, что наиболее интенсивно фотосинтез происходит в желтых лучах солнечного света.

С этим мнением не согласился русский ученый Тимирязев.

Климент Аркадьевич Тимирязев (1843–1920) родился в старинной дворянской семье. Начальное образование мальчик получил дома.

Затем Климент поступил на естественное отделение физико-математического факультета Петербургского университета. Студенты-естественники всегда отличались демократизмом настроений, и этот факультет считался традиционным началом пути русских разночинцев. На втором курсе Тимирязев отказался подписать обязательство о том, что не будет заниматься антиправительственной деятельностью. За это он был исключен из университета. Однако, учитывая выдающиеся способности юноши, ему было разрешено продолжать образование вольнослушателем.

Поскольку в России научная карьера для Тимирязева оказалась закрытой из-за его неблагонадежности, сразу после окончания университета он уезжает за границу. Молодой ученый работает в лабораториях крупнейших биологов Франции — П. Бертло и Ж. Буссенго, а также проходит стажировку в Германии у физика Кирхгофа и физиолога Гельмгольца. В одном из немецких университетов ему присуждают степень доктора.

Вернувшись в Россию, Тимирязев начинает работать в Петровской земледельческой и лесной академии. В 1871 году после защиты диссертации «Спектральный анализ хлорофилла» он был избран экстраординарным профессором Петровской сельскохозяйственной академии. Сегодня эта академия носит имя Тимирязева В 1875 году после защиты докторской диссертации «Об усвоении света растением» Тимирязев стал ординарным профессором.

Первая книга Тимирязева посвящена популяризации идей Чарлза Дарвина. Он практически первый открыл их для русской науки и впервые ввел дарвинизм в качестве учебного курса для студентов.

Большую часть жизни Тимирязев посвятил исследованиям хлорофилла. Его блестящая книга «Жизнь растения» (1878) выдержала десятки изданий на русском и иностранных языках.

В ней он на ярких примерах показал, как питается, растет, развивается и размножается зеленое растение. Тимирязев обладал редким даром ученого-популяризатора, который умел очень просто объяснить научные явления даже неискушенному читателю.

Для того чтобы опровергнуть вывод, будто бы максимум фотолиза имеет место в желтых лучах, и доказать, что этот максимум приходится на красные лучи, Тимирязев проводит целую серию тщательно продуманных экспериментов.

Он сам создает точнейшие приборы для практического доказательства правильности своих теоретических выводов. Тимирязев показал, что ошибочные выводы Дрэпера явились результатом неверно поставленных опытов. Непременным условием успешности этих опытов является чистота спектра. Чтобы спектр был чистым, т. е. чтобы каждый его участок был четко отграничен от других, щель, через которую проходит луч света, должна быть не шире 1–1,5 миллиметра. Используя известные в то время методы газового анализа, Дрэпер вынужден был использовать щель размером до 20 миллиметров в диаметре. В результате спектр получался крайне нечистым. Наибольшее смешение лучей при этом имело место в средней, желто-зеленой части, которая становилась от этого почти белой, слегка окрашенной в желтый цвет. Именно здесь Дрэпер и нашел максимальный эффект фотосинтеза.

Тимирязев в своих опытах добился устранения ошибки, допущенной Дрэпером. В своем исследовании относительного значения различных лучей спектра в процессе фотосинтеза, произведенном летом 1868 года, он достигает этого путем применения так называемых светофильтров. В данном случае исследование интенсивности фотосинтеза в различных лучах солнечного света проводится не в спектре, а в отдельных лучах, изолированных от остальных лучей с помощью цветных жидкостей.

Тимирязеву удалось установить, что хлорофилл наиболее полно поглощает красные лучи. Именно в этих лучах была обнаружена им также и наибольшая интенсивность фотосинтеза, что указывало на решающую роль хлорофилла в изучаемом явлении.

Вскрыв ошибочность опытов Дрэпера, Тимирязев прекрасно понимал в то же время, что точных результатов, подтверждающих его гипотезу о зависимости фотосинтеза от степени поглощения данных лучей зеленым листом и от количества их энергии, можно добиться лишь при помощи опытов, произведенных непосредственно в спектре. Задумав целый комплекс исследований в этом плане, Тимирязев прежде всего обращает внимание на изучение свойств хлорофилла.

Исследования Тимирязева наглядно показали, как он сам говорил, «космическую роль растений». Он называл растение посредником между солнцем и жизнью на нашей планете. «Зеленый лист, или, вернее, микроскопическое зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на земле. Растение — посредник между небом и землею. Оно истинный Прометей, похитивший огонь с неба. Похищенный им луч солнца горит и в мерцающей лучине, и в ослепительной искре электричества. Луч солнца приводит в движение и чудовищный маховик гигантской паровой машины, и кисть художника, и перо поэта».

Благодаря исследованиям Тимирязева в науке прочно утвердился взгляд на растение как на замечательный аккумулятор солнечной энергии.

Сегодня нет никаких сомнений: хлоропласт — это созданный природой аппарат для фотосинтеза, а доказал это теперь очевидное положение в 1881 году Теодор Вильгельм Энгельман (1843–1909), немецкий физиолог, автор выдающихся работ по физиологии животных.

Как отмечает Чирков: «Решение задачи было чрезвычайно остроумным. Помогли бактерии. У них нет фотосинтеза, зато они, как люди и животные, нуждаются в кислороде. А кислород выделяют клетки растений. В каких именно местах? А вот это и есть то, что надо выяснить!

Энгельман рассуждал так: бактерии соберутся в тех частях растительной клетки, где выделяется кислород, эти места и будут центрами фотосинтеза.

В каплю воды поместили бактерии и растительную клетку. Все это закрыли стеклом, края тщательно замазали вазелином: чтоб воспрепятствовать доступу кислорода под стекло из воздуха.

Если теперь все это устройство немного продержать в темноте, то бактерии, потребив весь кислород в жидкости, перестанут двигаться.

Теперь решающее: перенесем наше устройство на столик микроскопа и будем освещать растительную клетку так, чтобы лучи света падали на различные ее части (а остальное находилось в тени). И вот легко убедиться: бактерии начинают двигаться лишь тогда, когда луч света упадет на один из хлоропластов…

Так, наконец, было четко показано: хлоропласты — это те фабрички, где растение умело переплавляет луч света в химические вещества, а содержащийся в хлоропластах хлорофилл катализирует этот процесс».

Русский ботаник Андрей Сергеевич Фаминцин (1835–1918) доказал, что этот процесс может идти и при искусственном освещении.

В 1960 году газеты США и других стран оповестили мир о том, что известный американский химик-органик Роберт Берне Вудворд (1917) добился небывалого — осуществил синтез хлорофилла.

ОСНОВЫ ИММУНОЛОГИИ

Среди инфекционных болезней, которым человечество веками платило дань своими жизнями, оспа занимала одно из первых мест. В Европе в XVIII веке ежегодно погибало от нее около 440 тысяч человек. Еще больше оставалось на всю жизнь изуродованными, а иногда и слепыми. Особенно велика была смертность от оспы среди маленьких детей и бедняков.

Сегодня мы знакомы с натуральной оспой только из книг. И это благодаря оспопрививанию. В нашей стране оспа ликвидирована с 1937 года, а по всему миру она исчезла к 1980 году. И благодарить за это человечество должно Эдварда Дженнера, английского врача.

Интересно, что способ предупреждения заболевания оспой Дженнер открыл, когда еще никто не знал возбудителя этой болезни. Помогли ему наблюдательность, трудолюбие, целеустремленность.

Дженнер был простым сельским врачом, когда обратил внимание на то, что люди, заразившиеся «коровьей оспой», не заболевают натуральной человеческой оспой. Дело в том, что у некоторых животных: коров, свиней, ослов и других — наблюдается болезнь, очень сходная с человеческой оспой. У животных на вымени и коже появляются гнойные пузырьки. Доярки рассказывали Дженнеру, что все они, как правило, заболевают «коровьей оспой» и уже потом не боятся натуральной. Лишь иногда во время эпидемии некоторые из них чувствовали небольшое недомогание.

Много лет занимался Дженнер изучением вопроса, прежде чем решился провести опыт на человеке. И вот 14 мая 1796 года он привил восьмилетнему мальчику Джону Фиппсу гной с руки женщины, заразившейся коровьей оспой. Через несколько дней после небольшого недомогания мальчик был полностью здоров. Но стал ли он невосприимчив к натуральной оспе? Нужен был другой опыт, очень рискованный, когда на карту будет поставлено не только здоровье, но и жизнь ребенка.

Вскоре в этой местности вспыхивает эпидемия натуральной оспы. И Дженнер, взяв гной из пузырька больного, заражает им Джона Фиппса Ребенок не заболел!

Не сразу метод оспопрививания был признан в мире. Очень гневались церковники, считая это противным Богу. Многие врачи отнеслись к нему скептически. Ходили даже слухи, что у привитых людей вырастают рога и хвост. И все-таки оспопрививание победило.

Умирая в 1823 году на 74-м году жизни, Дженнер знал, что его способ борьбы с оспой оказался благодеянием для человечества. В честь него были выбиты памятные медали, в городах возводились памятники.

Но научный смысл оспопрививания был тогда еще неизвестен. Оставалось ждать еще 58 лет, пока это не сделает Луи Пастер. Пастер в отличие от Дженнера создал научный метод, приложимый ко всем инфекционным заболеваниям и основанный на точных экспериментах.

К семидесятым годам девятнадцатого столетия научные заслуги Пастера получают всеобщее признание. В 1872 году австрийское правительство присуждает ему премию за работу о болезнях шелковичных червей. В 1873 году он избирается во Французскую медицинскую академию и в том же году получает золотую медаль Лондонского королевского общества. Французское правительство назначает ему национальную дотацию пожизненно.

В 1879–1880 годах ученый изучает куриную холеру. «Он изолировал культуру возбудителя этой болезни и, регулярно пересевая ее на питательных средах, всегда убеждался в том, что введение этих бактерий курам неизбежно вызывало их смерть самое позднее через два дня, — пишет в своей книге А.А. Имшенецкий. — Однажды обстоятельства сложились так, что он не производил пересевы культуры и она простояла в термостате в аэробных условиях длительное время. Впрыскивание этой культуры микроба не вызвало гибели птиц. Когда же у Пастера снова была в руках вирулентная культура, он ввел ее как птицам, которым никогда не вводились эти бактерии, так и тем, которым уже впрыскивалась ранее культура, находившаяся в термостате и не вызвавшая их гибели. Результаты этих опытов оказались несколько неожиданными. Все куры, которым предварительно были введены бактерии, остались живы, те же, которым культура ранее не вводилась, вскоре погибли. Повторение опытов дало те же результаты. Эти, казалось бы, весьма скромные по своим результатам опыты позволили Пастору прийти к заключению, что: 1) длительное хранение культуры возбудителя куриной холеры в термостате при доступе воздуха приводит к ослаблению ее вирулентности; 2) предварительное введение ослабленной культуры курам делает их невосприимчивыми к этой болезни.

Так родилась идея о предохранительных прививках, которая была затем использована Пастером в его последующих работах с патогенными бактериями. Трудно переоценить значение вывода, который был сделан им из этих наблюдений. Был найден принцип, приложение которого стало реальным по отношению к самым различным инфекциям. Открылись широкие перспективы для экспериментального изменения вирулентности у патогенных культур с целью получить материал, необходимый для прививок. Некоторые современники Пастера всячески подчеркивали „случайный“ характер открытия, но роль случая в научных открытиях иногда склонны переоценивать, не понимая, что самое существенное заключается не в самом наблюдении, а в гениальном умении экспериментатора обобщить и предвидеть».

Установленный Пастером в его исследованиях с куриной холерой принцип ослабления вирулентности патогенных бактерий позволил ему провести аналогичные опыты с сибиреязвенной палочкой. Этот микроб образовывал споры, и очевидно, что вводить в живой организм споры патогенного микроба не имело смысла. Установив, что при 42–43 градусах Цельсия возбудитель сибирской язвы растет, но не образует спор, Пастер в дальнейшем поступил с ним точно таким же образом, как с возбудителем куриной холеры. Он получал микроб, в той или иной мере утративший вирулентность, но сохранивший иммуногенность. Проверка таких культур выяснила, что их введение животным приводит к тому, что последние уже не погибают при впрыскивании им вирулентной культуры. После доклада Пастера об этом открытии в Академии наук оставалась последняя проверка — массовый эксперимент на сельскохозяйственных животных в присутствии комиссии и интересующихся результатом прививки ветеринарных и медицинских врачей, а также широкой публики.

Такая проверка была осуществлена 31 мая 1881 года на ферме в Пуйиле-Фор. Результаты публичных испытаний были блестящи. Все овцы, которым через определенный срок после прививок была впрыснута вирулентная культура сибироязвенной палочки, остались живы, все животные, которым не были сделаны прививки, погибли. Благоприятное действие прививок было доказано также на коровах. Вскоре этот метод получил широкое распространение во всем мире, и заболевание сибирской язвой сельскохозяйственных животных стало редкостью.

Работы по куриной холере и сибирской язве позволили Пастеру в 1881 году выступить в Лондоне на Международном конгрессе врачей с докладом о прививках при этих заболеваниях. Доклад сопровождался большим успехом, и имя Пастера стало широко известно в медицинском мире.

Бесспорно, что исследования Пастера, приведшие его к разработке метода предохранительных прививок, не только заложили основы новой науки — иммунологии, но сделали возможным развитие одного из наиболее важных разделов профилактической медицины. Однако перенесение этих данных на другие инфекционные болезни затруднялось тем, что их возбудители еще не были открыты. Поэтому Пастер продолжал искать микробы, вызывающие различные заболевания.

Самой выдающейся работой Пастера в области медицинской микробиологии, несомненно, следует считать его изучение бешенства, закончившееся предложением антирабических прививок.

«Проверяя инфекционность мозга животных, больных бешенством, — отмечает Имшенецкий, — Пастер нашел, что заражение мозгом дает гораздо чаще положительные результаты, чем заражение слюной. Далее он убедился, что введение вещества мозга больного животного непосредственно в мозг кролика приводит к значительному сокращению инкубационного периода болезни, а последовательные пассажи вируса на кроликах дают возможность получить вирус, вызывающий заболевание уже через семь дней. Мозг больного кролика, подвешенный в стеклянном сосуде над едким натром, постепенно высыхает и одновременно с этим содержащийся в нем вирус ослабевает. Повторное введение такого мозга в виде растертой с физиологическим раствором кашицы здоровому животному делает его невосприимчивым к бешенству. Собаки, которым были сделаны эти прививки, помещались в клетки вместе с бешеными собаками.Последние кусали привитых животных, но, несмотря на это, ни одно из них не заболело бешенством. Бешенство — ужасная, но сравнительно редкая у человека болезнь, поэтому было совершенно очевидным, что делать прививки здоровым людям нецелесообразно, так как мало шансов быть покусанным бешеным животным. На этом этапе исследований у Пастера зародилась блестящая идея воспользоваться тем, что при бешенстве обычно бывает очень длительный инкубационный период. Он предположил, что, вводя все более и более сильный вирус покусанному животному, можно получить иммунитет до того как вирус, попавший при укусе, распространится по организму и вызовет заболевание. Это предположение полностью подтвердилось. Собакам, укушенным бешеной собакой, вводился растертый мозг кролика, содержащий вирус. Вначале впрыскивался мозг, сушившийся длительное время, т. е. содержавший ослабевший вирус, а затем мозг менее высушенный, с более активным вирусом. Эти эксперименты выяснили, что введение ослабленного вируса бешенства предохраняет от заболевания собаку, покусанную бешеным животным».

Задача была решена — удалось найти метод, позволивший спасать людей от мучительной смерти. Дальнейший шаг — начать прививки человеку — был сложным и трудным для Пастера. Толчком послужил приезд в июле 1885 года в Париж девятилетнего мальчика Жозефа Мейстера, искусанного бешеной собакой. Он оказался первым, кому после больших сомнений и колебаний Пастер сделал прививки против бешенства. В результате мальчик не заболел. 27 октября 1885 года Пастер выступил в Академии наук с докладом о результатах своих исследований по бешенству. Доклад произвел очень большое впечатление и вызвал овации в честь великого ученого.

О значении метода прививок Пастера говорит тот факт, что после его работ усилиями ученых всех стран были разработаны предохранительные прививки почти против всех известных инфекционных заболеваний как бактериальной, так и вирусной этиологии. Они резко снизили заболеваемость населения этими болезнями и позволили почти полностью ликвидировать отдельные инфекции. Исключительно большие успехи в этой области достигнуты также в ветеринарии, так как предохранение сельскохозяйственных животных от ряда эпидемических болезней зависит от своевременности прививок.

Пастер никогда не считал, что иммунитет может возникнуть только после введения вакцины, содержащей бактериальные клетки. Все последующие успехи иммунологии, в частности разработка метода серотерапии, в которой приняли активное участие и ученики Пастера, представляют собой только логическое развитие его идей, положенных в основу учения об иммунитете.

ВОЗБУДИТЕЛЬ ТУБЕРКУЛЕЗА

Во второй половине девятнадцатого века в Германии от туберкулеза умирал каждый седьмой человек. Врачи были бессильны. Туберкулез вообще считался наследственной болезнью, поэтому и попыток борьбы с ним не предпринималось. Больным прописывали свежий воздух и хорошее питание. Вот и все лечение.

«Большинство врачей считало туберкулез наследственной болезнью, усугубляющейся плохим питанием и скверными бытовыми условиями, — пишет в своей книге М. Яновская. — Еще Гиппократ, великий врач древности, писал, что „чахоточный родится от чахоточного“, что для чахоточных больных весна — плохое время года, но еще хуже — осень; что болезнь эта смертельная, но, захваченная в самом начале, она может быть вылечена: хорошим питанием, климатом, слабительными, водолечением и т. д. И хотя народная молва в те времена говорила о заразности чахотки, сам Гиппократ в своих трудах ни словом не упоминает об этом. Но уже Гален говорит о заразности чахотки, а французский ученый Гаспар Бейль утверждает, что легочная чахотка — не изолированное заболевание, что это страдание всего организма. Затем другой француз — Лаеннек — создает учение о единстве легочного туберкулеза и туберкулеза вообще, досконально изучает чахотку, устанавливает ее тождественность с золотухой и категорически утверждает: болезнь заразна, но выздоровление возможно. И сам умирает от скоротечной чахотки в возрасте сорока пяти лет…

…Споры о том, заразен или не заразен туберкулез, велись на протяжении веков. Еще в XVI веке Фракасторо из Вероны писал, что возбудителем болезни являются особые тельца, недоступные нашим органам чувств; они же и переносчики заразы. И хотя большинство ученых-медиков возражало против утверждения Фракасторо, а кое-кто утверждал, что речь должна идти вовсе не о „тельцах“, а о яде, — учение Фракасторо о заразности туберкулеза принесло большую пользу: во многих местах принимались меры против распространения заразы. В Провансе, например, на вещах легочных больных делали специальные пометки; после их смерти из комнаты, где лежали больные, выносилась мебель, сдиралась обивка со стен, постель и белье сжигались. В Неаполе был издан знаменитый декрет, по которому вся мебель, принадлежавшая туберкулезному больному, выносилась за пределы города и дезинфицировалась окуриванием и специальным мытьем».

Уже в девятнадцатом веке скромный французский врач Виллемен в парижской больнице Валь-де-Грас несколько лет занимался изучением туберкулеза. Он пришел к выводу, что болезнь эта заразна и должен быть микроб, который ее вызывает. Но поскольку микроба этого Виллемен не нашел, спорить с ним было легко.

Медицинские каноны сводились к тому, что туберкулез возникает в результате самопроизвольного изменения крови или других соков организма.

Известный ученый Вирхов, считал что золотуха, легочная чахотка, туберкулез костей совершенно различные заболевания. Не соглашался он и с тем, что туберкулез — заболевание специфическое; по его утверждению, всякое воспаление может переродиться в бугорчатку. Между тем именно Вирхов первый подробно изучил и описал просовидный бугорок, лежащий в основе заболевания туберкулезом (иначе, бугорчаткой), хотя причины, порождающие этот бугорок, остались и для него неизвестными.

— Туберкулез — сложная болезнь, — утверждал другой известный в те времена доктор Пиду. — Она дает один конечный результат: отмирание, разрушение тканей организма. Наша обязанность — не выискивать мифического микроба, а пресекать пути, по которым идет это разрушение.

«Специфичность тормозит развитие медицины! — твердили сторонники самозаражения и противники микробов. — Если все медики начнут ловить несуществующего возбудителя, кто же будет лечить больных?»

Единственное доказательство правоты — микроб — не давался в руки, и врачи, считавшие туберкулез заразной болезнью, вызываемой специфической бактерией, вынуждены были молчать.

Последним словом в защиту микроба были эксперименты Конгейма, всегда и во всех пораженных туберкулезом органах находившего бугорки, которые состояли из распавшихся тканей и гноя. Конгейм пришел к выводу, что бугорки — колыбель возбудителей туберкулеза. Это заключение Конгейма и послужило отправной точкой для исследований Роберта Коха, когда он в новой лаборатории Управления здравоохранения впервые взялся за поиски туберкулезного микроба.

Немецкий врач и бактериолог Генрих Герман Роберт Кох (1843–1910) родился в Клаусталь-Целлерфельде. Его родителями были Герман Кох, работавший в управлении шахт, и Матильда Юлия Генриетта Кох (Бивенд). В семье было 13 детей, Роберт был третьим по возрасту ребенком. Когда в 1848 году Роберт поступил в местную начальную школу, он уже умел читать и писать. Он легко учился и в 1851 году поступил в гимназию Клаусталя. Через четыре года он уже был первым учеником в классе, а в 1862 году окончил гимназию. Затем Роберт поступил в Геттингенский университет.

В 1866 году Роберт получил медицинский диплом. Кох обосновался в немецком городе Раквице, где начал врачебную практику в должности ассистента в больнице для умалишенных. Однако эта работа Коха была прервана, когда в 1870 году началась франко-прусская война.

Несмотря на сильную близорукость, Роберт добровольно стал врачом полевого госпиталя и здесь приобрел большой опыт в лечении инфекционных болезней, в частности холеры и брюшного тифа. Одновременно он изучал под микроскопом водоросли и крупные микробы, совершенствуя свое мастерство в микрофотографии.

В 1871 году Кох демобилизовался и в следующем году был назначен уездным санитарным врачом в Вольштейне (ныне Вольштын в Польше). Жена подарила ему на двадцативосьмилетие микроскоп, и с тех пор Роберт целые дни проводил у него. Он потерял всякий интерес к частной практике и стал вести исследования и опыты, заведя для этой цели настоящее полчище мышей.

Кох обнаружил, что в окрестностях Вольштейна распространена сибирская язва, эндемическое заболевание, которое распространяется среди крупного рогатого скота и овец, поражает легкие, вызывает карбункулы кожи и изменения лимфоузлов. Кох знал об опытах Луи Пастера с животными, больными сибирской язвой, и тоже решил понаблюдать за этими бактериями. С помощью микроскопа он проследил весь жизненный цикл бактерий, увидел, как из одной палочки возникают миллионы.

Проведя серию тщательных, методичных экспериментов, Кох установил бактерию, ставшую единственной причиной сибирской язвы. Он доказал также, что эпидемиологические особенности сибирской язвы, т. е. взаимосвязь между различными факторами, определяющими частоту и географическое распределение инфекционного заболевания, обусловлены циклом развития этой бактерии. Исследования Коха впервые доказали бактериальное происхождение заболевания.

Открытия Коха сразу принесли ему широкую известность, и в 1880 году он, в значительной мере благодаря усилиям Конгейма, стал правительственным советником в Имперском отделении здравоохранения в Берлине. В 1881 году Кох опубликовал работу «Методы изучения патогенных организмов», в которой описал способ выращивания микробов в твердых средах. Этот способ имел важное значение для изолирования и изучения чистых бактериальных культур.

Теперь Кох решает попытать счастья и найти возбудитель туберкулеза. Близость «Шарите», где полным-полно было туберкулезных больных, облегчала ему задачу: материала, к сожалению, было сколько угодно. Ежедневно он появлялся рано утром в больнице и получал оттуда немного мокроты больного чахоткой или несколько капель крови заболевшего ребенка. Затем он уносил маленькую скляночку к себе в лабораторию, стараясь спрятать ее от глаз ассистентов, и усаживался за микроскоп.

Шли дни, недели, месяцы… Руки ученого почернели от краски — очень быстро он понял, что если и есть шанс увидеть этого крохотного таинственного убийцу, то только с помощью окрашивающих веществ. Но, должно быть, краски слишком слабы. Надо было придумать что-нибудь посильнее.

Кох растирает туберкулезную ткань, окрашивает ее в метиленовой синьке, потом в «везувине» — едкой красно-коричневая краске, употребляемой для отделки кожи, и смотрит. Он заставляет себя оторвать взгляд от объектива, откидывается в кресле, прикрывает рукой глаза. Отдохнув, смотрит снова. На препарате отчетливо видны ясно-синие, необыкновенно красивого оттенка крохотные, слегка изогнутые палочки. Некоторые из них плавают между клеточным веществом, некоторые сидят внутри клеток. Не веря себе, Кох снова вертит микрометрический винт, снова надевает и снимает очки, прижимается глазом вплотную к окуляру, встает с кресла и смотрит стоя. Картина не меняется. Наконец-то!..

«Двести семьдесят первый препарат», — пишет Кох в дневнике. Он улыбается. И только сейчас до него доходит, что, собственно, произошло: он открыл возбудителя туберкулеза — всечеловеческое пугало, о котором столько было споров.

Кох достиг величайшего триумфа 24 марта 1882 года, когда объявил о том, что сумел выделить бактерию, вызывающую туберкулез. В публикациях Коха по проблемам туберкулеза впервые были обозначены принципы, которые затем стали называться постулатами Коха. Эти принципы «получения исчерпывающих доказательств… что тот или иной микроорганизм действительно непосредственно вызывает определенные заболевания» — до сих пор остаются теоретическими основами медицинской микробиологии.

В 1885 году Кох стал профессором Берлинского университета и директором только что созданного Института гигиены. В то же время он продолжал исследования туберкулеза, сосредоточившись на поисках способов лечения этого заболевания. В 1890 году он объявил о том, что такой способ найден. Кох выделил так называемый туберкулин (стерильную жидкость, содержащую вещества, вырабатываемые бациллой туберкулеза в ходе роста), который вызывал аллергическую реакцию у больных туберкулезом. Однако на самом деле туберкулин не стал применяться для лечения туберкулеза, т. к. особым терапевтическим действием он не обладал, а его введение сопровождалось токсическими реакциями, что стало причиной его острейшей критики. Протесты против применения туберкулина стихли, лишь когда обнаружилось, что туберкулиновая проба может использоваться в диагностике туберкулеза. Это открытие, сыгравшее большую роль в борьбе с туберкулезом у коров, явилось главной причиной присуждения Коху Нобелевской премии в 1905 году.

ФИЗИОЛОГИЯ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ

Воистину классическими признаны работы русского ученого Ивана Петровича Павлова по физиологии пищеварения. Это относится как к ценности фактических и теоретических результатов, так и оригинальности и мастерству выполнения. Благодаря гению Павлова удалось вывести физиологию органов пищеварительного тракта из тупика и поднять ее на небывалую высоту. «До Павлова физиология пищеварения была одним из отсталых разделов науки физиологии вообще, — замечает в своей книге о физиологе Э.А. Асратян. — Существовали лишь весьма смутные и фрагментарные представления о закономерностях работы отдельных пищеварительных желез и всего процесса пищеварения в целом. Вивисекционно острый эксперимент — основной прием исследования функций органов пищеварительной системы в те времена оказался непригоден для раскрытия тайн работы этих органов. Более того, полученные при таких порочных опытах фактические результаты стали причиной многих ошибок, например представления, что желудочные и поджелудочные железы не имеют секреторных нервов (Гейденгайн, Старлинг, Бейлис и др.). Если же отдельным ученым и удавалось установить наличие секреторных нервов для других пищеварительных желез, например для слюнных (Людвиг, Клод Бернар, Гейденгайн, Лэнгли и др.), то этот грубый прием физиологических исследований все же не позволял выявить всех тонкостей нервной регуляции их функций.

Зная это, многие наши и зарубежные ученые (Клод Бернар, Гейденгайн, Басов Тири и др.) пытались заменить вивисекцию более совершенным приемом исследования — экспериментами на хронически оперированных животных. Однако эти попытки не увенчались должным успехом: либо выполненные операции оказывались малоценными по замыслу и по технике осуществления (фистула протоков слюнных желез у Клода Бернара, изолированный желудок у Гейденгайна), либо остроумно придуманные и успешно выполненные операции были недостаточными для выявления закономерностей работы данного органа хотя бы в главных чертах и годились лишь для получения отдельных, разрозненных фактов об их работе.

Без преувеличения можно сказать, что основными и наиболее достоверными сведениями о физиологии пищеварительных желез наука обязана именно Павлову. Он фактически заново создал эту важную главу физиологии, создал монолитное и цельное учение о едином пищеварительном процессе взамен ранее существовавшей бесформенной смеси не связанных между собой половинчатых и ошибочных сведений о работе тех или иных органов пищеварительной системы».

Ни один из русских ученых того времени, даже Менделеев, не получил такой известности за рубежом. «Это звезда, которая освещает мир, проливая свет на еще не изведанные пути», — говорил о нем Герберт Уэллс. Его называли «романтической, почти легендарной личностью», «гражданином мира».

Иван Петрович Павлов (1849–1936) родился 26 сентября 1849 года в Рязани. Его отец, Петр Дмитриевич, был священником. С раннего детства Павлов перенял у отца упорство в достижении цели и постоянное стремление к самосовершенствованию. По желанию своих родителей Павлов посещал начальный курс духовной семинарии, а в 1860 году поступил в рязанское духовное училище.

В обширной отцовской библиотеке как-то Иван нашел книжку Г.Г. Леви «Физиология обыденной жизни». Книга так глубоко запала ему в душу, что, будучи уже взрослым, «первый физиолог мира» при каждом удобном случае на память цитировал оттуда целые страницы. Увлекшись естественными науками, Павлов в 1870 году поступил в Петербургский университет на естественное отделение физико-математического факультета.

Его интерес к физиологии возрос, после того как он прочитал книгу И. Сеченова «Рефлексы головного мозга», но освоить этот предмет ему удалось только после того, как он прошел обучение в лаборатории И. Циона, изучавшего роль депрессорных нервов.

Первое научное исследование Павлова — изучение секреторной иннервации поджелудочной железы. За нее Павлов и М. Афанасьев были награждены золотой медалью университета.

После получения в 1875 году звания кандидата естественных наук Павлов поступил на третий курс Медико-хирургической академии в Санкт-Петербурге (реорганизованной впоследствии в Военно-медицинскую). Затем Павлов становится ассистентом в Ветеринарном институте, где в течение двух лет продолжал изучение пищеварения и кровообращения.

Летом 1877 года он работал в городе Бреслау, в Германии с Рудольфом Гейденгайном, специалистом в области пищеварения. В следующем году Павлов начал работать в физиологической лаборатории при его клинике в Бреслау, еще не имея медицинской степени, которую Павлов получил в 1879 году. В том же году Иван Петрович начал исследования по физиологии пищеварения, которые продолжались более двадцати лет. Многие исследования Павлова в восьмидесятых годах касались системы кровообращения, в частности регуляции функций сердца и кровяного давления.

В 1883 году Павлов защитил диссертацию на соискание степени доктора медицины, посвященную описанию нервов, контролирующих функции сердца. Он был назначен приват-доцентом в академию, но вынужден был отказаться от этого назначения в связи с дополнительной работой в Лейпциге с Гейденгайном и Карлом Людвигом, двумя наиболее выдающимися физиологами того времени. Через два года Павлов вернулся в Россию.

К 1890 году труды Павлова получили признание со стороны ученых всего мира. С 1891 года он заведовал физиологическим отделом Института экспериментальной медицины, организованного при его деятельном участии, одновременно оставаясь руководителем физиологических исследований в Военно-медицинской академии, в которой проработал с 1895 по 1925 год.

В 1897 году свой экспериментальный материал и теоретические положения Павлов блестяще обобщил в классическом труде «Лекции о работе главных пищеварительных желез» (1897), который очень скоро был переведен за границей.

В своих исследованиях Павлов использовал методы механистической и холистической школ биологии и философии, которые считались несовместимыми. Как представитель механицизма Павлов считал, что комплексная система, такая, как система кровообращения или пищеварения, может быть понята путем поочередного исследования каждой из их частей; как представитель «философии целостности» он чувствовал, что эти части следует изучать у интактного, живого и здорового животного. По этой причине он выступал против традиционных методов вивисекции, при которых живые лабораторные животные оперировались без наркоза для наблюдения за работой их отдельных органов.

Считая, что умирающее на операционном столе и испытывающее боль животное не может реагировать адекватно здоровому, Павлов воздействовал на него хирургическим путем таким образом, чтобы наблюдать за деятельностью внутренних органов, не нарушая их функций и состояния животного. Мастерство Павлова в этой трудной хирургии было непревзойденным. Более того, он настойчиво требовал соблюдения того же уровня ухода, анестезии и чистоты, что и при операциях на людях.

Используя данные методы, Павлов и его коллеги показали, что каждый отдел пищеварительной системы — слюнные и дуоденальные железы, желудок, поджелудочная железа и печень — добавляет к пище определенные вещества в их различной комбинации, расщепляющие ее на всасываемые единицы белков, жиров и углеводов. После выделения нескольких пищеварительных ферментов Павлов начал изучение их регуляции и взаимодействия.

«Секреторные нервы слюнных желез были выявлены и довольно обстоятельно изучены предшественниками Павлова, — пишет Э.А. Асратян, — Клодом Бернаром, Гейденгайном, Людвигом, Ленгли и др., но условия острых вивисекционных экспериментов, в которых проводились их исследования, не позволяли им выявить во всей полноте картину и закономерности богатой и разносторонней естественной деятельности этих желез. Рефлекторная секреция слюны априорно ставилась в связь с общей возбудимостью рецепторов ротовой полости, хотя давно было известно, что эти рецепторы далеко не однородны по своей структуре и функциям.

В своих систематических и тщательных хронических экспериментах Павлов установил, что рефлекторная секреция слюны в сильной степени варьирует по количеству и даже по качеству в зависимости от природы, силы, количества и продолжительности действия натуральных раздражителей в виде пищевых или отвергаемых веществ на рецепторы ротовой полости. Попадает в рот пища или отвергаемое вещество (кислота, щелочь и т. д.), какой сорт пищи попадает в рот — мясо, хлеб, молоко или что-либо другое, в каком виде (сухом или жидком), в каком количестве — от этого зависит, какие слюнные железы и в каком темпе будут работать, какого состава и какое количество слюны будут выделять и т. д. К примеру, было показано, что сухая пища вызывает большее слюноотделение, чем влажная или жидкая, кислота вызывает слюну с большим содержанием белка, чем пищевые продукты, речной песок, засыпанный в рот, также вызывает обильное слюноотделение, а мелкие камешки, положенные в рот, не вызывая слюны, выталкиваются изо рта и т. д.

Вариабельность в количестве и качестве выделяемой слюны зависит также от ее функционального назначения — пищеварительного, защитного или санитарно-гигиенического. Например, на съедобные вещества выделяется, как правило, густая слюна, а на отвергаемые — жидкая. При этом соответственно меняется доля участия отдельных слюнных желез, производящих преимущественно жидкую или преимущественно густую слюну. Всей совокупностью этих и других фактов Павлов установил факт принципиальной важности: такая тонкая и яркая изменчивость рефлекторной деятельности слюнных желез обусловлена специфической возбудимостью разных рецепторов ротовой полости к каждому из этих раздражающих их агентов, и сами эти изменения носят приспособительный характер».

В 1904 году Павлов был награжден Нобелевской премией по физиологии и медицине «за работу по физиологии пищеварения, благодаря которой было сформировано более ясное понимание жизненно важных аспектов этого вопроса». В речи на церемонии вручения премии К. А. Г. Мернер из Каролинского института дал высокую оценку вкладу Павлова в физиологию и химию органов пищеварительной системы. «Благодаря работе Павлова мы смогли продвинуться в изучении этой проблемы дальше, чем за все предыдущие годы, — сказал Мернер. — Теперь мы имеем исчерпывающее представление о влиянии одного отдела пищеварительной системы на другой, т. е. о том, как отдельные звенья пищеварительного механизма приспособлены к совместной работе».

На протяжении всей своей научной работы Павлов сохранял интерес к влиянию нервной системы на деятельность внутренних органов. В начале двадцатого века его эксперименты, касающиеся пищеварительной системы, привели к изучению условных рефлексов. В одном из экспериментов, названным «мнимым кормлением», Павлов действовал просто и оригинально. Он проделал два «окошка»: одно — в стенке желудка, другое — в пищеводе Теперь пища, которой кормили прооперированную и вылеченную собаку, не доходила до желудка, вываливалась из отверстия в пищеводе наружу. Но желудок успевал получить сигнал, что пища в организм поступила, и начинал готовиться к работе: усиленно выделять необходимый для переваривания сок. Его можно было спокойно брать из второго отверстия и исследовать без помех.

Собака могла часами глотать одну и ту же порцию пищи, которая дальше пищевода не попадала, а экспериментатор работал в это время с обильно льющимся желудочным соком. Можно было варьировать пищу и наблюдать, как соответственно меняется химический состав желудочного сока.

Но главное было в другом. Впервые удалось экспериментально доказать, что работа желудка зависит от нервной системы и управляется ею. Ведь в опытах мнимого кормления пища не попадала непосредственно в желудок, а он начинал работать. Стало быть, команду он получал по нервам, идущим от рта и пищевода. В то же время стоило перерезать идущие к желудку нервы — и сок переставал выделяться.

Другими способами доказать регулирующую роль нервной системы в пищеварении было просто невозможно. Ивану Петровичу это удалось сделать первым, оставив далеко позади своих зарубежных коллег и даже самого Р. Гейденгайна, чей авторитет был признан всеми в Европе и к которому Павлов совсем недавно ездил набираться опыта.

«Любое явление во внешнем мире может быть превращено во временный сигнал объекта, стимулирующий слюнные железы, — писал Павлов, — если стимуляция этим объектом слизистой оболочки ротовой полости будет связана повторно… с воздействием определенного внешнего явления на другие чувствительные поверхности тела».

Конечно, далеко не все факты и теоретические положения Павлова по физиологии пищеварительной системы сохраняют свою силу и сегодня. Многочисленные исследования ученых из различных стран внесли в некоторые из них поправки и изменения. Однако в целом современная физиология пищеварения все еще сохраняет глубокую печать мысли и труда Павлова. Его классические работы по-прежнему служат основой для новых и новых исследований.

ХРОМАТОГРАФИЯ

Множество открытий прошедшего века обязаны русскому ученому Михаилу Цвету и его методу хроматографического анализа. Большое число выдающихся исследователей обязано ему своими успехами, а многие и Нобелевскими премиями!

«…Без работ Майкла Цвета нам, всем „пигментщикам“, делать было бы нечего…» — вот мнение одного известного английского ученого.

Михаил Семенович Цвет (1872–1919) — сын итальянки и русского интеллигента. Он родился в Италии в городе Асти, неподалеку от Турина. В 1891 году Михаил окончил Женевскую гимназию и поступил на физико-математический факультет Женевского университета. Представив диссертацию «Исследование физиологии клетки. Материалы к познанию движения протоплазмы, плазматических мембран и хлоропластов» Цвет в октябре 1896 года получил диплом доктора естественных наук. В декабре того же года он приезжает в Петербург.

Михаил не знал, что ученая степень Женевского университета не признается в России. Поэтому ему пришлось работать у известного ботаника Андрея Сергеевича Фаминцина, также изучавшего хлорофилл, можно сказать, на птичьих правах. В Петербурге Цвет познакомился с другими выдающимися ботаниками и физиологами растений: И.П. Бородиным, М.С. Ворониным, А.Н. Бекетовым. Это было блестящее общество оригинальных, богатых идеями мыслителей и умелых экспериментаторов. Цвет продолжил свои исследования хлоропластов, готовясь в то же время к новым магистерским экзаменам и к защите диссертации. Экзамены он сдал в 1899 году, а магистерскую диссертацию он защитил в Казанском университете 23 сентября 1901 года.

С ноября 1901 года Цвет работает на должности ассистента кафедры анатомии и физиологии растений в Варшавском университете. На XI Съезде естествоиспытателей и врачей Михаил Семенович сделал доклад «Методы и задачи физиологического исследования хлорофилла», в котором впервые сообщил о методе адсорбционной хроматографии.

Михаил Семенович долгое время решал задачу разделения пигментов зеленого листа, а они очень близки по свойствам. К тому же в листьях присутствуют и другие, очень яркие, пигменты — каротиноиды. Именно благодаря каротиноидам и по осени появляются желтые, оранжевые, багровые листья. Однако пока хлорофиллы не разрушатся, отделить их от каротиноидов было почти невозможно.

Как замечает Ю.Г. Чирков, «видимо, открытие Цвета явилось реакцией на существующие тогда грубые и убийственные для пигментов методы их разделения. Вот один из приемов.

Сначала добывали спиртовую вытяжку хлорофилла, затем ее три часа кипя гили с добавлением в раствор крепкой щелочи (едкого калия). В результате хлорофилл разлагается на составные части — зеленый и желтый пигменты.

Но ведь в процессе изготовления этого зелья (почти алхимические манипуляции) природный хлорофилл мог разрушиться. И тогда исследователь имел бы дело с кусками пигментов, а то и с продуктами их химического превращения».

О том, как свершилось великое открытие, пишет С.Э. Шноль: «Он взял стеклянную трубку, наполнил ее порошком мела и на верхний слой налил немного спиртового экстракта листьев Экстракт был буро-зеленого цвета, и такого же цвета стал верхний слой меловой колонки. А затем М.С. начал по каплям лить сверху в трубку с мелом чистый спирт. Капля за каплей очередная порция растворителя элюировала пигменты с крупинок мела, которые перемещались вниз по трубке. Там свежие крупинки мела адсорбировали пигменты и в свою очередь отдавали их новым порциям растворителя. В силу несколько разной прочности адсорбции (легкости элюции) увлекаемые подвижным растворителем разные пигменты двигались по меловой колонке с разной скоростью и образовывали однородные окрашенные полосы чистых веществ в столбике мела. Это было прекрасно. Ярко-зеленая полоса, полоса чуть желтее зеленого — это два вида хлорофиллов — и яркая желто-оранжевая полоса каротиноидов. М.С. назвал эту картину хроматограммой».

В 1903 году Михаил Семенович Цвет прочел доклад «О новой категории адсорбционных явлений и о применении их к биохимическому анализу». Здесь он впервые обстоятельно излагает принцип своего метода адсорбционного анализа.

«Цвет показал, — пишет Чирков, — что при пропускании растворенных в жидкости растительных пигментов через слой бесцветного пористого сорбента отдельные пигменты располагаются в виде окрашенных зон — каждый пигмент имеет собственный цвет или хотя бы оттенок. Порошок сорбента (это может быть мел, сахарная пудра…) адсорбирует (поверхностно поглощает: латинское adsorbere значит „глотать“) разные пигменты с неодинаковой силой: одни могут „проскочить“ с током раствора дальше, другие окажутся задержанными ближе. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой, а метод — хроматографией».

Так была решена казавшаяся неразрешимой задача. Метод оказался гениально прост. Он совсем не похож на громоздкие, требовавшие большого числа реактивов сложные процедуры, применяемые до этого.

Может, эта простота стала причиной того, что большая часть современников или не восприняла это удивительное открытие, или, что еще печальнее, резко восстала против его автора.

Но время все расставило на свои места. Цвет изобрел хроматографию для исследований хлорофилла. Он впервые выделил вещество, которое назвал хлорофиллом альфа и хлорофиллом бета. Он оказался пригодным для исследований не только пигментов, но и бесцветных, неокрашенных смесей — белков, углеводов. К шестидесятым годам двадцатого века хроматографии было посвящено уже несколько тысяч исследований. Хроматография стала универсальным методом.

«…Принцип хроматографического разделения веществ, открытый М. Цветом, лежит в основе множества разнообразных методов хроматографического анализа. Без его использования было бы невозможно большинство достижений в науке и технике XX века…

В основе всего этого — одна общая идея. Она проста. Это, в сущности, идея геометрической прогрессии. Пусть имеются два вещества очень близкие по всем своим свойствам. Ни осаждением, ни экстракцией, ни адсорбцией не удается разделить их в заметной степени. Пусть одно вещество адсорбируется на поверхности, например, карбоната кальция (т. е. менее 1 процента).

Иными словами, его содержание на адсорбенте составит 0,99 от содержания другого. Обработаем адсорбент каким-либо растворителем так, чтобы произошли десорбция (отсоединение) и элюция (смывание) обоих веществ и оба они перешли бы с адсорбента в растворитель, и перенесем этот получившийся раствор на свежую порцию адсорбента. Тогда доля первого вещества на поверхности адсорбента снова будет равна 0,99 от содержания второго, т. е. адсорбируется часть, равная 0,99 х 0,99=0,98 от исходного количества. Еще раз проведем элюцию и снова адсорбцию — теперь доля первого вещества составит 0,98 х 0,99 = 0,97 от содержания второго. Чтобы содержание первого вещества на очередной порции адсорбента составило всего 1 процент от содержания второго, потребуется повторить цикл адсорбции-элюции около 200 раз…

Идея многократной переадсорбции для разделения веществ может быть модифицирована в многократное перераспределение смеси веществ в системе несмешивающихся растворителей. Это — основа распределительной хроматографии. Та же идея лежит в основе современных методов электрофореза, когда смесь веществ движется с разной скоростью по различным адсорбентам в электрическом поле.

Тот же принцип используется при разделении изотопов с помощью диффузии через множество пористых перегородок».

Принцип хроматографического распределения веществ, открытый Цветом, используется в различных областях человеческой деятельности. В частности, его применяют для выделения и очистки антибиотиков в медицине и для разделения изотопов при производстве ядерного топлива.

ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Работа головного мозга долгие годы оставалась для человечества нераскрытой тайной. Не только священнослужители, но и ученые, исповедовавшие идеализм, связывали все психические процессы в организме с загадочной душой. Душа была «запретным местом» для научных исследований.

Века в науке господствовали дуалистические представления о теле и душе, материальном и психическом как о двух разнородных началах. Наиболее прогрессивными считались механистические взгляды философов-материалистов. Последние утверждали, что «мысль есть секреция мозга», что «мозг выделяет мысль так же, как печень выделяет желчь».

Русский физиолог Сеченов первый, кто не побоялся вторгнуться в сложный мир человеческой психики. Его целью было желание объяснить этот мир, показать физиологические механизмы, доказать материалистическую сущность психической деятельности человека.

Иван Михайлович Сеченов (1829–1905) родился в селе, в Нижегородской губернии, где и прошло его детство. Затем мальчика определили в военное училище с тем, чтобы он стал учиться на инженера. В 1843 году Иван отправился в Петербург, где за несколько месяцев он подготовился и успешно сдал вступительные экзамены в Главное инженерное училище.

Однако Сеченов не ладил с начальством и не был допущен в старший класс училища, чтобы стать военным инженером. В чине прапорщика он был выпущен и направлен в обычный саперный батальон. Через два года Сеченов подал в отставку, ушел с военной службы и поступил на медицинский факультет Московского университета.

Вдумчивый и старательный студент, Сеченов поначалу учился очень прилежно. Интересно, что на младших курсах он мечтал, по его собственному признанию, не о физиологии, а о сравнительной анатомии. На старших курсах после знакомства с главными медицинскими предметами Сеченов разочаровался в медицине того времени.

Сеченов увлекся психологией и философией. На старших курсах, окончательно убедившись, что медицина — это не его призвание, Сеченов стал мечтать о физиологии. Окончив курс обучения, Сеченов, в числе трех наиболее способных студентов, сдавал не обычные лекарские, а более сложные — докторские экзамены. Успешно выдержав их, он получил право готовить и защищать докторскую диссертацию.

После успешной защиты Сеченов отправился за границу «с твердым намерением заниматься физиологией» С этого времени физиология стала делом всей его жизни. Начиная с 1856 года он несколько лет проводит за границей, работая у крупнейших физиологов Европы — Гельмгольца, Дюбуа-Реймона, Бернара. Там же он пишет докторскую диссертацию — «Материалы к физиологии алкогольного опьянения», опыты для которой ставит на себе!

Возвратившись в Россию, после защиты диссертации 8 марта 1860 года он становится профессором Петербургской медицинской академии. С самого начала работы на кафедре физиологии Сеченов возобновил интенсивные научные исследования.

Осенью 1862 года ученый получил годовой отпуск и отправился в Париж. В столицу Франции его привело желание поближе познакомиться с исследованиями знаменитого Клода Бернара и самому поработать в его лаборатории.

Самым значительным результатом исследований, проведенных Сеченовым в Париже, было открытие так называемого центрального торможения — особых механизмов в головном мозге лягушки, подавляющих или угнетающих рефлексы.

Об этом Сеченов сообщил в работе, опубликованной в 1863 году сначала на французском, а затем на немецком и русском языках.

В том же году российский журнал «Медицинский вестник» опубликовал статью Сеченова «Рефлексы головного мозга».

Ученый впервые показал, что вся сложная психическая жизнь человека, его поведение зависит от внешних раздражителей, а не от некоей загадочной «души». Всякое раздражение вызывает тот или иной ответ нервной системы — рефлекс. Рефлексы бывают простые и сложные. В ходе опытов Сеченов установил, что мозг может задерживать возбуждение. Это было совершенно новое явление, которое получило название «сеченовского торможения».

«Путь, избранный мною для объяснения происхождения психических процессов, — писал он в предисловии к отдельному изданию „Рефлексов головного мозга“, — если и не ведет к совершенно удовлетворительному решению относящихся сюда вопросов, то, по крайней мере, оказывается плодотворным в деле разработки их… Время уже наступило, когда голос физиолога может быть небесполезным в разработке вопросов, касающихся психической жизни человека».

Открытое Сеченовым явление торможения позволило установить, что вся нервная деятельность складывается из взаимодействия двух процессов — возбуждения и торможения. Сеченов экспериментально доказал, что если у собаки выключить обоняние, слух и зрение, то она будет все время спать, поскольку в ее мозг не будет поступать никаких сигналов из внешнего мира.

Эта статья сразу же, как свидетельствуют современники, стала известной в самых широких кругах русского общества.

«Мысли, изложенные в „Рефлексах“, были так смелы и новы, анализ натуралиста проник в темную область психических явлений и осветил ее с таким искусством и талантом, что потрясающее впечатление, произведенное „Рефлексами“ на все мыслящее общество, становится вполне понятно», — писал видный русский физиолог Н.М. Шатерников.

«Самое главное в учении Сеченова состояло в том, что психический процесс по способу своего совершения (происхождения) он рассматривал как рефлекторный, — пишет М.Б. Мирский в книге об ученом. — Тем самым предпринятая ученым „попытка ввести физиологические основы в психические процессы“ завершилась блестящим успехом.

Разумеется, Сеченов вовсе не сводил человеческую психику только к рефлексам: понятие „рефлекс“ охватывало лишь общую форму и механизм психических процессов. А содержание психики, утверждал ученый, представляет собой отражение объективного мира, продукт познавательной деятельности человека.

Создав учение о рефлексах головного мозга, распространив понятие рефлекса на деятельность высшего отдела нервной системы, Сеченов положил начало естественно-научному обоснованию материалистической теории отражения.

Его учение стало поистине революционным. Оно явилось основой всего последующего развития физиологии психических процессов, фундаментом, на котором возникло величайшее достижение науки нынешнего века — учение И. П. Павлова о высшей нервной деятельности».

На преемственную связь сеченовской теории и учения Павлова неоднократно указывали и отечественные, и зарубежные физиологи, и в первую очередь сам Иван Петрович. В речи по поводу пятидесятилетия выхода в свет «Рефлексов головного мозга», произнесенной 24 марта 1913 года, Павлов сказал: «Ровно полстолетия тому назад (в 1863 году) была написана русская научная статья „Рефлексы головного мозга“, в ясной, точной и пленительной форме содержащая основную идею того, что мы разрабатываем в настоящее время. Какая сила творческой мысли требовалась тогда, чтобы родить эту идею! А родившись, идея росла, зрела и сделалась в настоящее время научным рычагом, направляющим огромную современную работу над головным мозгом».

В 1904 году за работы по пищеварению Павлову присудили Нобелевскую премию, а в 1907 году он был избран членом Российской Академии наук. В это время ученый проводил работы по физиологии высшей нервной деятельности.

В институте, который располагался неподалеку от Петербурга, в местечке Колтуши, Павлов создал единственную в мире лабораторию по изучению высшей нервной деятельности. Ее центром стала знаменитая «Башня молчания». То было особое помещение, позволявшее поместить подопытное животное в полную изоляцию от внешнего мира.

Проводя свои опыты, ученый заметил, что выделение слюны у собаки может происходить даже в ответ на шаги человека, приносящего ей пищу в одно и то же время. Значит, у собаки вырабатывалась условная связь между звуком шагов и получением еды Таким образом, пища — безусловный, врожденный раздражитель, вызывавший слюноотделение. Шаги же — условный раздражитель. Сама связь, образующаяся в коре головного мозга, получила название условного рефлекса. Условным раздражителем могут служить и звонок, и свет, и тепло, и холод, и многое другое.

«Павлов ввел внауку также понятия низшей нервной деятельности и высшей нервной деятельности, — пишет А.Э. Асратян. — Как соотносятся эти понятия друг к другу, состоит ли низшая нервная деятельность из безусловных рефлексов, а высшая нервная деятельность — из условных рефлексов или соотношения между этими понятиями не укладывались в такую простую формулу? К каким структурам мозга приурочены названные виды нервной деятельности?

Точка зрения Павлова по этим довольно сложным вопросам вкратце сводится к следующему. Высшая нервная деятельность понималась им как психическая деятельность и определялась как рефлекторная регуляция взаимоотношений организма с окружающей его внешней средой, а низшая нервная деятельность — как рефлекторная регуляция его собственных внутриорганизменных взаимоотношений. Первая обеспечивает точное, тонкое и совершенное приспособление организма к факторам внешнего мира, к вечно изменяющимся условиям существования, обеспечивает единство и непрерывное взаимодействие с внешней средой, а вторая обусловливает внутреннюю согласованность в работе органов и систем организма, обеспечивает его единство, гармоническую целостность и слаженное течение его многообразных функций; что является также необходимой предпосылкой и для успешного осуществления тонких его взаимоотношений с внешним миром».

Павлов писал: «Деятельность больших полушарий с ближайшей подкоркой, деятельность, обеспечивающую нормальные сложные отношения целого организма к внешнему миру, законно называть вместо прежнего термина „психической“ — высшей нервной деятельностью, внешним поведением животного, протипоставляя ей деятельность дальнейших отделов головного и спинного мозга, заведующих главнейшим образом соотношениями и интеграцией частей организма между собой под названием низшей нервной деятельности».

В одной из своих работ, резюмируя сказанное по этому принципиально важному вопросу, он отмечает: «Всю совокупность высшей нервной деятельности я представляю себе, отчасти для систематизации повторяя уже сказанное выше, так. У высших животных, до человека включительно, первая инстанция для сложных соотношений организма с окружающей средой есть ближайшая к полушариям подкорка с ее сложнейшими безусловными рефлексами (наша терминология), инстинктами, влечениями, аффектами, эмоциями (разнообразная обычная терминология). Вызываются эти рефлексы относительно немногими безусловными, т. е. с рождения действующими, внешними агентами. Отсюда ограниченная ориентировка в окружающей среде и вместе с тем слабое приспособление. Вторая инстанция — большие полушария, но без лобных долей. Тут возникает при помощи условной связи, ассоциации, новый принцип деятельности: сигнализация немногих безусловных внешних агентов бесчисленной массой других агентов, постоянно вместе с тем анализируемых и синтезируемых, дающих возможность очень большой ориентировки в той же среде и тем уже гораздо большего приспособления».

В своих трудах Павлов говорит и о третьей инстанции — о специфически человеческой сигнализационной системе.

Своими «…исследованиями Павлов, — отмечает Э.А. Асратян, — не только обогатил физиологию центральной нервной системы ценнейшими фактами относительно специфических особенностей открытого им качественно нового и высшего вида рефлекса — условного рефлекса, но и твердо установил фундаментальное для этого важного раздела физиологии положение о том, что выработка разнородных и разносте-пенных условных рефлексов — одна из существенных функций коры больших полушарий мозга, что эти рефлексы как элементарные психические акты не только лежат в основе простых и сложных поведенческих актов, но и составляют основной фонд высшей нервной, или психической деятельности высших животных и человека». Как писал Павлов: «Таким образом, с фактом условного рефлекса отдается в руки физиолога огромная часть высшей нервной деятельности, а может быть, и вся».

ПСИХОАНАЛИЗ ФРЕЙДА

Невозможно переоценить вклад Фрейда в науку о природе человека. Ему удалось впервые объяснить человеческое поведение в психологических понятиях и категориях и продемонстрировать, что поведение это при определенных обстоятельствах можно изменить. Он на практике сблизил понятия лечения и исследования. Его выводы и принципы вызвали к жизни первую всеобъемлющую теорию личности, основанную на наблюдении, а не на умозрительных предположениях.

Зигмунд Фрейд (1856–1939) родился во Фрайбурге. Когда мальчику исполнилось три года, семья перебралась в Вену. Не обманув надежд родителей, Зигмунд с блеском окончил школу.

После окончания школы Зигмунд поступил в Венский университет. Фрейд считал, что на его интеллектуальное развитие больше всего повлиял Эрнст Брюкке, один из ведущих физиологов второй половины XIX века. Он предполагал, что к изучению живых организмов применимы принципы физики и химии, и отрицал воздействие в биологии других сил, таких, как таинственная живая субстанция. Фрейд твердо усвоил этот строго научный подход и не отступал от него до конца жизни.

Поработав некоторое время ассистентом профессора Германка Нотнагеля, известного терапевта, он получил назначение на такую же должность в психиатрическом институте Мейнерта, где приобрел свой первый опыт в области клинической психиатрии. В 1885 году он подал заявление о приеме на должность приват-доцента по невропатологии и получил это место. Отныне для него была открыта дорога к успешной медицинской карьере.

Работая в институте Мейнерта, Фрейд совершенствовался в невропатологии. Первая из публикаций Фрейда по нейроанатомии касалась корней нейронных связей слухового нерва (1885). Затем он публикует исследовательскую работу о чувствительных нервах и мозжечке (1886), далее еще статью о слуховом нерве (1886). Из его работ по клинической неврологии две были особенно значительны. Так, его книга о детском церебральном параличе и сегодня считается важным вкладом в медицинскую науку; а другая — об афазии (1891) — менее известна, но с точки зрения теории даже более фундаментальна.

Работа Фрейда в области неврологии шла параллельно с его первыми опытами как психопатолога в области истерии и гипнотизма.

Интерес к психологическим аспектам медицины проявился у него в 1886 году, когда он получил стипендию, позволившую ему поехать на стажировку в Париж к профессору Шарко, который находился тогда в зените славы. К моменту возвращения в Вену Фрейд уже был ревностным сторонником взглядов Шарко на гипноз и истерию.

После недолгого периода безуспешного экспериментирования с применением различных приемов в 1895 году Фрейд открыл метод свободной ассоциации. Новая техника Фрейда состояла в том, что он предлагал своим пациентам отбросить сознательный контроль над своими мыслями и говорить первое, что придет в голову. Свободная ассоциация, как выяснил Фрейд, через достаточно длительное время подводила пациента к забытым событиям, которые он не только вспоминал, но и вновь проживал эмоционально. Эмоциональное реагирование при свободной ассоциации, в сущности, подобно тому состоянию, которое пациент испытывает во время гипноза, но оно не столь внезапно и бурно выражено, и поскольку реагирование идет порциями, при полном сознании, сознательное «Я» способно справиться с эмоциями, постепенно «прорубая» путь сквозь подсознательные конфликты. Именно этот процесс Фрейд и назвал «психоанализом», впервые употребив этот термин в 1896 году.

Фрейд научился читать между строк и постепенно понял значение символов, которыми пациенты выражали глубоко спрятанное. Он назвал перевод этого языка подсознательных процессов на язык повседневности «искусством толкования». Однако по-настоящему все это было осознано и понято лишь после того, как Фрейд раскрыл значение сновидений.

Он заинтересовался сновидениями, заметив, что многие из его пациентов в процессе свободной ассоциации вдруг начинали рассказывать о своих снах. Тогда он стал задавать вопросы о том, какие мысли приходили им в связи с тем или иным элементом сновидения. И заметил, что часто эти ассоциации раскрывали тайный смысл сновидения. Затем он попытался, пользуясь внешним содержанием этих ассоциаций, реконструировать тайный смысл сновидения — его латентное содержание — и таким путем обнаружил особый язык подсознательных умственных процессов. Он опубликовал свои находки в работе «Толкование сновидений» в 1900 году. Эта книга по праву может считаться самым существенным его вкладом в науку.

Вот что пишет Роже Дадун: «Царским путем сна, извилистыми тропинками неврозов, через великолепную одиссею самоанализа, смелые аналогии из области искусства, литературы, религии, общественной жизни, политики, культуры Фрейд подводит нас к непосредственному соприкосновению с областью, которая порождает наши самые затаенные желания и от которой мы, тем не менее, не перестаем упорно отворачиваться. С областью, которую он называет, заимствуя выражение Гете, Главными дверями, и где вырисовываются основные формы человеческого бытия: Любовь и Смерть, Эрос и Танатос.

Фрейд черпает из наших бездонных глубин многочисленные факты, странные и интимные, изложенные живо и ясно, с необходимой рациональностью, но все же с сохранением мистической ауры.

Кроме отмеченной Джонсом „деликатности“ нетрудно заметить, что для тех, кто оставался, возобновление членства в группе превращалось в демонстрацию преданности, новую клятву в верности. Когда позднее другие психоаналитические общества повторят способ Фрейда, то целью их, признаваемой или негласной, будет избавление от неудобных членов, чтобы сохранить, по выражению Джонса, „лишь тех, кто серьезно отдается изучению психоанализа“. Таким образом был открыт путь системе зависимости и тому духу серьезности, которые придали среде психоаналитиков характерную для нее суровую манеру деятельности».

После очередных наблюдений за пациентами в 1905 году была опубликована новая работа «Три очерка по теории сексуальности». Его теоретические выводы относительно сексуальной природы человека стали известны под названием «теория либидо».

«Влечение и Либидо, — пишет Р. Дадун, — два главных и наиболее типичных понятия фрейдовской теории сексуальности и психического аппарата в целом. Вместе они образуют часть того, что в „Метапсихо-логии“ называется „фундаментальными концепциями“ психоанализа, действенный характер которых проявлен вполне отчетливо; несмотря на „некоторую неопределенность“, они незаменимы в качестве основы и инструментов исследования. Будучи „пограничными концепциями“, они располагаются на пересечении соматического и психического, количественного и качественного, но именно со стороны психического и качественного психоанализ действует даже в том случае, когда его понятия насыщены телесным и количественным».

В работе «Коллективная психология и анализ Я» Фрейд пишет: «Либидо — это термин, заимствованный из теории эффективности. Мы с его помощью обозначаем энергию (рассматриваемую как количественная, но пока что не поддающаяся измерению величина) стремлений, относящихся к тому, что мы объединяем словом „любовь“. Ядро любви в нашем понимании, естественно, слагается из того, что обычно называется любовью и воспето поэтами, то есть половой любви, завершением которой является половой союз. Но мы не отделяем от него другие разновидности любви, такие, как любовь к себе, любовь к родителям и детям, дружба, человеческая любовь в целом, так же как не отделяем привязанности к конкретным предметам и абстрактным идеям».

Наиболее точное определение либидо Фрейд дал в своем последнем обращении к данной проблеме в «Кратком курсе психоанализа»:

«Вот как мы представляем себе первичное состояние: вся энергия Эроса, которую мы отныне будем называть либидо, находится внутри еще недифференцированного Я. Это и служит для нейтрализации разрушительных тенденций, также присутствующих в нем (для обозначения энергии влечения к разрушению мы не располагаем термином, аналогичным „либидо“)».

Как отмечает Дадун: «Оппозиция либидо своего Я и либидо объекта отвечает (не соответствуя полностью) основной двойственности влечений, установленной Фрейдом при интерпретации сексуальности: влечениям своего Я (то есть самосохранению, обеспечивающему выживание индивидуума, примером которого является влечение к пище) противостоит половое влечение, его предназначение — сохранение вида. Выдвигая эту пару противоположностей — голод и любовь, — Фрейд продолжает давнюю традицию. Но он идет значительно дальше: разделяет понятия „влечение“ и „инстинкт“, освобождая последнее от специфики его биологического прочтения, видевшего в нем врожденную, наследственную, автоматическую, слепую структуру, ограниченную репродуктивной функцией. С введением концепции влечения, которая является скорее не „пограничной“, как называл ее Фрейд, а пороговой, он создал необычайно удобный инструмент для психологии.

Фрейд обозначает „суть влечения“ двумя главными чертами: „Его происхождение связано с источниками возбуждения внутри организма, а проявляется оно в качестве постоянной силы“.

„Целью влечения, — считает Фрейд, — всегда является удовлетворение“, то есть оно находится в полной зависимости от принципа удовольствия. Удовлетворение рассматривается как разгрузка напряжения, созданного возбуждением».

«Объектом влечения служит то, в чем или посредством чего влечение может достигнуть своей цели». Здесь речь может идти как о внешнем объекте, личности или предмете, так и о собственном теле и его частях. Разнообразие объектов влечения и типов взаимоотношений — фиксации, переноса, распада — между объектом и влечением образует область приложения психоаналитических исследований.

«Теория либидо» вместе с открытием детской сексуальности явилась одной из главных причин того, что Фрейд был отвергнут и своими собратьями по профессии, и широкой публикой.

Ученого преследовали с момента, когда он заложил и развил свою теорию и назвал ее психоанализом. Его утверждение, что невротические недуги, которым подвержены люди, следствие сексуальных сбоев, воспринималось респектабельными учеными мужами не более чем как непристойность. Его поразительный тезис об универсальности Эдипова комплекса (излагая упрощенно), когда маленький мальчик любит мать и ненавидит отца, казался скорее литературной выдумкой, нежели научной проблемой, достойной внимания ученого-психолога.

Однако время доказало правоту Фрейда. Об этом ярко сказал в 1971 году Жан-Бертран Понталис: «Больше никто сегодня не пишет, что фрейдизм — это интерпретационный бред, достаточно плохо системагазированный, что его метод можно заимствовать, отбросив теорию (Далбье); нет больше ни великолепных противников вроде Алена, способных утверждать, что психоанализ — это психология обезьян, ни глупцов, сомневающихся в том, что, высвободив наших демонов, он провоцирует анархию; нет больше друзей-тугодумов, видящих противоречия капитализма в фиксации на садистско-анальной стадии… Очевидно, героическая эпоха миновала; повсюду, даже среди осторожных иезуитов, Фрейда встречают с распростертыми объятиями. Из бреда, из моды, из тяжелого труда психоанализ».

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

В 1900 году независимо друг от друга трое ботаников — К. Корренс (Германия), Г. де Фриз (Голландия) и Э. Чермак (Австрия) обнаружили в своих опытах открытые ранее Менделем закономерности. Затем, натолкнувшись на его работу, они вновь опубликовали ее в 1901 году. Это способствовало глубокому интересу к количественным закономерностям наследственности. К тому времени цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями.

Подобную связь усмотрел в 1903 году В. Сэтгон. Получили обоснование воззрения Менделя о наследственных факторах, о наличии одинарного набора факторов в гаметах и двойного — в зиготах.

Годом ранее Т. Бовери представил доказательства в пользу участия хромосом в процессах наследственной передачи. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом.

Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттон и Бовери положили начало новому направлению генетики — хромосомной теории наследственности.

Решающий вклад в развитие этой теории внес американский ученый Морган.

Томас Гент Морган (1866–1945) родился в Лексингтоне, штат Кентукки. Его отцом был Чарльтон Гент Морган, консул США на острове Сицилия и родственник знаменитого магната Дж. П.Моргана. С детства Томас проявлял интерес к естествознанию. Он поступает в университет в Кентукки, и оканчивает его в 1886 году. Летом, сразу после его окончания, он поехал на морскую станцию в Эннисквам на побережье Атлантики, севернее Бостона. Здесь Томас впервые познакомился с морской фауной. Это знакомство захватило его, и с тех пор изучение морских форм привлекало его особый интерес в течение всей жизни. Свою дипломную работу он сделал под руководством Вильяма Кейта Брукса, морского биолога. В 1888 году Морган перебирается в Вудс-Хол, а летом этого же года стал работать на Государственной станции рыболовства. Однако в 1890 году Томас возвратился в Вудс-Хол на Морскую биологическую станцию, и все дальнейшие годы своей жизни большей частью проводил лето именно здесь. В том же году Морган сменил на посту руководителя отдела в Брайн-Маур-Колледже. В 1897 году его избрали одним из попечителей морской станции, и он оставался им всю свою жизнь. То был год, когда станция и управление ею были захвачены «младотурками», и Морган оказался одним из новых попечителей, избранным в этот переломный период. Тогда же на станции появился Вильсон из Чикагского университета.

Именно Вильсон в 1904 году убедил его занять профессорскую кафедру в Колумбийском университете. В течение двадцати четырех лет они работали в очень тесном общении.

Подобно большинству биологов-зоологов того времени, Морган был образован в области сравнительной анатомии и особенно описательной эмбриологии. Его диссертация касалась эмбриологии одного из видов морских пауков и сделана на материале, который он собирал в Вудс-Холе. Эта работа базировалась на данных описательной эмбриологии с выводами, простирающимися в область филогении.

Морган рано почувствовал интерес к экспериментальной эмбриологии. Проблемы, над решением которых Морган и другие эмбриологи тогда трудились, касались того, в какой степени развитие зависит от специфических формативных веществ, предположительно присутствующих в яйце, или испытывает их влияние. Как такие формативные вещества участвуют в развитии и каким образом они функционируют. Занимался молодой ученый и физиологическими исследованиями. Но настоящую славу ему принесла генетика.

В конце девятнадцатого века Морган побывал в саду Гуго де Фриза в Амстердаме, где он увидел дефризовские линии энотеры. Именно тогда у него проявился первый интерес к мутациям. Сыграл свою роль в переориентации Моргана и директор Биостанции в Вудс-Холе Уитмен, который был генетиком-экспериментатором. Он многие годы посвятил изучению гибридов между разными видами горлиц и голубей, но никак не желал применять менделевский подход. Это понятно, так как у голубей в этом случае получается, мягко выражаясь, мешанина. Странные признаки, не дающие красивое соотношение 3:1, смущали и Моргана. До поры до времени и он не видел выхода.

Таким образом, до 1910 года Морган скорее мог считаться антименделистом. В том году ученый занялся изучением мутаций — наследуемых изменений тех или иных признаков организма.

Морган проводил свои опыты на дрозофилах, мелких плодовых мушках. С его легкой руки они стали излюбленным объектом генетических исследований в сотнях лабораторий. Их легко раздобыть, они водятся повсеместно. Питаются соком растений, всякой плодовой гнильцой. Их личинки поглощают бактерии. Энергия размножения дрозофил огромна: от яйца до взрослой особи — десять дней. Для генетиков важно и то, что дрозофилы подвержены частым наследственным изменениям. У них мало хромосом — всего четыре пары. В клетках слюнных желез мушиных личинок содержатся гигантские хромосомы, которые особенно удобны для исследований.

С помощью мушки генетика к настоящему времени сделала множество открытий. Известность дрозофилы столь велика, что на английском языке издается ежегодник, ей посвященный, содержащий обильную разнообразную информацию.

Приступив к своим опытам, Морган вначале добывал дрозофил в бакалейных и фруктовых лавках, благо лавочники, которым мушки досаждали, охотно разрешали чудаку ловить их. Потом он вместе с сотрудниками стал разводить мушек в своей лаборатории, в большой комнате, окрещенной «мушиной». Это была комната размером в тридцать пять квадратных метров, в которой помещалось восемь рабочих мест. Там было место, где варили корм для мух. В комнате обычно сидело по меньшей мере пять работающих.

«Боюсь, что я не смогу дать представление об атмосфере, царившей в лаборатории, — вспоминал один из соратников ученого Альфред Стёртевант. — Я думаю, это было нечто такое, что нужно пережить, чтобы полностью оценить. Одним из крупнейших достоинств этого места было присутствие обоих — и Моргана, и Вильсона. Так студенты, специализирующиеся у одного из них, очень часто видели другого. Они дополняли друг друга в целом ряде отношений и были большими друзьями. В первые годы работы в Колумбийском университете мы кормили дрозофилу бананами, и в углу комнаты всегда висела большая связка бананов. Комната Вильсона находилась через несколько дверей от нашей, по коридору. Он очень любил бананы, так нашлась еще одна побудительная причина часто посещать „мушиную комнату“.

В течение всего этого времени Морган регулярно приезжал в Вудс-Хол. Это, однако, не означало перерыва в опытах с дрозофилами. Все культуры упаковывались в бочонки — большие бочонки из-под сахара, и отправлялись пароходом-экспрессом. То, что вы начинали в Нью-Йорке, вы заканчивали в Холе, и наоборот Мы всегда приезжали водой: это было время, когда пароходная линия Фолл-Ривер-Лайн была в действии, а Морган всегда занимался всевозможными опытами, не имевшими ничего общего с работой на дрозофиле. Он разводил цыплят, крыс и мышей, выращивал разные растения. И все это переносилось вручную, и грузилось на судно Фолл-Ривер-Лайн, а потом привозилось назад в Нью-Йорк.

А когда Морган попадал сюда, он с головой погружался в работу с морскими формами, в эмбриологию того или иного сорта, даже несмотря на то, что работа с дрозофилой тем временем активно двигалась вперед. Таков был моргановский стиль работы — он не чувствовал себя счастливым, если не ковал из горячего одновременно несколько вещей». Успеху ученого во многом способствовало то, что он, прежде всего, четко сформулировал исходную гипотезу. Теперь, когда уже было известно, что наследственные задатки находятся в хромосомах, можно было ответить на вопрос, всегда ли будут выполняться численные закономерности, установленные Менделем? Мендель совершенно справедливо считал, что такие закономерности будут верны тогда и только тогда, когда изучаемые факторы будут комбинироваться при образовании зигот независимо друг от друга. Теперь, на основании хромосомной теории наследственности, следовало признать, что это возможно лишь в том случае, когда гены расположены в разных хромосомах. Но так как число последних по сравнению с количеством генов невелико, то следовало ожидать, что гены, расположенные в одной хромосоме, будут переходить из гамет в зиготы совместно. Следовательно, соответствующие признаки будут наследоваться группами.

Проверку этого предположения осуществили Морган и его сотрудники К. Бриджес и А. Стёртевант. Вскоре у дрозофилы было обнаружено большое количество разнообразных мутаций, т. е. форм, характеризующихся различными наследственными признаками. У нормальных, или, как говорят генетики, дрозофил дикого типа, цвет тела серовато-желтоватый, крылья серые, глаза темного кирпично-красного цвета, щетинки, покрывающие тело, и жилки на крыльях имеют вполне определенное расположение. У обнаруживавшихся время от времени мутантных мух эти признаки были изменены: тело, например, было черное, глаза белые или иначе окрашенные, крылья зачаточные и т. д. Часть особей несла не одну, а сразу несколько мутаций: например, муха с черным телом могла, кроме того, обладать зачаточными крыльями. Многообразие мутаций позволило Моргану приступить к генетическим опытам. Прежде всего, он доказал, что гены, находящиеся в одной хромосоме, передаются при скрещиваниях совместно, т. е. сцеплены друг с другом. Одна группа сцепления генов расположена в одной хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил также при изучении так называемого сцепленного с полом наследования.

Определив, что ген окраски глаз дрозофилы локализован в Х-хромосоме, и проследив за поведением генов в потомстве определенных самцов и самок, Морган и его сотрудники получили убедительное подтверждение предположения о сцеплении генов.

За выдающиеся работы в области генетики Морган был удостоен в 1933 году Нобелевской премии.

В тридцатые годы Вавилов писал: «Законы Менделя и Моргана легли в основу современных научных представлений о наследственности, на которых строится селекционная работа, как с растительными, так и с животными организмами… Среди биологов XX века Морган выделяется как блестящий генетик-экспериментатор, как исследователь исключительного диапазона».

ПСИХОАНАЛИЗ ЮНГА

Карл Густав Юнг (1875–1961) родился в Кессвиле, маленькой швейцарской деревушке, в семье пастора реформистской церкви. До девяти лет Юнг был единственным ребенком, одиноким и нелюдимым. Впоследствии, уже будучи взрослым, он придавал большое значение сновидениям и событиям своего детства. Отец с шести лет стал обучать его латыни, и к моменту поступления в Базельскую гимназию он был намного впереди своих сверстников. В 1886 году Карл поступает в гимназию, где он проводил долгие часы в библиотеке, погруженный в старинные книги.

В 1895 году Юнг поступил в Базельский университет, хотя первоначально его интересовала антропология и египтология, он выбрал для изучения естественные науки, а затем взгляд его обратился к медицине. Он решил специализироваться в психиатрии.

В 1900 году Юнг начал стажироваться у Блейлера в Бургельцли — университетской психиатрической клинике в Цюрихе. После трех лет изысканий Юнг опубликовал в 1906 году свои выводы в книге «Психология раннего слабоумия», которая, по выражению Джонса, «сделала переворот в психиатрии». Об этой книге другой приверженец Фрейда, А.А. Брилл, сказал, что эта книга, вместе с исследованиями Фрейда, «стала краеугольным камнем современной толковательной психиатрии». В начале книги Юнг дал один из лучших обзоров теоретической литературы того времени по раннему слабоумию. Его собственная позиция основывалась на синтезе идей многих ученых, в особенности Крэпелина, Дженета и Блейлера, но он заявил также, что в очень большой степени обязан «оригинальным концепциям Фрейда».

Но Юнг не только интегрировал существовавшие в то время теории, но и заслужил репутацию первооткрывателя экспериментальной психосоматической модели раннего слабоумия, где мозг представляется объектом эмоциональных влияний. Концепцию Юнга можно представить следующим образом: в результате аффекта вырабатывается токсин, который поражает мозг, парализуя психические функции таким образом, что комплекс высвобождается из подсознания и вызывает характерные симптомы раннего слабоумия.

В той же книге о раннем слабоумии Юнг, к тому времени респектабельный швейцарский психиатр, привлек широкое внимание к теориям Фрейда и выразил сожаление по поводу того прискорбного факта, что Фрейд «почти не признанный исследователь». Буквально перед тем, как поставить последнюю точку в своей книге, в апреле 1906 года, Юнг начал переписываться с Фрейдом. В конце февраля 1907 года он съездил в Вену специально для встречи с Фрейдом. Он нашел, что Фрейд «производит впечатление и в то же время он „странен“ для человека его квалификации».

На первом международном конгрессе по психиатрии и неврологии в Амстердаме Юнг сделал доклад «Фрейдистская теория истерии», имевший целью защиту психоанализа, а по сути превратившийся в апологию идей Фрейда, во всяком случае, таких его понятий, как «младенческая сексуальность» и «либидо».

В следующие несколько лет Юнг написал серию статей, которые в точности укладываются в рамки классического фрейдовского анализа.

Нет сомнения в том, что Юнг внес значительный вклад в нарождавшееся психоаналитическое движение. Через несколько месяцев после своего первого визита к Фрейду он основал Фрейдистское общество в Цюрихе. В 1908 году Юнг организовал первый Международный конгресс по психоанализу в Зальцбурге, где родилось первое издание, целиком посвященное вопросам психоанализа, — «Ежегодник психоаналитических и патопсихологических изысканий». На конгрессе в Нюрнберге в 1910 году была основана Международная психоаналитическая ассоциация, и Юнг был избран ее президентом.

Несмотря на столь высокое положение в психоаналитическом движении, Юнг ощущал растущее беспокойство. Оригинальность, отмечавшая его работы, исчезает в тех статьях, что были опубликованы в годы, когда главной его заботой стала защита теорий Фрейда. В 1911 году он предпринял попытку распространить принципы психоанализа на те области, которые многие годы занимали его, а именно применить новые подходы к изучению содержания мифов, легенд, басен, классических сюжетов и поэтических образов. После года исследований Юнг опубликовал свои заключения под названием «Метаморфозы и символы либидо, часть I». В «Метаморфозах I» Юнг ссылается на множество источников с целью провести параллель между фантазиями древних, выраженными в мифах и легендах, и схожим мышлением детей. Он был намерен также продемонстрировать «связь между психологией сновидений и психологией мифов». Юнг сделал неожиданный вывод, что мышление «имеет исторические пласты», содержащие «архаический умственный продукт», который обнаруживается в психозе в случае «сильной» регрессии. Он доказывал, что если символы, используемые веками, схожи между собой, то они «типичны» и не могут принадлежать одному индивиду. В этой цепи выводов лежит зерно центральной концепции Юнга о коллективном бессознательном.

В 1912 выходят в свет «Метаморфозы II». Несмотря на то, что в течение ряда лет Юнг поддерживал взгляды Фрейда на сексуальность, он так и не согласился полностью с его сексуальными теориями. Предлагая свою версию, он трактует либидо совсем не в духе Фрейда. Юнг в «Метаморфозах ІІ» полностью лишил его сексуальной подоплеки.

Полемика по поводу либидо оказала серьезное влияние на развитие теории психоанализа. Изменились и отношения Юнга и Фрейда. Их переписка вскоре утратила личный характер, став исключительно деловой. В сентябре 1913 года Юнг и Фрейд встретились в последний раз на международном конгрессе в Мюнхене, где Юнга вновь избрали президентом Международной психоаналитической ассоциации.

После 1913 года его теоретические разработки, определяющие сегодня юнговскую школу, не носят и следа влияния Фрейда.

Концепция Юнга состоит в том, что символ представляет собой неосознаваемые мысли и чувства, способные преобразовать психическую энергию — либидо — в позитивные, конструктивные ценности. Сновидения, мифы, религиозные верования — все это средства справиться с конфликтами при помощи исполнения желаний, как выявляет психоанализ; кроме того, в них содержится намек на возможное разрешение невротической дилеммы. Юнга не удовлетворяло толкование сновидений как различных вариаций Эдипова комплекса — что, кстати, отнюдь не является единственным методом психоанализа, — поскольку такое толкование не признавало созидательной перспективы сновидения. Сам Юнг неоднократно под влиянием своих сновидений изменял направление своей жизни так, как если бы они были вещими предзнаменованиями.

«Сам Юнг, — пишет немецкий исследователь его деятельности Герхард Вер, — рассматривал свои взгляды как попытки и предложения для формулирования новой естественно-научной психологии, которая опирается, прежде всего, на непосредственное познание человека. К тому же он постоянно подчеркивал, что его основная деятельность состояла в том, чтобы собирать, описывать и объяснять фактический материал. Я не составил ни системы, ни общей теории, а сформулировал лишь вспомогательные понятия, являющиеся для меня инструментом, как это принято в любой естественной науке.

Как эмпирик Юнг хочет быть психологом и психиатром, исследователем и врачевателем душ. Что же такое душа, рассматриваемая в этой перспективе?

В 1939 году Юнг назвал сборник работ своих учеников „Действительность души“ и высказал этим основной тезис, определяющий все его творчество: душа реальна. Он указывает на то, что любой опыт является „психическим“. Все чувственные восприятия, весь мир, воспринимаемый с помощью органов чувств, познаваем лишь через отражение объектов этого мира. Психика этим самым становится воплощением реальности, тем более что она не ограничивается лишь передаваемым в психических образах внешним миром, но охватывает еще — и прежде всего — широкую область психического внутреннего пространства».

Юнг пишет: «Психика — это наиболее реальная сущность, потому что она единственное, что дано нам непосредственно. К этой реальности, а именно к реальности психического, может обращаться психология». Эта психическая реальность предстает в необычайном разнообразии. Разнообразие существует хотя бы потому, что, по Юнгу, все возможные содержания относятся к человеческой психике. Отсюда вытекает ограниченность познания. Подобное ограничение совпадает с границами психики, от невозможности выйти за ее пределы.

В психике, считает Юнг, различаются две сферы. Прежде всего, сфера, обозначаемая как «сознание», сфера, где человек обладает полным «присутствием духа». Однако в этой сфере возможна и неустойчивость сознания. Вместе с тем существует и область, являющаяся обычно недоступной для сознания, — «бессознательное». Юнг поясняет: «Бессознательное — это не просто неизвестное, но, скорее, с одной стороны, неизвестное психическое, то есть то, о чем мы предполагаем, что оно, если бы оно получило доступ в сознание, ни в чем не отличалось бы от известных психических содержаний. С другой стороны, мы должны отнести к нему также психоидную систему, о характеристиках которой мы ничего не можем сказать прямо». К этому определению Юнг добавляет: «Все, что я знаю, однако о чем не думаю в данный момент, все, что я когда-то осознавал, но теперь забыл, все, что было воспринято моими органами чувств, но не зафиксировалось в моем сознании, все, что я чувствую, думаю, вспоминаю, хочу и делаю непреднамеренно и невнимательно, то есть бессознательно, все предстоящее, что подготавливается во мне и лишь позже достигает сознания, — все это является содержанием бессознательного».

Вероятно, решающим вкладом Юнга в науку, связанным с тех пор с его именем, является открытие коллективного бессознательного. Как первооткрыватель «коллективного бессознательного» Юнг значительно опередил Фрейда.

«Относительно поверхностный слой подсознания, несомненно, является личностным. Мы называем его личным бессознательным. Однако под ним находится более глубинный слой, который не основывается на личном опыте, а является врожденным. Этот более глубокий слой представляет собой так называемое коллективное бессознательное».

«Юнг, — отмечает Герхард Вер, — выбрал это выражение для указания на всеобщую природу этого психического слоя. Мы имеем здесь дело с неосознаваемой связью психики с богатой сокровищницей образов и символов, через которые индивидуум подключается к общечеловеческому. При этом речь ни в коей мере не идет лишь о гипотезах. Как практикующий врач Юнг отмечал присутствие примитивных архаических символов в сознании своих пациентов. Он заметил, например, что в сновидениях время от времени появлялся архаический образ Бога, который совершенно отличался от представления о Боге в бодрствующем сознании. Догадка о существовании бессознательного, которое простирается за пределы индивидуальной психики, подтверждалась различным образом. Юнг обнаружил в этом отношении поразительный параллелизм между сообщениями здоровых и больных людей, с одной стороны, и мифическими или символическими формами, с другой.

Чтобы обозначить сохраняющееся в психике коллективное бессознательное по его основной характерной форме, Юнг выбрал понятие „архетип“».

Ученый дает ему следующее определение: «Архетип в значительной мере представляет собой бессознательное содержание, которое изменяется через осознание и восприятие — и именно в духе того индивидуального сознания, в котором оно проявляется».

Юнг добавляет «архетипы» — «это факторы и мотивы, которые организуют психические элементы в некие образы, и притом так, что они могут распознаваться лишь по производимому ими эффекту. Они существуют до сознания и образуют, по-видимому, структурные доминанты психики…»

Архетип, непознаваемый сам по себе, находится в бессознательном, но архетипический образ человека познаваем. Так из потока индивидуального и коллективного бессознательного выступает «Эго». Оно является центром поля сознания, и главное — его субъектом. Юнг, говоря о «комплексе Эго», понимает под этим и комплекс представлений, связанных с этим центром сознания.

В одной из более поздних работ Юнг предложил ряд психотерапевтических приемов, которые могут быть применены в клинических условиях. В частности, его метод «активного воображения» иногда используется врачами не юнговского направления. Пациенту предлагается нарисовать или написать красками любые образы, которые спонтанно приходят ему в голову. С развитием, с изменением образа меняются и рисунки. Стремление пациента как можно точнее передать тот образ, что ему является, может помочь ему проявить свои предсознательные и сознательные представления. Юнг считал, что этот прием помогает пациенту не только тем, что дает ему возможность выразить свои фантазии, но и позволяет реально как-то использовать их.

В целом, психология Юнга нашла своих последователей больше среди философов, поэтов, религиозных деятелей, нежели в кругах медиков-психиатров. Учебные центры аналитической психологии по Юнгу, хотя учебный курс в них не хуже, чем у Фрейда, принимают и студентов- немедиков. Юнг признал, что он «никогда не систематизировал свои исследования в области психологии», потому что, по его мнению, догматическая система слишком легко соскальзывает на напыщенно-самоуверенный тон. Юнг утверждал, что причинный подход конечен, а потому фаталистичен. Его же телеологический подход выражает надежду, что человек не должен быть абсолютно рабски закабален собственным прошлым.

ПЕНИЦИЛЛИН

Открытие пеницилина принадлежит Александру Флемингу. Когда он умер, то его похоронили в соборе Св. Павла в Лондоне — рядом с самыми почитаемыми британцами. В Греции, где бывал ученый, в день его смерти объявили национальный траур. А в испанской Барселоне все цветочницы города высыпали охапки цветов из своих корзин к мемориальной доске с его именем.

Шотландский бактериолог Александр Флеминг (1881–1955) родился в графстве Эйршир в семье фермера Хью Флеминга и его второй жены Грейс (Мортон) Флеминг.

Александр посещал маленькую сельскую школу, расположенную неподалеку, а позже Килмарнокскую академию, рано научился внимательно наблюдать за природой. В возрасте 13 лет он вслед за старшими братьями отправился в Лондон, где работал клерком, посещал занятия в Политехническом институте на Риджент-стрит, а в 1900 году вступил в Лондонский шотландский полк.

По совету старшего брата он подал документы на национальный конкурс для поступления в медицинскую школу. На экзаменах Флеминг получил самые высокие баллы и стал стипендиатом медицинской школы при больнице св. Марии. Александр изучал хирургию и, выдержав экзамены, в 1906 году стал членом Королевского колледжа хирургов. Оставаясь работать в лаборатории патологии профессора Алмрота Райта больницы св. Марии, он в 1908 году получил степени магистра и бакалавра наук в Лондонском университете.

В то время врачи и бактериологи полагали, что дальнейший прогресс будет связан с попытками изменить, усилить или дополнить свойства иммунной системы. Открытие в 1910 году сальварсана Паулем Эрлихом лишь подтвердило эти предположения. Эрлих был занят поисками того, что он называл «магической пулей», подразумевая под этим такое средство, которое уничтожало бы попавшие в организм бактерии, не причиняя вреда тканям организма больного и даже взаимодействуя с ними.

Лаборатория Райта была одной из первых, получивших образцы сальварсана для проверки. В 1908 году Флеминг приступил к экспериментам с препаратом, используя его также в частной медицинской практике для лечения сифилиса. Прекрасно осознавая все проблемы, связанные с сальварсаном, он, тем не менее, верил в возможности химиотерапии. В течение нескольких лет, однако, результаты исследований были таковы, что едва ли могли подтвердить его предположения.

После вступления Британии в Первую мировую войну Флеминг служил капитаном в медицинском корпусе Королевской армии, участвуя в военных действиях во Франции. Работая в лаборатории исследований ран, Флеминг вместе с Райтом пытался определить, приносят ли антисептики какую-либо пользу при лечении инфицированных поражений. Флеминг доказал, что такие антисептики, как карболовая кислота, в то время широко применявшаяся для обработки открытых ран, убивает лейкоциты, создающие в организме защитный барьер, что способствует выживанию бактерий в тканях.

В 1922 году после неудачных попыток выделить возбудителя обычных простудных заболеваний Флеминг абсолютно случайно открыл лизоцим — фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он былвесьма эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие, однако, побудило Флеминг заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Другая счастливая случайность — открытие Флемингом пенициллина в 1928 году — явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2–3 недели кряду, пока его лабораторный стол не оказывался загроможденным 40 или 50 чашками. Тогда он принимался за уборку, просматривая культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон, на котором разрослась плесень… приобрел отчетливо выраженную способность подавлять рост микроорганизмов, а также бактерицидные и бактериологические свойства».

Неряшливость Флеминга и сделанное им наблюдение явились всего лишь двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, расположенной этажом ниже, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а наступившее затем потепление — для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция… оказывающая выраженное действие на пиогенные кокки… и палочки дифтерийной группы. Пенициллин даже в огромных дозах не токсичен для животных… Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг, как ни странно, не сделал столь очевидного следующего шага, который двенадцать лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены мыши от летальной инфекции, если лечить их инъекциями пенициллинового бульона. Флеминг лишь назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми и обескураживающими. Раствор не только с трудом поддавался очистке, если речь шла о больших его количествах, но и оказывался нестабильным.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было небольшое техническое достижение, и Флеминг широко пользовался им, еженедельно отдавая распоряжение изготовить большие партии бульона. Он делился образцами культуры пенициллина с некоторыми коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей или лекций, опубликованных им в 1930–1940 годы, даже если речь в них шла о веществах, вызывающих гибель бактерий.

Пенициллин, возможно, был бы навсегда забыт, если бы не более раннее открытие Флемингом лизоцима. Именно это открытие заставило Флори и Эрнста Б. Чейна заняться изучением терапевтических свойств пенициллина, в результате чего препарат был выделен и подвергнут клиническим испытаниям. Все почести и слава, однако, достались Флемингу. Случайное открытие пенициллина в чашке с бактериальной культурой дало прессе сенсационную историю, способную поразить воображение любого человека.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». Горан Лилиестранд из Каролинского института сказал в приветственной речи: «История пенициллина хорошо известна во всем мире. Она являет собой прекрасный пример совместного применения различных научных методов во имя великой общей цели и еще раз показывает нам непреходящую ценность фундаментальных исследований». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира». «Лишь немногие из них, сказал он, обладают такими свойствами. Существует, однако, стрептомицин, открытый (Зелманом А.) Ваксманом… который наверняка найдет применение в практической медицине; появятся и другие вещества, которые еще предстоит изучить».

Сегодня лечение многих болезней без антибиотиков просто невозможно.

ГЕОГРАФИЧЕСКИЕ ЦЕНТРЫ ПРОИСХОЖДЕНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ

Учение о центрах происхождения культурных растений разработано советскими учеными, при первостепенной роли Николая Ивановича Вавилова (1887–1946).

Исследуя изменчивость и эволюцию культурных растений, великий Чарлз Дарвин опирался, прежде всего, на труд Альфонса Декандоля (1806–1893) «Рациональная ботаническая география». Правда, Дарвин обращал внимание на эволюцию видов, на наследственные изменения, которым подвергся вид. Декандоля же в первую очередь интересовало установление родины культурного растения.

Уже после смерти Дарвина вышла книга Декандоля «Происхождение культурных растений», ставшая основным трудом в этой области. Однако Декандоль лишь в общих чертах намечал родину культурных растений в пределах континентов. К тому же многие положения его труда оказались в корне неправильными. Остальные зарубежные ученые, занимавшиеся этой проблемой, в своих географических исследованиях мировой флоры совершенно не затрагивали культурные растения.

Классический труд Декандоля, при всей его насыщенности фактами, представлялся русскому ученому Николаю Ивановичу Вавилову односторонним, освещающим лишь вопрос о начальной родине культурных растений и связи их с дикими исходными или родственными видами.

Вавилов, в отличие от Декандоля, уделил первостепенное внимание, как основным областям возникновения видов, так и эволюционным этапам, пройденным видами при их расселении под действием культуры, условий среды и под влиянием естественного и искусственного отбора. «Первое исследование Н И. Вавилова, относящееся к проблеме происхождения культурных растений, — пишет А.Ф. Бахтеев, — было опубликовано в 1917 году в работе „О происхождении культурной ржи“, второе — „О восточных центрах происхождения культурных растений“ — увидело свет в 1924 году. А в 1926 году во втором томе 16-го выпуска „Трудов по прикладной ботанике и селекции“ Н.И. Вавилов представил научной общественности фундаментальную работу „Центры происхождения культурных растений“, посвященную Альфонсу Декандолю — результат настойчивого и последовательного изучения трудов своих предшественников, многолетних экспедиционных исследований, анализа собранных и апробационных посевов. Подытоживая в названной работе результаты теоретических положений, Николай Иванович подчеркивает очевидность параллелизма и цикличности в формообразовании самых различных родов и семейств, что позволяет предвидеть наличие тех или иных форм, упрощая решение проблемы их происхождения.

В данной публикации, впервые подводя итог своим теоретическим разработкам, Н.И. Вавилов выделил пять основных очагов главнейших полевых, огородных и садовых растений…»

«Выяснение центров формообразования и происхождения культурных растений, — пишет далее Вавилов, — позволяет подойти объективно и к установлению основных очаг. ов земледельческой культуры Споры о том, автономна ли египетская культура, не заимствовала ли она элементы культуры от Месопотамии или наоборот, вопросы об автономии китайской и индийской культур решаются объективно исследованием сортов культурных растений. Растения, их разновидности не так легко переносимы из одной области в другую; несмотря на многие тысячелетия странствований народов и племен, как мы видим, нет никаких затруднений в установлении основных очагов формообразования большинства культурных растений. Наличие в Северной Африке и Юго-Западной Азии больших эндемичных групп, видов и разновидностей культурных растений, на которых создавались самостоятельно земледельческие культуры, решает вопрос об автономии этих культур и в общем культурно-историческом смысле…

Конечная цель изложенных исследований, помимо их непосредственного утилитарного значения в смысле овладения источниками сортовых богатств, — попытаться подойти вплотную к общебиологическим проблемам видообразования. Эволюция шла в пространстве и во времени, только подойдя вплотную к географическим центрам формообразования, установив все звенья, связующие виды, можно, как нам кажется, — писал в заключение Вавилов, — искать путей овладения синтезом линнеевских видов, понимая последние как системы форм…

Самое решение проблем видообразования, как естественно вытекает из всего здесь изложенного, лежит только в синтезе углубленного исследования отдельных групп растений методами дифференциальной систематики ботанической географии, в смысле установления центров формообразования, методами генетики и цитологии…»

Николай Иванович Вавилов, несмотря на уже достигнутое, рассматривал первое издание «Центров происхождения…» как начальный этап дальнейших исследований. На протяжении более двух десятилетий он продолжал работать над этой проблемой. Каждая новая работа в той или иной степени обогащала и развивала идею «Центров происхождения культурных растений».

В дальнейшем, как отмечает А.Ф. Бахтин: «Для каждого из центров или очагов происхождения Н.И. Вавиловым указан основной перечень видов возделываемых растений, характерных для данного географического района включающий: хлебные злаки и другие зерновые культуры; зерновые бобовые; бамбуки, корнеплоды, клубнеплоды, луковичные и водяные пищевые растения; овощные, бахчевые; плодовые; кормовые; сахароносы; масличные и эфирно-масличные, смолоносы и дубильные растения; пряные растения; технические и лекарственные растения; прядильные; красильные; растения различного назначения, вплоть до растительных эндемов».

В одной из своих последних работ «Учение о происхождении культурных растений после Дарвина» Вавилов обобщает весь огромный исследованный материал: «Общая возделываемая территория земного шара в настоящее время определяется приблизительно в 850 миллионов га, что составляет около 7 процентов от всей суши. Из общего числа 1500 видов пищевых, технических и лекарственных культурных растений мы остановимся условно на 1000 главнейших видов, которые фактически занимают не менее 99 процентов всей возделываемой территории. Остальные 500–600 видов при всем их разнообразии занимают менее 1 процента всей возделываемой территории.

Континентом, давшим наибольшее число культурных растений, является Азия, на долю которой приходится из рассматриваемых 1000 видов около 700, т. е. около 70 процентов всей культурной флоры. На Новый Свет приходится приблизительно 17 процентов. Австралия до прихода европейцев не знала культурных растений, и только в последнее столетие ее эвкалипты и акации начинают широко использоваться в культуре тропических и субтропических районов мира.

В пределах континентов выделяются следующие семь основных географических центров происхождения культурных растений.

1. Южно-азиатский тропический центр, включая сюда территорию тропической Индии, Индокитая, Южного тропического Китая и острова Юго-Восточной Азии…

2. Восточно-азиатский центр включает умеренные и субтропические части Центрального и Восточного Китая, большую часть Тайваня, Корею и Японию…

3. Западноазиатский центр. Сюда входят территории нагорной Малой Азии (Анатолии), Иран, Афганистан, Средняя Азия и Северо-Западная Индия…

4. Средиземноморский центр включает страны, расположенные по берегам Средиземного моря…

5. В пределах Африканского материка выделяется маленькая Абиссиния как самостоятельный географический центр. Сюда же примыкает несколько своеобразный Горно-Аравийский (Йеменский) очаг…

6. На обширной территории Северной Америки выделяется, прежде всего, Центральноамериканский географический центр, включая южную Мексику…

7. Андийский центр в пределах Южной Америки, приуроченный к части Андийского хребта…

…Как видно, основные географические центры начального введения в культуру большинства возделываемых растений связаны не только с флористическими областями, отличающимися богатой флорой, но и с древнейшими цивилизациями. В самом деле, выделенные семь крупных центров соответствуют локализации древнейших земледельческих культур. Южно-азиатский тропический центр связан с высокой древнеиндийской и индокитайской культурой. Новейшие раскопки показали глубокую древность этой культуры, синхроничную переднеазиатской. Восточно-азиатский центр связан с древней китайской культурой. Юго-Западноазиатский с древней культурой Ирана, Малой Азии, Сирии и Палестины. Средиземноморье уже за несколько тысячелетий до нашей эры сосредоточило этрусскую, эллинскую и египетскую культуры, насчитывающие около 6 тысяч лет своего существования. Сравнительно примитивная абиссинская культура имеет глубокие корни, вероятно, синхроничные древней египетской культуре, а может быть, и предшествующие ей. В пределах Нового Света Центральноамериканский центр связан с великой культурой майя, достигшей до Колумба огромных успехов в науке и искусстве. Андийский центр связан с замечательной доинкской и инкской цивилизациями».

В одной из своих лекций Николай Иванович обратил внимание на отличие отечественного метода: «Специфической особенностью наших исследований является введение так называемого дифференциального ботанико-географического метода, поскольку в отношении культурных растений нас интересуют не только ареалы видов и родов, но, прежде всего, составляющие виды, разновидности и расы. В этом направлении советские исследователи пошли самостоятельно Крупные открытия, выпавшие на долю советской науки, обуславливаются именно нетронутостью этой области».

Оценивая учение о «Центрах происхождения культурных растений», Вавилов не без гордости говорил, что им была взята трудная задача мобилизации растительных ресурсов всего земного шара.

ДНК

Генетика как наука возникла в 1866 году, когда Грегор Мендель сформулировал положение, что «элементы», названные позднее генами, определяют наследование физических свойств. Спустя три года швейцарский биохимик Фридрих Мишер открыл нуклеиновую кислоту и показал, что она содержится в ядре клетки. На пороге нового века ученые обнаружили, что гены располагаются в хромосомах, структурных элементах ядра клетки. В первой половине XX века биохимики определили химическую природу нуклеиновых кислот, а в сороковых годах исследователи обнаружили, что гены образованы одной из этих кислот, ДНК. Было доказано, что гены, или ДНК, управляют биосинтезом (или образованием) клеточных белков, названных ферментами, и таким образом контролируют биохимические процессы в клетке.

К 1944 году американский биолог Освальд Авери, работая в Рокфеллеровском институте медицинских исследований, представил доказательства, что гены состоят из ДНК. Эта гипотеза была подтверждена в 1952 году Альфредом Херши и Мартой Чейз. Хотя было ясно, что ДНК контролирует основные биохимические процессы, происходящие в клетке, ни структура, ни функция молекулы не были известны.

Весной 1951 года, во время пребывания на симпозиуме в Неаполе, Уотсон встретил Мориса Г.Ф. Уилкинса, английского исследователя. Уилкинс и Розалин Франклин, его коллеги по Королевскому колледжу Кембриджского университета, провели рентгеноструктурный анализ молекул ДНК и показали, что они представляют собой двойную спираль, напоминающую винтовую лестницу. Полученные ими данные привели Уотсона к мысли исследовать химическую структуру нуклеиновых кислот. Национальное общество по изучению детского паралича выделило субсидию.

В октябре 1951 года ученый отправился в Кавендишскую лабораторию Кембриджского университета для исследования пространственной структуры белков совместно с Джоном К. Кендрю. Там он познакомился с Фрэнсисом Криком, физиком, интересовавшимся биологией и писавшим в то время докторскую диссертацию.

Впоследствии у них установились тесные творческие контакты. Начиная с 1952 года, основываясь на ранних исследованиях Чаргаффа, Уилкинса и Франклин, Крик и Уотсон решили попытаться определить химическую структуру ДНК.

Фрэнсис Харри Комптон Крик родился 8 июня 1916 года в Нортхемптоне и был старшим из двух сыновей Харри Комптона Крика, зажиточного обувного фабриканта, и Анны Элизабет (Вилкинс) Крик. Проведя свое детство в Нортхемптоне, он посещал среднюю классическую школу. Во время экономического кризиса, наступившего после Первой мировой войны, коммерческие дела семьи пришли в упадок, и родители Фрэнсиса переехали в Лондон. Будучи студентом школы Милл-Хилл, Крик проявил большой интерес к физике, химии и математике. В 1934 году он поступил в Университетский колледж в Лондоне для изучения физики и окончил его через три года, получив звание бакалавра естественных наук. Завершая образование в Университетском колледже, молодой ученый рассматривал вопросы вязкости воды при высоких температурах; эта работа была прервана в 1939 году разразившейся Второй мировой войной.

В военные годы Крик занимался созданием мин в научно-исследовательской лаборатории Военно-морского министерства Великобритании. В течение двух лет после окончания войны он продолжал работать в этом министерстве и именно тогда прочитал известную книгу Эрвина Шредингера «Что такое жизнь? Физические аспекты живой клетки», вышедшую в свет в 1944 году. В книге Шредингер задается вопросом. «Как можно пространственно-временные события, происходящие в живом организме, объяснить с позиции физики и химии?»

Идеи, изложенные в книге, настолько повлияли на Крика, что он, намереваясь заняться физикой частиц, переключился на биологию. При поддержке Арчибалда В. Уилла Крик получил стипендию Совета по медицинским исследованиям и в 1947 году начал работать в Стрэнджвейской лаборатории в Кембридже. Здесь он изучал биологию, органическую химию и методы рентгеновской дифракции, используемые для определения пространственной структуры молекул. Его познания в биологии значительно расширились после перехода в 1949 году в Кавен-дишскую лабораторию в Кембридже — один из мировых центров молекулярной биологии.

Под руководством Макса Перуца Крик исследовал молекулярную структуру белков, в связи с чем у него возник интерес к генетическому коду последовательности аминокислот в белковых молекулах. Около 20 важнейших аминокислот служат мономерными звеньями, из которых построены все белки. Изучая вопрос, определенный им как «граница между живым и неживым», Крик пытался найти химическую основу генетики, которая, как он предполагал, могла быть заложена в дезоксирибо-нуклеиновой кислоте (ДНК).

В 1951 году двадцатитрехлетний американский биолог Джеймс Д. Уотсон пригласил Крика на работу в Кавендишскую лабораторию.

Джеймс Девей Уотсон родился 6 апреля 1928 года в Чикаго (штат Иллинойс) в семье Джеймса Д. Уотсона, бизнесмена, и Джин (Митчелл) Уотсон и был их единственным ребенком. В Чикаго он получил начальное и среднее образование. Вскоре стало очевидно, что Джеймс необыкновенно одаренный ребенок, и его пригласили на радио для участия в программе «Викторины для детей» Лишь два года проучившись в средней школе, Уотсон получил в 1943 году стипендию для обучения в экспериментальном четырехгодичном колледже при Чикагском университете, где проявил интерес к изучению орнитологии. Став бакалавром естественных наук в университете Чикаго в 1947 году, он продолжил образование в Индианском университете Блумингтона.

К этому времени Уотсон заинтересовался генетикой и начал обучение в Индиане под руководством специалиста в этой области Германа Дж. Меллера и бактериолога Сальвадора Лурия. Уотсон написал диссертацию о влиянии рентгеновских лучей на размножение бактериофагов (вирусов, инфицирующих бактерии) и получил в 1950 году степень доктора философии. Субсидия Национального исследовательского общества позволила ему продолжить исследования бактериофагов в Копенгагенском университете в Дании Там он проводил изучение биохимических свойств ДНК бактериофага Однако, как он позднее вспоминал, эксперименты с бактериофагом стали его тяготить, ему хотелось узнать больше об истинной структуре молекул ДНК, о которых так увлеченно говорили генетики.

Крику и Уотсону было известно, что существует два типа нуклеиновых кислот — ДНК и рибонуклеиновая кислота (РНК), каждая из которых состоит из моносахарида группы пентоз, фосфата и четырех азотистых оснований: аденина, тимина (в РНК — урацила), гуанина и цитозина. В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты с уже имевшимися, сделав сообщение о структуре ДНК в феврале 1953 года Месяцем позже они создали трехмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.

Согласно модели Крика—Уотсона, ДНК представляет двойную спираль, состоящую из двух цепей дезоксирибозофосфата, соединенных парами оснований аналогично ступенькам лестницы. Посредством водородных связей аденин соединяется с тимином, а гуанин — с цитозином. С помощью этой модели можно было проследить репликацию самой молекулы ДНК.

Модель позволила другим исследователям отчетливо представить репликацию ДНК. Две цепи молекулы разделяются в местах водородных связей наподобие открытия застежки-молнии, после чего на каждой половине прежней молекулы ДНК происходит синтез новой. Последовательность оснований действует как матрица, или образец, для новой молекулы.

В 1953 году Крик и Уотсон завершили создание модели ДНК. Это позволило им вместе с Уилкинсом через девять лет разделить Нобелевскую премию 1962 года по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах».

А.В. Энгстрем из Каролинского института сказал на церемонии вручения премии: «Открытие пространственной молекулярной структуры… ДНК является крайне важным, т. к. намечает возможности для понимания в мельчайших деталях общих и индивидуальных особенностей всего живого». Энгстрем отметил, что «расшифровка двойной спиральной структуры дезоксирибонуклеиновой кислоты со специфическим парным соединением азотистых оснований открывает фантастические возможности для разгадывания деталей контроля и передачи генетической информации».

После опубликования описания модели в английском журнале «Нейче» в апреле 1953 года тандем Крика и Уотсона распался.

В 1965 году Уотсон написал книгу «Молекулярная биология гена», ставшую одним из наиболее известных и популярных учебников по молекулярной биологии.

Что касается Крика, то в 1953 году он получил степень доктора философии в Кембридже, защитив диссертацию, посвященную рентгеновскому дифракционному анализу структуры белка. В течение следующего года он изучал структуру белка в Бруклинском политехническом институте в Нью-Йорке и читал лекции в разных университетах США. Возвратившись в Кембридж в 1954 году, он продолжил свои исследования в Кавендишской лаборатории, сконцентрировав внимание на расшифровке генетического кода. Будучи изначально теоретиком, Крик начал совместно с Сиднеем Бреннером изучение генетических мутаций в бактериофагах (вирусах, инфицирующих бактериальные клетки).

К 1961 году были открыты три типа РНК: информационная, рибосомальная и транспортная. Крик и его коллеги предложили способ считывания генетического кода. Согласно теории Крика, информационная РНК получает генетическую информацию с ДНК в ядре клетки и переносит ее к рибосомам (местам синтеза белков) в цитоплазме клетки. Транспортная РНК переносит в рибосомы аминокислоты. Информационная и рибосомная РНК, взаимодействуя друг с другом, обеспечивают соединение аминокислот для образования молекул белка в правильной последовательности. Генетический код составляют триплеты азотистых оснований ДНК и РНК для каждой из 20 аминокислот. Гены состоят из многочисленных основных триплетов, которые Крик назвал кодонами.

До расшифровки генома человека оставалось сорок лет…

КЛОНИРОВАНИЕ

История клонирования началась в далекие сороковые годы в СССР. Тогда советский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Результаты исследований он отправил в июне 1948 года в «Журнал общей биологии». Ученому не повезло. В августе 1948 года состоялась печально известная сессия ВАСХНИЛ, где окончательно утвердилось непререкаемое лидерство в биологии известного борца с генетикой Т.Д. Лысенко. Набор статьи Лопашова был рассыпан. Еще бы! Там доказывалась ведущая роль ядра и содержащихся в нем хромосом в индивидуальном развитии организмов. Как это часто случалось в истории российской науки, приоритет достался американским эмбриологам Бригге и Кингу, выполнившим в пятидесятые годы сходные опыты.

Дальнейшее совершенствование методики связано с Джоном Гердоном (Великобритания). Он стал удалять из яйцеклетки лягушки собственное ядро и трансплантировать в нее разные ядра, выделенные из специализированных клеток. Позднее он стал пересаживать ядра из клеток взрослого организма. В некоторых случаях у Гердона яйцеклетки с чужим ядром развивались до достаточно поздних стадий. В одном-двух случаях из ста особи проходили стадию метаморфозы и превращались во взрослых лягушек. Правда, таких хилых и дефектных, что вряд ли можно говорить об абсолютно точном копировании.

Однако вокруг исследований Гердона поднялся большой шум. Тогда впервые заговорили и о клонировании человека.

Как пишет доктор медицинских наук Леонид Иванович Корочкин, проблемой клонирования животных заинтересовались и в России: «программа „Клонирование млекопитающих“ стояла в плане совместной работы двух лабораторий — моей и академика Д.К. Беляева, обратившего внимание на идею клонирования и поддержавшего исследования в этой области. В 1974 году я даже выступал с докладом на сессии ВАСХНИЛ, опубликованным в книге „Генетическая теория отбора, подбора и методов разведения животных“ (Новосибирск: Наука, 1976) и сообщавшим, что „в настоящее время ставится задача получения клона млекопитающих“, и с преждевременным оптимизмом заключавшим, что задача эта очень сложная, но принципиально разрешимая. Наши начинания первоначально неплохо финансировались, но вскоре государство потеряло к ним интерес. Основным выводом, сделанным нами на основе тех результатов, которые мы успели получить, явилось признание бесперспективности трансплантации ядер при попытках получить клон млекопитающих. Эта операция оказалась слишком травматичной, предпочтительнее было применить метод соматической гибридизации, то есть перенос чужеродного ядра с помощью слияния яйцеклетки с соматической клеткой, ядро которой требовалось поместить в яйцеклетку. Именно такой подход использовал впоследствии Ян Вильмут при получении овечки Долли. Кстати, его сотрудник посещал Новосибирский институт цитологии и генетики АН СССР и беседовал с сотрудниками, когда-то занимавшимися проблемой клонирования (это не значит, конечно, что он непременно воспользовался их идеями).»

В конце 70-х годов американец швейцарского происхождения Карл Иллменсее опубликовал статью, из которой следовало, что ему удалось получить клон из трех мышек. И вновь клональный бум вытеснил все остальные научные новости, вновь зазвучали фанфары, возвещавшие об осуществлении вековой мечты человечества о бессмертии, достижимом, впрочем, своеобразным способом — через искусственное производство себе подобных копий. Горечь разочарования не заставила себя ждать: в научной среде поползли слухи о том, что в опытах Иллменсее что-то нечисто, что их никому (даже самым искусным экспериментаторам) не удается воспроизвести. В конце концов была создана авторитетная комиссия, поставившая на работе Иллменсее крест, признав ее недостоверной. Таким образом, по самой проблеме был нанесен весьма болезненный удар и поставлена под сомнение ее разрешимость. На какое-то время воцарилось спокойствие. И вдруг как гром с ясного неба — овечка Долли!

В феврале 1997 года появилось сообщение о том, что в лаборатории Яна Вильмута в шотландском городе Эдинбурге в Рослинском институте сумели клонировать овцу. Как стало известно позднее, только один опыт из 236 стал удачным. Так появилась на свет овечка Долли, содержащая генетический материал взрослой овцы, умершей три года назад.

Извлеченные яйцеклетки поместили в искусственную питательную среду с добавлением эмбриональной телячьей сыворотки при температуре 37 градусов Цельсия и провели операцию удаления собственного ядра. Для обеспечения яйцеклетки генетической информацией от клонируемого организма использовали разные клетки донора. Наиболее удобными оказались диплоидные клетки молочной железы взрослой беременной овцы.

«Развивающийся зародыш культивировали в течение 6 дней в искусственной химической среде или яйцеводе овцы, перетянутом лигатурой ближе к рогу матки, — отмечает Л.И. Корочкин — На стадии морулы или бластоцисты эмбрионы (от одного до трех) трансплантировали в матку приемной матери, где они могли развиваться до рождения».

Группа ученых из университета в Гонолулу во главе с Риузо Янагимачи решили усовершенствовать метод Вильмута. Они изобрели микропипетку, с помощью которой можно было безболезненно извлекать ядро из соматической клетки и трансплантировать его в обезъядренную яйцеклетку. Еще одно «ноу-хау» группы Янагимачи — использование в качестве донорских относительно менее дифференцированных ядер клеток, окружающих яйцеклетки.

Трансплантируемое дифференцированное в определенном направлении ядро и цитоплазма яйцеклетки до того работали как бы в разных режимах. Для обеспечения естественных ядерно-цитоплазматических взаимоотношений между ядром и цитоплазмой, они добились синхронизации процессов, протекающих в яйцеклетке и трансплантируемом в нее ядре.

Исследования Вильмута и ученых из Гонолулу привели, без сомнения, к выдающимся достижениям. Но перспективы их дальнейшего развития следует оценивать с осторожностью. Получить абсолютно точную копию данного конкретного животного очень сложно. По крайней мере, гораздо сложнее, чем это может показаться при первом знакомстве с проблемой. Главная причина в том, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки. Если одни гены активно работают, другие инактивируются и «молчат». Сам же зародыш представляет собой своеобразную мозаику полей распределения таких функционально различных генов. Чем выше на иерархической эволюционной лестнице стоит животное, тем большая специализация у организма, и изменения глубже и труднее обратимы.

«У некоторых организмов, — пишет Корочкин, — например, у известного кишечного паразита аскариды, генетический материал в будущих зародышевых клетках остается неизменным в ходе развития, а в других соматических клетках выбрасываются целые большие фрагменты ДНК — носителя наследственной информации. В красных кровяных клетках (эритроцитах) птиц ядра сморщиваются в маленький комочек и не работают, а из эритроцитов млекопитающих, стоящих эволюционно выше птиц, вообще выбрасываются за ненадобностью. У плодовой мушки дрозофилы особенно четко выражены процессы, свойственные и другим организмам: селективное умножение или, наоборот, недостача каких-то участков ДНК, по-разному проявляющиеся в разных тканях. Совсем недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, в зародышевых клетках специальный белок — теломераза достраивает, восстанавливает их, то есть полученные данные опять-таки свидетельствуют о существенных различиях между зародышевыми и соматическими клетками. И, следовательно, встает вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша.

Уже упомянутый Карл Иллменсее исследовал, насколько дифференцированные ядра дрозофилы способны обеспечить нормальное развитие этого животного из яйца. Оказалось, что до поры до времени зародыш развивается нормально, но уже на ранних стадиях эмбриогенеза наблюдаются отклонения от нормы, возникают уродства, и такой эмбрион неспособен превратиться даже в личинку, не говоря уже о взрослой мухе. У лягушки как существа менее развитого, чем млекопитающие, ядерные изменения менее выражены. И при этом процент успеха при клонировании, как уже отмечалось, невысок (1–2 процента)…

Но млекопитающие значительно сложнее лягушек по своему устройству и степени дифференцированности клеток. Естественно, у них процент успеха будет, по крайней мере, не выше».

Кроме того, не надо забывать о несовпадении условий развития в матке разных приемных матерей. А значит, что в разных условиях развития зародыша одинаковые гены будут обнаруживать свое действие по-разному. Поскольку таких генов тысячи, то и вероятность полного сходства «клонов» будет не очень велика.

Основываясь на таком заключении, специалисты считают, что полное клонирование человека, например, невозможно. «Много шума из ничего», — так охарактеризовал Вентер, руководитель проекта по расшифровке генома человека, споры вокруг клонирования. — Можно создать человека, который будет выглядеть, как ваш близнец, но вероятность того, что его характер и интересы будут такие же, как у вас, близка к нулю. «„Ксерокопировать“ людей невозможно», — констатирует ученый.

ГЕНОМ ЧЕЛОВЕКА

Сенсационное научное достижение — расшифровку генома человека — по значимости сравнивают с расщеплением атома или раскрытием строения молекулы ДНК. Одно ясно: это открытие подняло науку на принципиально новый уровень познания.

Может быть, впервые в современной науке сложилась необычная ситуация. В работу над исключительно дорогостоящим и важным проектом включились, с одной стороны, индивидуальные исследователи, нашедшие себе мощных спонсоров, с другой стороны, учреждения и университеты, финансируемые правительствами нескольких стран. Первоначально в 1988 году средства на изучение генома человека выделило Министерство энергетики США. Одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор. В 1990 году Джеймс Уотсон в результате лоббирования конгресса США — добился вскоре выделения сразу сотни миллионов долларов на изучение генома человека. То была весомая добавка к бюджету Министерства здравоохранения. Оттуда деньги направлялись в ведение дирекции сети институтов, объединенных под общим названием — Национальные институты здоровья (МН). В составе МН появился новый институт — Национальный институт исследования генома человека, директором которого стал Фрэнсис Коллинз.

В мае 1992 года ведущий сотрудник МН Крэйг Вентер подал заявление об уходе. Он объявил о создании нового, частного исследовательского учреждения — Института геномных исследований, сокращенно ТИГР. Ученому удалось удивительно быстро развить и вырастить свое детище. Уже первоначальный капитал института составил семьдесят миллионов долларов, пожертвованных спонсорами. ТИГР объявили неприбыльным частным институтом, не использующим свои результаты для обогащения или торговли. Практически одновременно образовали компанию «Науки о геноме человека», которая должна была продвигать на рынок данные, получаемые сотрудниками ТИГРа.

В июне 1997 года Вентер начал новые преобразования. Он вывел ТИГР из связки с «Наукой» и в 1998 году организовал в Роквилле (штат Мэриленд) свою собственную коммерческую компанию, которую назвал «Силера джиномикс». Вентер стал ее президентом, оставшись главным научным руководителем ТИГРа. Последний возглавила его жена Клэйр Фрэйзер.

Как пишет В.Н. Сойфер, «Вентер оказался исключительно умельи руководителем. Он договорился с одной из крупных компаний m производству научного оборудования, что та предоставит в прокат ТИП 18–20 автоматических секвенаторов-роботов, которые в первый же год работы позволят довести размер секвенируемых последовательностей дс 60 миллионов оснований (одной пятой всего генома человека; такой же был важен и для компании — лучшей рекламы своей продукции представить трудно). Позже Вентер заключил аналогичный контракт поставке институту огромных систем усовершенствованных роботов для секвенирования протяженных кусков ДНК». В распоряжении Вентера оказался огромный парк компьютеров, который считают вторым по мощности в мире. Триста суперкомпьютеров стоимостью около 80 миллионов долларов круглосуточно обрабатывают огромные объемы данных.

В итоге работы по Проекту человеческого генотипа набрали небывалую скорость. Первоначально получить полную версию генотипа I обещали к 2010 году, потом предполагалось завершить работу в 2003 году. Результата удалось добиться уже в 2001-м!

Открывая независимый центр — Институт исследования генотипа, Вентер пообещал первым расшифровать человеческий генотип.

К 2001 году удалось получить последовательность двух миллиардов знаков генотипа. Причем на установление последовательности первого миллиарда ушло четыре года, а на второй миллиард — меньше четырех месяцев. Ускорение — результат применения высоких технологий, например роботов.

Команда Вентера использует метод, называемый пулеметная последовательность. Взрывным способом весь генотип разделяется на семьдесят миллионов фрагментов. Далее машиной выстраивается последовательность, а порядок генотипа обрабатывается суперкомпьютером, управляемым процессором мощностью в 1,3 триллиона операций в секунду.

Вентер доказал эффективность пулеметной последовательности, когда «Силера джиномикс» воспроизвела последовательность генотипа микроба ответственного за такие серьезные инфекции, как менингит, а также закончила расшифровку генотипа фруктовой мухи (120 миллионов знаков).

В 2001 году Международный консорциум, в который вошли помимо ведущего участника этого проекта — биотехнологической компании «Силера джиномикс», 16 организаций из Великобритании, США, Франции, Германии, Японии и Китая, обнародовали результаты колоссальной работы. Ученые определили, что генетическую программу молекулы ДНК составляют 3,2 миллиарда бесконечно повторяющихся четырех пар азотистых оснований аденина, тимина, цитозина и гуанина.

Самой большой неожиданностью стал тот факт, что количество генов в наследственной программе человека оказалось не 80—100 тысяч, как ожидалось, а лишь 30–40 тысяч.

Если сравнить с количеством генов дождевого червя (18 000) или плодовой мушки (13 000), то разница окажется не слишком велика! При этом у разных живых организмов выявлены сходные гены, что только подтверждает теорию молекулярной эвононии.

«Если кто-то думал, что основное отличие между биологическими видами определяется именно количеством генов, то он, скорее всего, ошибался», — подводит итог профессор Эрик Ландер, руководитель научных исследований по геному человека в Массачусетском технологическом институте США. А Вентер не без сарказма добавляет: «Всего нескольких сотен генов, которые есть в геноме человека, нет в геноме мыши». Таким образом, первоначальные представления о том, что человек является с биологической точки зрения сложнейшей структурой, ученые подтвердить не смогли.

«Работа человеческих генов, говорят они, оказалась намного сложнее, чем они предполагали, — пишет в журнале „Эхо планеты“ Елена Слепчук. — У нас за один и тот же признак, за одну и ту же болезнь отвечают не один, а несколько или даже группа генов. Впрочем, об этом генетики догадывались и раньше. Возможно, таким образом гены страхуют друг друга, а заодно и приобретают более широкое поле деятельности. Работу генов можно сравнить с действиями кукловодов, ведущих целый спектакль, виртуозно руководя послушными куклами и вводя по ходу действия все новые персонажи. Представим, что вместо ниточек идут генные команды на производство тех или иных пептидов, из которых впоследствии строится тело живого организма. По мнению молекулярных биологов, еще одна особенность человеческих генов состоит в том, что природа придала нам большее число так называемых генов-контролеров, которые следят за работой своих „собратьев“. Действительно, зачем без конца увеличивать штат работников, если поставленной цели можно достичь путем толкового менеджмента? Вот где пример для подражания нашим управленцам. Кстати, ученые Кембриджского университета уже запланировали специальное исследование, надеясь разобраться, каким образом такая сложная структура — человек — спокойно управляется столь небольшим количеством генов.

А вот чем мы кардинально отличаемся от всего живого мира, так это удивительным многообразием своих белков. Сколько их, не знает никто. Генетики полагают, что отдельные белковые компоненты могут смешиваться между собой, образуя различные сочетания, подобно тому, как смешения семи основных цветов создают мириады различных красок.

Биология вершится не на уровне генов, а на уровне белков, признают они. Из этого следует еще один важный вывод: не все в нашей жизни определяется генами, от окружения тоже многое зависит».

Другим сюрпризом, поставившим биологическую науку в тупик, стало наличие так называемой «молчащей» ДНК. И раньше было известно, что вдоль цепи ДНК есть участки, которые не выдают никакой информациидля производства белков Генетики называли их «генетическим мусором». И вот оказалось, что такие участки занимают 95 процентов всей ДНК. Одни биологи выдвигают гипотезу, что именно в них скрыта эволюционная информация. Другие полагают, что на эти участки возложена важная роль управления генами.

Вентер считает, что расшифровка генома человека поможет лучше понять истинные причины многих заболеваний. Это открытие позволит в недалеком будущем устранять наследственные недуги, а также создавать новые лекарства. Новые средства лечения смогут «чинить» или заменять «плохие гены». При подобном индивидуальном подходе к каждому человеку удастся продлевать человеческую жизнь.

А вот мнение профессора Дэвида Альтшулера из Уайтхедского института биомедицинских исследований: «Нет двух одинаковых болезней и двух одинановых пациентов. Примерно половину этих различий можно объяснить именно особенностями генетического кода. И если мы поймем, что за информация в нем содержится, то сможем сравнить гены наших пациентов с генами идеального, „чистого“ гомо сапиенс и искать пути к лечению, что значительно повысит эффективность работы врача».

«Более скептически в этом отношении настроен Джон Сальстон из Кембриджа, — пишет в том же журнале Борис Зайцев, — считающий, что с определенными генами связано относительно немного заболеваний Подавляющее же их большинство, в том числе таких „главных убийц“, как сердечные, возникает при участии многих генов и белков, с одной стороны, и под влиянием окружающей среды — с другой. Из этого следует, что перспектива создания нового поколения лекарств, способных лечить болезни на генетическом уровне, отодвигается, считает ученый. Пока созданы препараты, воздействующие на 483 „биологические цели“ в организме. Необходимо значительно глубже проникнуть в основы жизни — понять, каким образом взаимодействуют гены для выработки почти 300 тысяч белков. Это, по прогнозам, потребует значительно больше времени, чем расшифровка самого генома…

…Наряду с блестящими возможностями, которые открывает новое достижение ученых, генетический прорыв может иметь серьезные правовые, этические и социальные последствия. Генетический тест, если его проводить, покажет все заболевания, к которым предрасположен человек. Не отразится ли это на отношениях больной — врач, если болезней все равно не избежать? А если такие данные попадут к страховым компаниям, не воспользуются ли они ими для „отлучения“ потенциальных больных от финансовой помощи? И получат ли работу люди, не имеющие „чистых“ генов? Тесты на эмбрионах могут привести к принудительным абортам у женщин, чей плод оказался с „плохими“ генами. Нельзя исключать и жестких попыток вообще запретить иметь потомство людям с генетическими аномалиями. Появление же у них детей сразу может поставить младенцев в разряд „генетических изгоев“».

Профессор генетики Дэвид Альтшулер категоричен: «Уже сейчас мы должны начать переговоры с правительствами и законодателями о принятии закона, защищающего граждан от „генной дискриминации“».

ЗАКОНЫ ОБЩЕСТВА

ОСНОВЫ КЛАССИЧЕСКОЙ ЭКОНОМИКИ

«Спорадические экономические воззрения, достаточно отрывочные и наивные, известны с античного времени. Сам термин „экономика“ происходит от греческого „ведение домашнего хозяйства“», — пишет в своей книге В.Н. Костюк.

И далее продолжает: «…Предвестником экономических воззрений Нового времени стали, в частности, писания Ж. Кальвина (1509–1546). Несмотря на их отчетливую религиозную форму, они имели вполне конкретное экономическое содержание. Миром правит божественное предопределение (одних Бог предопределил к вечному блаженству, других — к вечным мукам), однако каждый человек, не зная этого, должен думать, что именно он — божий избранник, и доказывать свою избранность всей своей деятельностью. Свидетельством этому служит денежный успех. Человек должен быть бережливым, расчетливым, деятельным и честным — это его моральный долг перед Богом.

Доктрина Кальвина (вообще, протестантизма) помогла становлению духа предприимчивости и бережливости в Голландии и Англии, а затем в США…

…Постепенно возникла школа меркантилистов, создание которой означало появление первых более или менее систематизированных экономических воззрений.

Согласно меркантилистам, богатство — это деньги, а деньги — это золото и серебро. Товар имеет стоимость потому, что он покупается за деньги. Источник богатства — внешняя торговля.

XVI век — ранний меркантилизм. Экономическая цель государства — увеличить количество золота в стране. Вывоз денег за границу запрещался.

…Поздний меркантилизм (XVII век) возник после великих географических открытий. Государство тем богаче, чем больше разница между стоимостью вывезенных и ввезенных товаров (активный торговый баланс и захват внешних рынков). Вывоз поощряется, а ввоз иностранных товаров (за исключением дешевого сырья) должен облагаться пошлинами. Такие экономические меры получили позже название протекционизма».

Наиболее известными представители меркантилизма были У. Петти, Д. Локк, Д. Лоу.

Позднее, во второй половине XVIII века на смену меркантилистам пришли французские экономисты — физиократы. По их мнению, законы экономики носят естественный характер. Их нельзя нарушить без вреда для производства и для самих людей. Законы так естественны, что понятны всем и каждому. Никого не надо учить, что и как делать. Источником богатства являются земля и труд, а не внешняя торговля. При этом деньги являются лишь средством обмена. Они не представляют собой богатства.

Отличие физиократов от меркантилистов проявилось и в другом аспекте. Первые считали — все богатство создается в земледелии, только земледельческий труд производителен, так как урожай создает Бог. Наиболее выдающимися физиократами были Кантильон, Гурнэ, Кенэ и Тюрго.

Таковы были экономические воззрения, пока в 1776 году не появляется знаменитая книга Адама Смита «Исследование о природе и причинах богатства народов» — труд, сочетающий абстрактную теорию с детальной характеристикой особенностей развития торговли и производства. Эта работа по праву считается началом классической экономической науки.

Адам Смит (1723–1790) родился в маленьком шотландском городке Керколди. Отец его, мелкий таможенный чиновник, умер до рождения сына. Мать ревностно воспитывала Адама и имела на него огромное нравственное влияние. Четырнадцати лет Смит приезжает в Глазго изучать в университете математику и философию. Самые яркие и незабываемые впечатления оставили у него блестящие лекции Фрэнсиса Хатчисона, которого называли «отцом умозрительной философии в Шотландии в новое время».

В 1740 году Смит отправляется учиться в Англию в Оксфорд. Проведенные здесь шесть лет Смит считал самыми несчастливыми и бездарными в своей жизни.

Смит возвратился в Шотландию и, отказавшись от намерения стать священником, решил добывать средства к существованию литературной деятельностью. В Эдинбурге он подготовил и прочитал два курса публичных лекций по риторике, изящной словесности и юриспруденции. Эти выступления принесли Смиту первую славу и официальное признание: в 1751 году он получил звание профессора логики, а уже в следующем году — профессора нравственной философии университета Глазго.

Смит подружился с известным шотландским философом, историком и экономистом Дэвидом Юцом в 1752 году. Во многом они были схожи оба интересовались этикой и политической экономией, имели пытливый склад ума. Некоторые гениальные догадки Юма получили дальнейшее развитие и воплощение в трудах Смита.

В 1759 году Смит опубликовал свое первое сочинение, принесшее ему широкую известность, — «Теорию нравственных чувств». Это одна из самых замечательных работ по этике XVIII века.

Смит стал настолько популярен, что вскоре после издания «Теории» получил предложение от герцога Баклейского сопровождать его семью в поездке по Европе. Путешествие длилось почти три года. Англию они покинули в 1764 году, побывали в Париже, в Тулузе, в других городах южной Франции, в Генуе. Месяцы, проведенные в Париже, запомнились надолго — здесь Смит познакомился едва ли не со всеми выдающимися философами и литераторами эпохи. Он виделся с Д'Аламбером, Гельвецием, но особенно сблизился с Тюрго — блестящим экономистом, будущим генеральным контролером финансов. Плохое знание французского языка не мешало Смиту подолгу беседовать с ним о политэкономии. В их взглядах было много общего: идеи свободной торговли, ограничения вмешательства государства в экономику. Вернувшись на родину, Адам Смит уединяется в старом родительском доме, целиком посвятив себя работе над главной книгой своей жизни. В 1776 году было напечатано «Исследование о природе и причинах богатства народов».

«Богатство народов» представляет собой обширный трактат из пяти книг, заключающих в себе очерк теоретической экономии (I–II книги), историю экономических учений, в связи с общей хозяйственной историей Европы после падения Римской империи (III–IV книги) и финансовую науку, в связи с наукой об управлении (V книга).

Смит подвергает обструкции идеи меркантилизма. Эта критика не была отвлеченным рассуждением: он описывал ту экономическую систему, в которой жил, и показывал ее непригодность к новым условиям. Вероятно, помогли наблюдения, сделанные им ранее в Глазго, тогда еще провинциальном городе, постепенно превращавшемся в крупный торговый и промышленный центр. По меткому замечанию одного из современников, здесь после 1750 года «на улицах не было видно ни одного нищего, каждый ребенок был занят делом».

Основной идеей теоретической части «Богатства народов» можно считать положение, что главным источником и фактором богатства является труд человека — иначе говоря, сам человек. С этой идеей читатель встречается на первых же страницах трактата Смита, в знаменитой главе «О разделении труда». Разделение труда, по мнению Смита, — важнейший двигатель экономического прогресса.

Смит не первый стремился развенчать экономические заблуждения политики меркантилизма, предполагавшего искусственное поощрение государством отдельных отраслей промышленности, но именно он сумел привести свои взгляды в систему и применить ее к действительности. Он защищал свободу торговли и невмешательство государства в экономику — «свободное распоряжение своим трудом является наиболее священным и неприкосновенным видом собственности». Смит верил: только они обеспечат максимально благоприятные условия для получения наибольшей прибыли, а значит, будут способствовать процветанию общества. Смит полагал, что функции государства нужно свести лишь к обороне страны от внешних врагов, борьбе с преступниками и организацией той хозяйственной деятельности, которая не под силу отдельным лицам.

Как на условие, полагающее предел возможному разделению труда, Смит указывает на обширность рынка, и этим возводит все учение из простого эмпирического обобщения, высказанного еще греческими философами, в степень научного закона. В учении о ценности Смит также выдвигает на первый план человеческий труд, признавая труд всеобщим мерилом меновой ценности.

По мнению Смита, общество есть меновой союз, где люди обмениваются результатами труда. При этом каждый человек преследует свои личные интересы: «Не от расположения к нам мясника, пивовара или булочника ожидаем мы нашего обеда, а от их пристрастия к своим собственным выгодам». Взаимовыгодность обмена в экономии труда каждого из его участников. Он также подчеркивает, что обмен и разделение труда взаимосвязаны. «Уверенность в возможности обменять весь тот излишек продукта своего труда, который превышает его собственное потребление, на ту часть продукта других людей, в которой он может нуждаться, побуждает каждого человека посвятить себя определенному специальному занятию и развить до совершенства свои природные дарования в данной специальной области». Через подобное разделение труда и происходит сотрудничество людей в создании национального продукта.

Говоря о теории стоимости, Смит различает потребительную стоимость и меновую стоимость. Потребительная позволяет непосредственно удовлетворять потребности человека. Меновая позволяет приобретать другие предметы.

В.Н. Костюк пишет в своей статье о Смите: «…Рыночная экономика, не подчиненная единому плану и общему центру, работает тем не менее по вполне определенным строгим правилам. Влияние каждого отдельного индивида при этом неощутимо. Он платит те цены, какие с него запрашивают, выбирая интересующие его товары и услуги с учетом величины его дохода. Но совокупность всех этих отдельных действий устанавливает цены, а тем самым доходы, издержки и прибыли. Тем самым действие рынка обеспечивает результат, не зависящий от воли и намерения отдельных индивидов. Расширение масштабов рынка со временем увеличивает преимущества, связанные с разделением труда, и обеспечивает этим долговременный рост богатства.

Это и есть знаменитый принцип „невидимой руки“. Вопреки распространенному взгляду о том, что общественное благо выше личного и что надо стремиться к всеобщей пользе, Смит показал, что во главу угла надо поставить индивидуальные интересы, т. е. „естественное стремление каждого человека к улучшению своего положения“. Рост общественного богатства и приоритет общественных ценностей установятся тогда сами собой (рыночная саморегуляция экономики). Стремление людей улучшить свое положение, обладать деньгами и получать прибыль наведет порядок и реализует общественные идеалы спонтанно, независимо от желания кого-либо».

Нельзя допустить, чтобы свободная конкуренция нарушалась государством, иначе возникает монополия. «Цена, назначаемая монополией… есть самая высокая, какую только можно получить. Естественная цена, вытекающая из свободной конкуренции, напротив, самая низкая». К подобным результатам приводят и препятствия к перемещению рабочей силы. «Все, что препятствует свободному обращению труда от одного промысла к другому, стесняет равным образом и обращение капиталов, так как количество последних… находится в большой зависимости от количества обращающегося в ней труда».

Анализ понятия естественной цены приводит Смита к выделению в ней трех основных частей: заработной платы, прибыли и ренты. Каждая часть представляет собой чей-то доход. Скажем, заработная плата является доходом наемных рабочих, прибыль — доходом капиталистов, а рента — доходом землевладельцев. Значит, можно сделать вывод о существовании трех основных классах общества.

Смит подчеркивает, что функционирование денег невозможно без доверия к ним граждан: «Когда… люди настолько верят в благосостояние, честность и благоразумие банкира, что полагают, что он всегда будет в состоянии уплатить звонкой монетой по предъявлению билетов и обязательств, в каком бы количестве они ни были одновременно представлены, то эти билеты скоро получают такое же обращение, как золотая и серебряная монета, именно вследствие уверенности, что их можно разменять на деньги, как только вздумается».

Смит развивает принцип «невидимой руки». Разрабатывая первоначально его применительно к одной стране, он затем распространяет свои выводы на весь мир.

Оригинальность теории Смита заключалась не в частностях, а в целом: его система явилась наиболее полным и совершенным выражением идей и стремлений его эпохи — эпохи падения средневекового хозяйственного строя и быстрого развития капиталистического хозяйства. Постепенно идеи Смита нашли практическое применение на его родине, а затем и повсеместно.

ТЕОРИЯ НАРОДОНАСЕЛЕНИЯ

Многие века каждое государство стремилось к максимальному росту своего населения, принимая для этого различные меры. Так, греческое государство просто приказывало гражданам вступать в брак и строго преследовало за нарушение своего приказания. Римские императоры действовали мягче: они соблазняли преимуществами и привилегиями, которыми награждали людей семейных, и пугали перспективой различных неудобств, связанных с холостым состоянием. По этому последнему пути и пошло государство XVII–XVIII веков, выработавшее сложную систему поощрений и кар все с той же целью — увеличения народонаселения. Примеры такого рода — испанский указ от 1623 года и знаменитый эдикт Людовика XIV, где людям, женившимся до 25 лет, а также отцам десятерых детей давались значительные льготы в платеже податей и повинностей. И в XVIII веке государства повсюду продолжали идти по пути искусственного поощрения народонаселения. Заботясь о численности населения, государство упускало из виду его благосостояние. Главнейшими представителями такого направления государственной науки в XVIII веке были Зюссмильх, Юсти и Зонненфельц.

Зонненфельц так мотивирует подобное положение: «Чем больше народная масса, тем сильнее может быть то сопротивление, на котором покоится внешняя безопасность, — таково основное положение политики; чем больше народная масса, на чье содействие можно рассчитывать, тем меньше опасности грозит изнутри, — таково основное положение полиции (искусства управления); чем больше людей, тем больше потребностей, тем многочисленнее в стране внутренние источники пропитания; чем больше рабочих рук, тем лучше идет земледелие, тем больше материала для обмена, — таково основное положение науки о торговле; чем больше граждан, тем больше получает государство на свои расходы, хотя для каждого облагаемого меньше, — таково основное положение финансовой науки».

Таково было господствующее мнение. Нельзя сказать, чтобы даже в XVIII веке оно не находило себе никаких возражений или поправок. Уже физиократы и энциклопедисты, но всего больше в своем «Духе законов» Монтескье, указывали на зависимость роста народонаселения от увеличения средств пропитания.

Итальянец Джамариа Ортес (1713–1790) написал сочинение, само заглавие которого обращает на себя внимание: «Размышления о народонаселении в его отношении к национальной экономии». По его мнению, численность населения определяется плодородием почвы. По вопросу о росте населения он высказывает мнение, что рост совершается в геометрической прогрессии. Среди животных существует стремление к такому быстрому размножению, но природа задерживает его «силой», у людей сдерживающим началом является «разум» — галопе. Поэтому в известных случаях безбрачие столь же необходимо, как и брак. Здесь ясно сформулирована часть Мальтусова учения, о котором и пойдет речь в этой статье.

Действительно, в буквальном смысле не Мальтусом открыт был так называемый закон народонаселения, не ему принадлежит и первая мысль о геометрической прогрессии. Однако до Мальтуса господствовало мнение, по которому — были бы люди, а пропитание для них найдется.

Но появляется книга Мальтуса «О народонаселении», и положение дел резко меняется. Тот взгляд, который до сих пор считался почти парадоксальным и высказывался очень немногими, становится господствующим; противоположное же мнение, недавно общепринятое, почти совершенно сходит со сцены.

Томас Роберт Мальтус (1766–1834) родился в Суррейском графстве, близ Доркинга, в небольшом имении в местечке Рукери. В десять лет Роберта отправили к воспитателю Ричарду Грэвсу, где он стал обучаться латинскому языку и хорошим манерам. Позднее новым воспитателем стал довольно известный в тогдашнем английском обществе человек Жильберт Уэкфильд. Он принадлежал к числу тех непокорных священников, которые отказались принять «39 статей», сформулировавших при Елизавете основные догматы английской церкви.

Из рук Уэкфильда молодой Мальтус перешел в иезуитскую коллегию в Кембридже. Поступив туда в 1785 году, Мальтус с жаром принимается за занятия. Ярче всего обнаружились в коллегии его математические способности.

После многолетних усиленных занятий, главным образом гуманитарными науками и общественными вопросами, в 1797 году Мальтус получает степень магистра. В том же году он делается адъюнкт-профессором в коллегии, а затем занимает место священника около Альбери. К этому времени относится и начало его литературной деятельности. Первым сочинением Мальтуса был политический трактат под названием «Кризис», заключавший в себе резкую критику действий стоявшего тогда у власти Питта. Однако по совету отца памфлет этот остался в авторском портфеле Здесь уже можно найти зачатки основных положений «Опыта о народонаселении».

Появившееся в 1798 году без имени автора первое издание «Опыта…», написанное с полемическими целями и без достаточной специальной подготовки автора, было переполнено риторическими украшениями и в то же время нуждалось в фактическом обосновании. Однако, несмотря на все недостатки, оно произвело фурор при своем появлении. Это объяснялось главным образом двумя причинами. Во-первых, книга касалась актуальных на тот момент вопросов и, во-вторых, давала на них верный или неверный, но, во всяком случае, решительный и оригинальный ответ.

И самому Мальтусу было совершенно ясно, что его мысли нуждаются в доказательствах и в фактическом обосновании, поэтому он усердно занялся ближайшим изучением того вопроса, который ему приходилось решать в своем «Опыте…» сначала без достаточных знаний. Но положение вопроса о народонаселении в то время было таково, что Мальтус имел перед собою лишь самую бедную литературу и, главное, самое ограниченное количество точных, проверенных фактов. Статистики как науки тогда еще не было. Мальтусу, когда он взялся за подробную разработку вопроса о народонаселении, приходилось самому и собирать факты, и обобщать их, и заложить основания научным статистическим исследованиям, и давать точные ответы на острые вопросы современности. Он скоро увидел, что нужно предпринять путешествие, так как оно было единственным возможным средством собрать недостающие сведения и собственными наблюдениями пополнить существующий пробел.

Мальтус выпускает второе, переработанное и дополненное, издание «Опыта о народонаселении». Переработке подверглась как внешняя форма изложения, так и некоторые основные положения самого учения.

Главное изменение по существу состояло в том, что нищету и преступления он не считает теперь уже единственными препятствиями чрезмерному возрастанию народонаселения, но присовокупляет к ним нравственное воздержание или сознательный отказ от деторождения. Сообразно такому добавлению и нарисованная Мальтусом картина будущего с его неизбежным злом перенаселения должна была утратить много в своей мрачности. К сожалению, такая важная поправка в учении нисколько не отразилась на конечных выводах автора, но внесла некоторую дисгармонию в прежде столь стройное здание его системы.

«Предмет настоящего опыта, — говорит Мальтус в первой главе своей книги, — составляет исследование одного явления, тесно связанного с природой человека, — явления, дававшего себя знать постоянно и могущественно с самого возникновения человеческого общества.

…Явление, о котором здесь идет речь, заключается в постоянном стремлении всех живых существ размножаться в большем количестве, чем то, для которого существуют запасы пищи».

Такая тенденция обнаруживается во всем органическом мире: растения и животные покоряются ей так же, как и человек. Но в то время как первые размножаются бессознательно и непроизвольно, задерживаемые исключительно недостатком места и пищи, человек руководствуется разумом и останавливается в своем размножении заботой о необходимом пропитании. Когда страсти заглушают голос рассудка, а инстинкт делается сильнее предусмотрительности, — соответствие между запасами пищи и количеством населения нарушается и последнее подвергается бедствиям голода В той или иной форме препятствия к размножению населения всегда существовали и существуют, а потому в чистом виде воспроизводительную тенденцию человека нам никогда не приходится наблюдать. Есть страны, однако, где эти препятствия не так сильны: в Северной Америке, например, необходимых средств пропитания больше, а нравы населения чище, чем в Европе, и здесь было замечено, что население удваивается менее чем в 25 лет. Следовательно, при полном отсутствии всяких препятствий к размножению срок удваивания может быть еще короче.

Но не так легко увеличиваются запасы пищи. Земля имеет свои пределы. Когда все плодородные участки уже заняты и обрабатываются, увеличения средств пропитания можно ждать лишь от улучшения способов обработки и от технических усовершенствований. Эти улучшения, однако, не могут производиться с непроходящим успехом; напротив, в то время как народонаселение будет все увеличиваться и увеличиваться, в увеличении средств пропитания будет обнаруживаться некоторая заминка.

По Мальтусу, население растет в геометрической прогрессии, тогда как пища в лучшем случае — только в арифметической. Отсюда он заключает, что для благоденствия рода человеческого, для сохранения равновесия между народонаселением и необходимыми средствами пропитания нужно, чтобы естественное размножение людей встречало всегда известные препятствия и задержки.

Существующие препятствия Мальтус разделяет на две категории: препятствия предупредительные и разрушительные. Первые вытекают из способности людей взвешивать свои поступки и управлять своими инстинктами. Забота о пропитании удерживает многих от слишком раннего вступления в брак. Такого рода воздержание Мальтус называет нравственным, — если только оно не приводит к разврату. Подобное предупредительное препятствие Мальтус считает похвальными коррективами к закону народонаселения, но, к сожалению, не настолько сильным, чтобы сделать излишним действие препятствий разрушительных. «Разрушительные препятствия, — говорит он, — весьма разнообразны; сюда относятся все явления, проистекающие из порока или страданий и сокращающие продолжительность человеческой жизни. Под эту рубрику можно подвести все вредные для здоровья занятия, тяжелый труд, влияние дурного времени года, крайнюю бедность, даваемое детям дурное пропитание, жизнь в больших городах, излишества всякого рода; затем идут вереницей повальные болезни и эпидемии, войны, чума и голод».

В качестве выводов из первых двух глав своего «Опыта…» Мальтус устанавливает три следующих основных положения, которые можно считать краеугольными камнями всего его учения:

1. Народонаселение строго ограничено средствами существования.

2. Народонаселение всегда увеличивается, когда увеличиваются средства существования, если только оно не будет остановлено какой-нибудь могущественной встречной причиной.

3. Все препятствия, которые, ограничивая силу размножения, держат население на уровне средств существования, сводятся, в конце концов, к нравственному воздержанию, пороку и несчастьям.

Если сравнить эти тезисы с основными положениями господствовавшей в XVIII веке доктрины, то сразу видна вся резкость переворота, произведенного Мальтусом в положении вопроса о народонаселении. Побольше людей, а средства пропитания найдутся, — говорили до Мальтуса; побольше средств пропитания, а люди явятся, — говорит Мальтус — и за ним то же стали повторять почти все ученые XIX столетия. Из таких столь различных теоретических положений вытекает и разное отношение к государственной политике: пусть государство поощряет народонаселение, — требовали в XVIII веке; все этого рода поощрения бесполезны и даже вредны, — скажет нам Мальтус. Таким образом, вопрос о народонаселении изымается Мальтусом из сферы государственного воздействия, из сферы политики и делается впервые объектом строго научного исследования. Рост народонаселения перестает быть чем-то более или менее случайным, подверженным всем превратностям политической жизни. Он признается отныне явлением закономерным и находящимся в строгой зависимости от природы и материальных условий. Исследование причин заступает место бесплодных экспериментов над неизбежными следствиями. Наука вступает в свои права, и в книге Мальтуса уже чувствуется веяние XIX века…

Неудивительно, что в мире профессиональных ученых и государственных людей новая смелая доктрина произвела сначала впечатление динамитного взрыва, а для всего общества явилась откровением по такому вопросу, о котором простым языком и в совершенно доступной форме еще никто не говорил с непосвященными.

ЛИНГВИСТИЧЕСКАЯ ТЕОРИЯ ГУМБОЛЬДТА

Основные понятия грамматики окончательно сформировались в Александрии. «Синтаксис» Аполлония Дискола (II век) и грамматика Дионисия Фракийского считались образцовыми. Греческие грамматики позднеантичного и византийского времени в основном сочинялись на их основе.

Идеи александрийцев достаточно быстро проникли и в Рим. В I веке до нашей эры там появляется первый крупный грамматист Марк Теренций Варрон (116—27 годы до нашей эры).

Варрон и другие римские ученые достаточно легко и лишь с минимальными изменениями приспособили греческие схемы описания к латинскому языку. Окончательно античная традиция была зафиксирована в двух позднеантичных латинских грамматиках: грамматике Доната (III–IV века) и многотомной грамматике Присциана (первая половина VI века). На протяжении всего Средневековья две грамматики служили образцами.

Как отмечает В.М. Алпатов: «После распада Римской империи европейская традиция окончательно распалась на два варианта: восточный, греческий, и западный, латинский, которые уже развивались вне всякой связи друг с другом. В течение нескольких веков средневековая лингвистика как на Востоке, так и на Западе мало внесла нового в науку о языке. Новый этап развития западноевропейской лингвистики начался с появлением в ХН-ХШ веках философских грамматик, стремившихся не описывать, а объяснять те или иные языковые явления. Сложилась школа модистов, работавшая с начала XIII века по начало XIV века; самый знаменитый из модистов — Томас Эрфуртский, написавший свой труд в первом десятилетии XIV века. Модисты интересовались не столько фактами латинского языка (где они в основном следовали Присциану), сколько общими свойствами языка и его отношениями к внешнему миру и к миру мыслей. Модисты впервые пытались установить связь между грамматическими категориями языка и глубинными свойствами вещей. Модисты внесли также вклад в изучение синтаксиса, недостаточно разработанного в античной науке…

…После Томаса Эрфуртского в течение примерно двух столетий теоретический подход к языку не получил значительного развития. Однако именно в это время шло постепенное становление нового взгляда на языки, который в конечном итоге выделил европейскую лингвистическую традицию из всех остальных. Появилась идея о множественности языков и о возможности их сопоставления».

В XVI веке после некоторого перерыва теория языка вновь начинает развиваться. Так французский ученый Пьер де ла Раме (Рамус) (1515–1672) завершил создание понятийного аппарата и терминологии синтаксиса, начатое ранее модистами. Надо отметить, что именно ему принадлежит дожившая до наших дней система членов предложения. Испанец Ф. Санчес (Санкциус) (1550–1610) в конце шестнадцатого столетия создает теоретическую грамматику, написанную еще на латыни, но уже учитывающую материал различных языков. У Санчеса впервые появляются и некоторые идеи, потом отразившиеся в грамматике Пор-Рояля.

Языкознание XVII века в основном шло в области теории двумя путями: дедуктивным и индуктивным. Самым известным и популярным образцом индуктивного подхода, связанного с попыткой выявить общие свойства реально существующих языков, стала так называемая грамматика Пор-Рояля. Она была впервые издана в 1660 году. Характерно, что имена ее авторов Антуана Арно (1612–1694) и Клода Лансло (1615–1695) не были указаны.

Как пишут авторы, стимулом к ее написанию послужил «путь поиска разумных объяснений многих явлений, либо общих для всех языков, либо присущих лишь некоторым из них».

Авторы грамматики исходили из существования общей логической основы языков, от которой конкретные языки отклоняются в той или иной степени. От модистов авторы «Грамматики Пор-Рояля» отличались не столько самой идеей основы языков, сколько пониманием того, что собой эта основа представляет.

В течение XVIII века продолжали составляться и общие рациональные грамматики в духе «Грамматики Пор-Рояля». Однако такие грамматики не содержали особо новых идей.

Наконец, достаточно разработанную теорию происхождения и развития языка для тех лет предложил Э. Кондильяк. По его мнению, язык на ранних этапах развивался от бессознательных криков к сознательному их использованию. Получив контроль над звуками, человек смог контролировать и свои умственные операции.

Французский философ развил и концепцию о едином пути развития языков. Но при этом языки проходят этот путь с разной скоростью а, потому одни языки совершеннее других.

По выражению В. Томсена, весь XVIII век сравнительно-исторический метод «витал в воздухе». Но нужен был некоторый толчок, который стал бы отправной точкой для кристаллизации метода. Таким толчком стало в конце века открытие санскрита. После появления этого недостающего звена началось бурное развитие исследований в области сопоставления европейских языков с санскритом и между собой.

Всего через три десятилетия после открытия санскрита, в 1816 году, появляется первая вполне научная работа, заложившая основы сравнительно-исторического метода, то была книга Франца Боппа (1791 — 1 867). В 1818 году выходит в свет сочинение датчанина Расмуса Раска (1787–1832) «Исследование в области древнесеверного языка, или про-Псхождение исландского языка». Еще через год печатается первый том «Немецкой грамматики» Якоба Гримма (1785–1863). В 1820 году выходит книга русского ученого А.Х. Востокова — «Рассуждение о славянском языке». В этих сочинениях впервые формировался сравнительно-исторический метод.

Однако общетеоретический, философский подход к языку в первой половине XIX века достиг наивысшего развития в теории Гумбольдта. Вильгельм фон Гумбольдт (1767–1835) был одним из крупнейших лингвистов-теоретиков в мировой науке. О его роли в языкознании метко сказал В А Звегинцев: «Выдвинув оригинальную концепцию природы языка и подняв ряд фундаментальных проблем, которые и в настоящее время находятся в центре оживленных дискуссий, он, подобно непокоренной горной вершине, возвышается над теми высотами, которых удалось достичь другим исследователям».

«В. фон Гумбольдт был многосторонним человеком с разнообразными интересами, — пишет В.М. Алпатов. — Он был прусским государственным деятелем и дипломатом, занимал министерские посты, играл значительную роль на Венском конгрессе, определившем устройство Европы после разгрома Наполеона. Он основал Берлинский университет, ныне носящий имена его и его брата, знаменитого естествоиспытателя и путешественника А. фон Гумбольдта. Ему принадлежат труды по философии, эстетике и литературоведению, юридическим наукам и др. Его работы по лингвистике не столь уж велики по объему, однако в историю науки он вошел в первую очередь как языковед-теоретик…

…Лингвистикой В. фон Гумбольдт в основном занимался в последние полтора десятилетия жизни, после отхода от активной государственной и дипломатической деятельности Одной из первых по времени работ был его доклад „О сравнительном изучении языков применительно к различным эпохам их развития“, прочитанный в Берлинской академии наук в 1820 году. Несколько позже появилась другая его работа — „О возникновении грамматических форм и их влиянии на развитие идей“. В последние годы жизни ученый работал над трудом „О языке кави на острове Ява“, который он не успел завершить. Была написана его вводная часть „О различии строения человеческих языков и его влиянии на духовное развитие человечества“, опубликованная посмертно в 1848 году. Это безусловно главный лингвистический труд В. фон Гумбольдта, в котором наиболее полно изложена его теоретическая концепция».

Уже в самом начале XIX века Гумбольдт ставит задачу «превращения языкознания в систематическую науку».

«Лингвистическое учение Гумбольдта, — пишет И.Г. Зубова, — возникло в русле идей немецкой классической философии. Гумбольдт взял на вооружение и применил к анализу языка основное ее достижение — диалектический метод, в соответствии с которым мир рассматривается в развитии как противоречивое единство противоположностей, как целое, пронизанное всеобщими связями и взаимными переходами отдельных явлений и их сторон, как система, элементы которой определяются по месту, занимаемому в ее рамках. Гумбольдт развивает применительно к языку идеи деятельности, деятельного начала в человеке, активности человеческого сознания, в том числе деятельного характера созерцания и бессознательных процессов, творческой роли воображения, фантазии в процессе познания. Благодаря возросшему интересу к природе, к природному (естественному) началу в человеке, к чувственности в философии утверждаются идеи единства чувственного и рационального познания. Эти идеи, так же как идеи единства сознательного и бессознательного в познавательной, творческой деятельности, нашли выражение и в лингвистической концепции Гумбольдта. Характерный для романтиков повышенный интерес к каждой личности сочетается у Гумбольдта, так же как у других философов того времени, с признанием социальной природы человека, с идеей единства человеческой природы».

Ученый выделяет четыре ступени или стадии развития языков: «На низшей ступени грамматическое обозначение осуществляется при помощи оборотов речи, фраз и предложений… На второй ступени грамматическое обозначение осуществляется при помощи устойчивого порядка слов и при помощи слов с неустойчивым вещественным и формальным значением… На третьей ступени грамматическое обозначение осуществляется при помощи аналогов форм… На высшей ступени грамматическое обозначение осуществляется при помощи подлинных форм, флексий и чисто грамматических форм».

При этом он считает, что язык есть творение не отдельного человека, а принадлежит всегда целому народу. Позднейшие поколения получают его от поколений минувших.

По Гумбольдту, «язык тесно переплетен с духовным развитием человечества и сопутствует ему на каждой ступени его локального прогресса или регресса, отражая в себе каждую стадию культуры». Он считает, что по сравнению с другими видами культуры язык наименее связан с сознанием. Подобная идея о полностью бессознательном развитии языка и невозможности вмешательства в него позднее получила развитие у Соссюра и других лингвистов.

Без языка человек не может ни мыслить, ни развиваться: «Создание языка обусловлено внутренней потребностью человечества. Язык — не просто внешнее средство общения людей, поддержания общественных связей, но заложен в самой природе человека и необходим для развития его духовных сил и формирования мировоззрения, а этого человек только тогда сможет достичь, когда свое мышление поставит в связь с общественным мышлением».

По мнению ученого, дух народа и язык народа неразрывны: «Духовное своеобразие и строение языка народа пребывают в столь тесном слиянии друг с другом, что коль скоро существует одно, то из этого обязательно должно вытекать другое…»

Однако нельзя понять, как дух народа реализуется в языке, без правильного понятия, что же такое язык. Гумбольдт дает определение языка, ставшего знаменитым: «По своей действительной сущности язык есть нечто постоянное и вместе с тем в каждый данный момент преходящее. Даже его фиксация посредством письма представляет собой далеко не совершенное мумиеобразное состояние, которое предполагает воссоздание его в живой речи. Язык есть не продукт деятельности (ergon), а деятельность (energeia). Его истинное определение может быть поэтому только генетическим. Язык представляет собой постоянно возобновляющуюся работу духа, направленную на то, чтобы сделать артикулируемый звук пригодным для выражения мысли. В подлинном и действительном смысле под языком можно понимать только всю совокупность актов речевой деятельности. В беспорядочном хаосе слов и правил, который мы по привычке именуем языком, наличествуют лишь отдельные элементы, воспроизводимые — и притом неполно — речевой деятельностью; необходима все повторяющаяся деятельность, чтобы можно было познать сущность живой речи и составить верную картину живого языка, по разрозненным элементам нельзя познать то, что есть высшего и тончайшего в языке; это можно постичь и уловить только в связной речи… Расчленение языка на слова и правила — это лишь мертвый продукт научного анализа. Определение языка как деятельности духа совершенно правильно и адекватно уже потому, что бытие духа вообще может мыслиться только в деятельности и в качестве таковой».

По Гумбольдту, язык состоит из материи и формы. При этом именно форма составляет суть языка: «Постоянное и единообразное в этой деятельности духа, возвышающей членораздельный звук до выражения мысли, взятое во всей совокупности своих связей и систематичности, и составляет форму языка». Форма «представляет собой сугубо индивидуальный порыв, посредством которого тот или иной народ воплощает в языке свои мысли и чувства».

Гумбольдт особо выделял творческий характер языка: «В языке следует видеть не какой-то материал, который можно обозреть в его совокупности или передать часть за частью, а вечно порождающий себя организм, в котором законы порождения определенны, но объем и в известной мере также способ порождения остаются совершенно произвольными. Усвоение языка детьми — это не ознакомление со словами, не простая закладка их в памяти и не подражательное лепечущее повторение их, а рост языковой способности с годами и упражнением». В этих фразах уже есть многое из того, к чему в последние десятилетия пришла наука о языке, показателен сам термин «порождение».

«Безусловно, — пишет В.М. Алпатов, — многое у В. фон Гумбольдта устарело. Особенно это относится к его исследованию конкретного языкового материала, часто не вполне достоверного. Лишь историческое значение имеют его идеи стадиальности и попытки выделять более или менее развитые языки. Однако можно лишь удивляться тому, сколько идей, которые рассматривала лингвистика на протяжении последующих болеечем полутора столетий, в том или ином виде высказано у ученого первой половины XIX века. Безусловно, многие проблемы, впервые поднятые В. фон Гумбольдтом, крайне актуальны, а к решению некоторых из них наука лишь начинает подступаться».

ТЕОРИЯ ПРИБАВОЧНОЙ СТОИМОСТИ

Социалистические доктрины — неотъемлемый элемент мечтаний человечества о счастливой и справедливой жизни. Одна из самых первых рационально обоснованных социалистических идей была высказана уже в философии Платона. С тех пор их возникало и исчезало огромное множество. Наиболее известны имена великих «утопических социалистов»: Сен-Симона, Фурье и Оуэна.

Увы, их взгляды в чисто научном плане не были состоятельны. В основном то была критика существовавшего в то время общественного строя, а также ряд интересных догадок о направлении будущего общественного развития. Однако работы Сен-Симона, Фурье и Оуэна в целом не имели серьезных теоретических оснований. Исправить этот недостаток взялся немец Карл Маркс.

Карл Маркс (1818–1883) родился в семье преуспевающего трирского адвоката. Отец отправил его учиться в Боннский университет. Там Маркс увлекся философией и вскоре стал активным участником семинара, руководимого профессором Ругге. Когда тот за прогрессивные взгляды был лишен кафедры, Маркс в 1836 году перебрался в Берлин.

После блестящей защиты докторской диссертации Маркса должны были оставить в университете для подготовки к профессорской должности. Однако он не был согласен с консервативной политикой руководства университета и отказался от столь выгодного для него предложения. После этого двери германских университетов для него были закрыты.

В 1842 году Карл покинул Германию и уехал в Англию, где впервые встретился с Фридрихом Энгельсом (1820–1895), ставшим его другом, соратником и соавтором.

Свою общественную деятельность Маркс начал в качестве журналиста, отправившись в 1843 году вокруг Европы. Затем он переехал в Брюссель, где встретился с Энгельсом. Вместе они создали Союз коммунистов и в 1848 году написали «Манифест Коммунистической партии», где, в частности, писали о том, что борьба рабочих может закончиться революцией, в ходе которой капиталистическая система будет заменена коммунистической.

Подобные идеи вызвали шок в правительственных кругах континентальной Европы, после чего Маркса выслали из Брюсселя, а затем из Франции и Германии. В 1849 году Маркс вместе со своей семьей перебрался в Лондон. Именно там с помощью Энгельса он и начал развивать свои коммунистические идеи. Энгельс владел ткацкой фабрикой в Манчестере, которая и дала исходный материал для экономических трудов Маркса.

В 1867 году Маркс опубликовал первый том «Капитала», который стал основным трудом его жизни. После его смерти Энгельс опубликовал второй и третий тома. В этой книге Маркс пытался предвидеть будущее и писал о том, что сосредоточение управления бизнесом в руках очень немногих богатых капиталистов вызовет экономический хаос. И тогда начнется революция, и рабочие одержат верх.

В основе экономической теории Маркса лежат представления о стоимости и прибавочной стоимости, разработанные Давидом Рикардо (1772–1823), из всех предшественников-классиков ближе всего находившегося к его позиции. Маркс видоизменил их для обоснования неизбежности торжества социалистических идеалов.

Краеугольный камень экономической теории Маркса — учение о прибавочной стоимости. Подходя к исследованию прибавочной стоимости, Маркс указывает: «Природа не производит на одной стороне владельцев денег и товаров, на другой стороне владельцев одной только рабочей силы. Это отношение не является ни созданным самой природой, ни таким общественным отношением, которое было бы свойственно всем историческим периодам. Оно, очевидно, само есть результат предшествующего исторического развития, продукт многих экономических переворотов, продукт гибели целого ряда более древних формаций общественного производства».

Прибавочная стоимость есть разница между стоимостью, создаваемой трудом наемного рабочего, и стоимостью его рабочей силы. Капиталист получает ее тогда, когда созданные трудом наемных рабочих товары будут реализованы и сумма денег, полученная от их продажи, превысит его затраты на производство этих товаров. Таким образом, капиталист получит свой доход после завершения кругооборота капитала. Доход капиталиста выступает как разница между продажной ценой товара и суммой капитала, затраченного на его производство, как порождение капитала.

Прибавочная стоимость, как показал Маркс, не может возникнуть из товарного обращения, поскольку оно знает лишь обмен эквивалентов. Она не может возникнуть и из надбавки к цене товаров, так как взаимные потери и выигрыши покупателей и продавцов уравновесились бы, а на деле обогащается весь класс капиталистов. Таким образом, возрастание стоимости денег, которые должны превратиться в капитал, предполагает, что владелец денег должен найти на рынке «такой товар, сама потребительная стоимость которого обладала бы оригинальным свойством быть источником стоимости, — такой товар, фактическое потребление которого было бы процессом овеществления труда, а следовательно, процессом созидания стоимости. И владелец денег находит на рынке такой специфический товар; это — способность к труду, или рабочая сила». Капитализм есть высшая ступень развития товарного производства, на которой товаром становится не только продукт труда, но и рабочая сила человека.

Предшествовавшие экономисты отождествляли прибавочную стоимость с теми или иными ее конкретными формами — прибылью, рентой, процентом. Маркс исследовал вначале процесс производства прибавочной стоимости независимо от тех форм, в которых она проявляется на поверхности жизни буржуазного общества. Затем, рассмотрев движение капитала, он показал, как прибавочная стоимость выступает в форме прибыли, процента и ренты.

Являясь источником стоимости, труд сам не имеет стоимости. «Как деятельность, создающая стоимость, он также не может иметь особой стоимости, как тяжесть не может иметь особого веса, теплота — особой температуры, электричество — особой силы тока». Рабочий продает капиталисту не труд, а рабочую силу. Когда рабочая сила становится товаром — а это происходит лишь при определенных исторических условиях, — ее стоимость определяется трудом, общественно необходимым для ее производства и воспроизводства.

«Иными словами, — пишет В.А. Леонтьев в книге „К изучению 'Капитала' К. Маркса“, — капиталист обогащается не вследствие нарушения закона стоимости, а, наоборот, в результате действия этого закона, его дальнейшего развития и распространения, его наиболее полного господства, когда и рабочая сила человека становится товаром». Покупателю этого специфического товара «принадлежит и функционирование рабочей силы, границы которого отнюдь не совпадают с границами количества труда, необходимого для воспроизводства ее собственной цены». Именно этим обстоятельством обусловлено производство прибавочной стоимости. «Прибавочный труд рабочей силы есть даровой труд для капитала и потому образует для капиталиста прибавочную стоимость, стоимость, за которую он не уплачивает эквивалента».

«Только та форма, — пишет Маркс, — в которой этот прибавочный труд выжимается из непосредственного производителя, из рабочего, отличает экономические формации общества, например, общество, основанное на рабстве, от общества наемного труда».

При капитализме жажда прибавочного труда совершенно безгранична. Капитал обнаруживает «поистине волчью жадность к прибавочному труду».

«Выяснив сущность капитала и тайну его самовозрастания, Маркс переходит к рассмотрению производства абсолютной прибавочной стоимости, — отмечает Л.А. Леонтьев. — В этой связи он дает чрезвычайно важный анализ процесса труда в условиях капитализма, когда процесс труда является единством процесса труда и процесса увеличения стоимости, или производства прибавочной стоимости.

Маркс показывает, что стоимость товара — рабочая сила и стоимость, которую получает капиталист путем производительного потребления этого товара, представляют собой две разные величины…

…Маркс впервые раскрыл различие между постоянным и переменным капиталом: мертвый труд, овеществленный в постоянном капитале, противопоставляется живому труду, способному не только сохранять и переносить старую стоимость на продукт, но и создавать новую стоимость.

Деление капитала на постоянный и переменный имеет важнейшее значение в теории прибавочной стоимости Маркса. Благодаря этому отделяется та часть капитала, которой капитал обязан своим увеличением, от другой части, которая в своей величине не изменяется. Это деление капитала является естественным выводом и следствием анализа двойственного характера труда, данного Марксом…

…Капиталиста интересует не потребительная стоимость производимых на его предприятии товаров, а их стоимость, поскольку в ней содержится прибавочная стоимость, произведенная неоплаченным трудом рабочих. Его цель — не удовлетворение потребностей общества, а получение прибавочной стоимости, увеличение стоимости капитала».

К.Маркс: «Как единство процесса труда и процесса образования стоимости, производственный процесс есть процесс производства товаров; как единство процесса труда и процесса возрастания стоимости, он есть капиталистический процесс производства, капиталистическая форма товарного производства».

Производство прибавочной стоимости — такова цель всего процесса. Рабочий превращается в «персонифицированное рабочее время», подобно тому, как капиталист выступает как персонифицированный капитал.

Определив понятие относительной прибавочной стоимости, Маркс вслед за тем исследует три главные исторические ступени повышения производительности труда капитализмом: простую капиталистическую кооперацию, разделение труда и мануфактуру, машины и крупную промышленность.

Подобно всем другим средствам развития производительности труда, машины при капитализме призваны удешевлять товары и тем самым сокращать необходимую часть рабочего дня, чтобы могло расти прибавочное рабочее время: они представляют собой не что иное, как «средство производства прибавочной стоимости».

«Возникает вопрос: как в свете всего сказанного относиться к Марксу как к теоретику-экономисту? — пишет в своей книге В.Н. Костюк. — Является ли он великим ученым или „популистом“, стремящимся создать себе популярность раздачей невыполнимых обещаний всем тем, кто недоволен своим общественным положением?

При ответе на эти вопросы лучше всего… исходить из структуры самой теории Маркса, как она изложена в „Капитале“ и в других его произведениях. И тогда обнаружится, что его теория, весьма интересная в отдельных аспектах (переменный капитал, прибавочная стоимость, схемы воспроизводства и т. д.), в целом логически несовместима (т. е. все сделанные им утверждения не могут оказаться вместе истинными). Можно, как мы показали, принять либо его теорию прибавочной стоимости, либо его теорию экономического развития под воздействием НТП. Каждая из них имеет свои достоинства. Однако нельзя принять одновременно обе эти теории, поскольку их посылки несовместимы».

ЛИНГВИСТИЧЕСКАЯ КОНЦЕПЦИЯ СОССЮРА

С семидесятых годов XIX века развитие языкознания вступает в новый этап. Период глобальных философских систем и стремлений к широким обобщениям окончательно уходит в прошлое. Преобладающей доктриной в науке становится позитивизм.

В позитивизме не оставалось места ненаблюдаемым явлениям и не подтвержденным фактами концепциям. Широкие обобщения, свойственные Гумбольдту и его современникам, уже не находили отзвука у следующего поколения ученых.

Ведущим лингвистическим направлением тех лет становится школа немецких ученых, получившая название младограмматиков.

Их первоначальным центром был Лейпцигский университет. Оттуда ученые младограмматики разъехались по разным немецким университетам, создавая там собственные школы. Постепенно их идеи стали преобладающими не только в германской, но и в мировой науке о языке.

Впервые теоретические взгляды младограмматиков были четко сформулированы в книге Г. Остхофа и К. Бругмана «Морфологические исследования в области индоевропейских языков», вышедшей в Лейпциге в 1878 году.

Авторы писали: «Реконструкция индоевропейского языка-основы была до сих пор главной целью и средоточием усилий всего сравнительного языкознания. Следствием этого явился тот факт, что во всех исследованиях внимание было постоянно направлено в сторону праязыка. Внутри отдельных языков, развитие которых известно нам по письменным памятникам… интересовались почти исключительно древнейшими, наиболее близкими к праязыку периодами… Более поздние периоды развития языков рассматривались с известным пренебрежением, как эпохи упадка, разрушения, старения, а их данные по возможности не принимались во внимание… Сравнительное языкознание получало общие представления о жизни языков, их развитии и преобразовании главным образом с помощью индоевропейских праформ. Но разве достоверность, научная вероятность тех индоевропейских праформ, являющихся, конечно, чисто гипотетическими образованиями, зависит прежде всего не от того, согласуются ли они вообще с правильным представлением о дальнейшем развитии форм языка и были ли соблюдены при их реконструкции верные методические принципы?.. Мы должны намечать общую картину характера развития языковых форм не на материале гипотетических праязыковых образований и не на материале древнейших дошедших до нас индийских, иранских, греческих и т. д. форм, предыстория которых всегда выясняется только с помощью гипотез и реконструкций. Согласно принципу, по которому следует исходить из известного и от него уже переходить к неизвестному, эту задачу надо разрешать на материале таких фактов развития языков, история которых может быть прослежена с помощью памятников на большом отрезке времени и исходный пункт которых нам непосредственно известен».

К началу двадцатого столетия росло недовольство младограмматизмом. Впрочем, надо говорить о недовольстве всей сравнительно-исторической парадигмой. Младограмматикам удалось в основном решить главную задачу языкознания XIX века — построение сравнительной фонетики и сравнительной грамматики индоевропейских языков. Вместе с тем становилось понятно, что задачи лингвистики не исчерпываются реконструкцией праязыков и построением сравнительных фонетик и грамматик.

В XIX веке был накоплен значительный фактический материал. Но для описания большинства языков не существовало разработанного научного метода.

В конце XIX века к таким неутешительным выводам приходят У.Д. Уитни и Ф. Боас в США, Г. Суит в Англии, Н.В. Крушевский и И.А. Бодуэн де Куртенэ в России. Однако решающий вклад внесла книга Соссюра «Курс общей лингвистики», давшая начало новому этапу в развитии мировой науки о языке.

Фердинанд де Соссюр (1857–1913) родился и вырос в Женеве, в семье, давшей миру нескольких видных ученых. В 1876–1878 годах Фердинанд учится в Лейпцигском университете. Затем, в 1878–1880 годах, он стажируется в Берлине.

В 1880 году, защитив диссертацию, Соссюр переезжает в Париж. Здесь он работает вместе со своим учеником А. Мейе. В 1891 году ученый возвращается в Женеву, где до конца жизни был профессором университета. Почти вся деятельность Соссюр в университете была связана с чтением санскрита и курсов по индоевропеистике. Только в конце жизни, в 1907–1911 годах, ученый прочел три курса по общему языкознанию.

В 1913 году Соссюр умер после тяжелой болезни, забытый современниками.

Единственной книгой Соссюра, изданной при жизни, был «Мемуар о первоначальной системе гласных в индоевропейских языках». Она была закончена, когда автору исполнился лишь 21 год.

Академик А.А. Зализняк так пишет о «Мемуаре»: «Книга исключительной судьбы. Написанная двадцатилетним юношей, она столь сильно опередила свое время, что оказалась в значительной мере отвергнутой современниками и лишь 50 лет спустя как бы обрела вторую жизнь… Эта книга справедливо рассматривается как образец и даже своего рода символ научного предвидения в лингвистике, предвидения, основанного не на догадке, а представляющего собой естественный продукт систематического анализа совокупности имеющихся фактов». В этом сочинении он делает принципиальный вывод, который, как отмечает Зализняк, «состоял в том, что за видимым беспорядочным разнообразием индоевропейских корней и их вариантов скрывается вполне строгая и единообразная структура корня, а выбор вариантов одного и того же корня подчинен единым, сравнительно простым правилам».

Ученый выдвинул гипотезу о существовании в праиндоевропейском языке так называемых ларингалов — особого типа сонантов, не сохранившихся в известных по текстам языках, вводившихся исключительно из соображений системности.

Уже в этой ранней работе появляется идея системности языка, впоследствии ставшая для ученого основополагающей. Посмертная судьба Соссюра оказалась более счастливой. На основе сделанных студентами записей его лекций Ш. Балли и А. Сеше подготовили «Курс общей лингвистики», изданный впервые в 1916 году. Книга не была лишь воспроизведением студенческих конспектов. Балли и Сеше не только перекомпоновали материал, но и дописали значительные фрагменты. Их вклад в знаменитую книгу был весьма значительным.

«Курс общей лингвистики» очень скоро обрел популярность. В наши дни некоторые историки науки даже сравнивают значение этой книги со значением теории Коперника.

«Ф. де Соссюр, крайне неудовлетворенный состоянием современной ему лингвистической теории, строил свой курс на принципиально новых основах, — пишет В.М. Алпатов. — Курс открывается определением объекта науки о языке. В связи с этим вводятся три важнейших для концепции книги понятия: речевая деятельность, язык и речь.

Понятие речевой деятельности исходно, и ему не дается четкого определения. К ней относятся любые явления, традиционно рассматриваемые лингвистикой: акустические, понятийные, индивидуальные, социальные и т. д. Эти явления многообразны и неоднородны. Цель лингвиста — выделить из них главные…

…Языку противопоставляется речь. По сути это все, что имеется в речевой деятельности, минус язык. Противопоставленность речи языку проводится по ряду параметров. Прежде всего язык социален, это общее достояние всех говорящих на нем, тогда как речь индивидуальна. Далее, речь связана с физическими параметрами, вся акустическая сторона речевой деятельности относится к речи; язык же независим от способов физической реализации: устная, письменная и пр. речь отражает один и тот же язык. Психическая часть речевого акта также включается Ф. де Соссюром в речь; здесь, впрочем, как мы увидим дальше, такую точку зрения ему не удается последовательно провести. Язык включает в себя только существенное, а все случайное и побочное относится к речи. И, наконец, подчеркивается: „Язык не деятельность говорящего. Язык — это готовый продукт, пассивно регистрируемый говорящим“. Нетрудно видеть, что такая точка зрения прямо противоположна концепции В. фон Гумбольдта. Согласно Ф. де Соссюру, язык — именно ergon, а никак не energeia».

Соссюра считает, что язык — «социальный аспект речевой деятельности, внешний по отношению к индивиду» и что «язык, отличный от речи, составляет предмет, доступный самостоятельному изучению». Так формируется подход к языку как явлению, внешнему по отношению к исследователю и изучаемому с позиции извне.

Вот из чего согласно Соссюру складывается язык: «Язык есть система знаков, выражающих понятия, а следовательно, его можно сравнить с письменностью, с азбукой для глухонемых, с символическими обрядами, с формами учтивости, с военными сигналами и т. д. и т. п. Он только наиважнейшая из этих систем».

Отсюда лингвистика языка рассматривается Соссюром как главная часть еще не созданной науки, изучающей знаки вообще. Такой науке ученый дал название семиология. Если другие науки связаны с лингвистикой лишь косвенно, через речь, то семиология должна описывать основные свойства знаков, в том числе и языковых.

Несколько раньше подобные мысли высказывал американский ученый Ч.С. Пирс (1839–1914). Но Соссюр ничего об этом не знал. Пирс предложил для новой науки другое название — «семиотика». Оно в итоге и прижилось в наукознании.

По Соссюру, знак двусторонняя единица: «Языковой знак связывает не вещь и ее название, а понятие и акустический образ. Этот последний является… психическим отпечатком звучания, представлением, получаемым нами о нем посредством наших органов чувств».

Среди свойств знака он выделяет два основных: произвольность и линейность. Никакой естественной связи не имеют означаемое с означаемым. Звукоподражания и подобная им лексика, считает Соссюр, если и имеет иногда какую-то связь такого рода, «занимают в языке второстепенное место».

Другой важный вопрос — о противоречии между неизменностью и изменчивостью знака. Ведь знак навязывается по отношению к пользующемуся им коллективу. Соссюр считает, что «языковой коллектив не имеет власти ни над одним словом; общество принимает язык таким, какой он есть». Отсюда следует вывод о невозможности какой-либо сознательной языковой политики. Соссюр прямо пишет про «невозможность революции в языке».

Как пишет В.М. Алпатов, «выход между неизменчивостью и изменчивостью Ф. де Соссюр находит во введении диалектического принципа антиномии. Языковой знак может использоваться, только оставаясь неизменным, и в то же время он не может не меняться. При изменении знака происходит сдвиг отношения между означаемым и означающим…

…Ф. де Соссюр выделил две оси: ось одновременности, где располагаются сосуществующие во времени явления и где исключено вмешательство времени, и ось последовательности, где каждое отдельное явление располагается в историческом развитии со всеми изменениями. Важность выделения осей он считал основополагающей для всех наук, пользующихся понятием значимости. По его мнению, в связи с двумя осями необходимо различать две лингвистики, которые никак не должны совмещаться друг с другом. Эти две лингвистики названы синхронической (связана с осью одновременности) и диахронической (связана с осью последовательности), а состояние языка и фаза эволюции — соответственно синхронией и диахронией…

…Пожалуй, главным результатом появления „Курса общей лингвистики“ стало выделение круга первоочередных задач науки о языке. Разграничения языка и речи, синхронии и диахронии дали возможность выделить сравнительно узкую дисциплину с определенными границами — внутреннюю синхронную лингвистику. Ее проблематика ограничивалась одним из трех кардинальных вопросов языкознания, а именно вопросом „Как устроен язык?“. Проблемами „Как развивается язык?“ и „Как функционирует язык?“, конечно, занимались тоже, но они отошли на второй план. Ограничение тематики давало возможность в этих узких рамках поднять теорию и методологию лингвистики на более высокий уровень».

В произошедшем резком изменении характера науки о языке, понятно, сыграл роль не только Фердинанд де Соссюр. Однако именно у него в «Курсе общей лингвистики» новые подходы сформулированы наиболее четко. Именно поэтому влияние труда Соссюра на лингвистику оказалось наиболее значительным.

КЕЙНСИАНСТВО

В 1936 году появилась книга Джона Кейнса «Общая теория занятости, процента и денег», ставшая сразу знаменитой. Эта слава связана, прежде всего, с новым взглядом на роль государства в экономике, сформулированным в работе. До этого теоретические воззрения на развитие экономики полностью базировались на открытиях великого Адама Смита. Согласно его учению, экономика обладала абсолютной способностью к саморегулированию. Главная роль же государства сводилась к тому, чтобы не мешать свободному рыночному развитию. Кризисные двадцатые—тридцатые годы двадцатого столетия внесли коррективы в эти теоретические построения. В этот тяжелый период Кейнс и предложил в своем фундаментальном труде рецепт для лечения серьезных общественных недугов.

Отцом Джона Мейнарда Кейнса (1883–1946) был профессор экономики, что, возможно, и предопределило его жизненный путь. Уже в частной школе Итона Джон проявил незаурядные математические способности. В 1902 году он поступает учиться в Королевский колледж. Следующее место учебы — университет Кембриджа, где он мог слушать курс лекций Альфреда Маршалла, которого всегда почитал.

В 1909 году Джон пришел на работу в Королевский колледж Кембриджа. Здесь он, кроме всего прочего, сумел обеспечить колледжу существенный финансовый доход.

В период с 1912 по 1945 год Кейнс редактирует «Экономический журнал», в 1915–1919 годах работает в британском казначействе. Интересно, что в круг его обязанностей входили и экономические контакты с Советской Россией. У нас в стране Кейнс побывал в 1925 году, выступив с рядом докладов в Москве. В 1929 году он возвращается на государственную службу. В годы Второй мировой войны Кейнс занимает высокий пост в казначействе.

Кейнс удачно занимался и своими личными финансовыми делами. Играя на бирже, он нажил два миллиона долларов. Б. Рассел сказал о нем так: «Интеллект Кейнса отличался такой ясностью и остротой, каких я более не встречал… Мне иногда казалось, что столь большая острота ума не может совмещаться с глубиной. Но я думаю, что эти moi ощущения были неверны».

Очевидным признанием его научной репутации стало назначение одним из директоров национального банка Англии. Однако вошел историю Кейнс в первую очередь как глава новой научной школы.

Сегодня многие положения, сформулированные Кейнсом, считаются общепризнанными. Для своего же времени они были революционным открытием в экономической науке.

В то время когда писалась книга Кейнса, уровень безработицы западном мире превышал десять процентов. Многие экономисты, считая что безработица вызвана недостаточным потреблением и низким уровнем спроса, предлагали использовать общественные работы в качестве спасительного средства. Затраченные государством деньги, кроме прямой го воздействия на уровень занятости, должны были послужить к создании других рабочих мест, связанных с производством товаров и услуг для тех кто уже получил работу. Так постепенно экономика выйдет из застоя.

Поскольку подобные предложения не получили поддержки у правительств, то свою книгу Кейнс задумал как поддержку этого тезиса. В «Общер теории» Кейнс показал, что в рыночной экономике нет чудесного механизма, автоматически приводящего к полной занятости. Экономика может еще долго оставаться в состоянии депрессии. Однако государство безусловно, должно увеличить расходы, чтобы увеличить производство занятость, проводить активную инвестиционную политику.

В.Н. Костюк отмечает в своей книге: «Великие классики прошлого не различали микро- и макроэкономические аспекты экономики. Однако, поскольку условия процветания отдельной фирмы не тождественны эффективности экономики в целом, то макроэкономический подход не может не отличаться от микроэкономического. Поэтому дальнейшее развитие экономической науки потребовало построения двух разных уровней экономического анализа…

…Кейнс ввел в теоретический обиход экономической науки макроэкономические модели, основанные на взаимосвязи небольшого числа наблюдаемых переменных, а общее равновесие экономики — к равновесию товарного рынка, денежного рынка, рынка облигаций и рынка труда. Причиной возможной нестабильности экономики он считал колебания в уровне дохода, вызванные неожиданными изменениями объема инвестиций. Последние, если они достигают опасной границы, не могут быть скорректированы только силами рыночной саморегуляции и требуют дополнительного (но не заменяющего рынка) вмешательства государства. Тем самым Кейнс предложил новую парадигму экономического анализа, усовершенствовав не только методы, но и язык экономической теории.

Возможно, что самой большой заслугой Кейнса стало создание нового языка экономической теории. Этот язык имеет дело с небольшим числом мало изменяющихся в короткий период времени агрегированных величин, что позволило свести всю экономику к функционированию четырех взаимосвязанных рынков: рынка товаров и услуг, рынка труда, денежного рынка и рынка ценных бумаг. С учетом достижений маржиналистов возник двухэтажный мир микро- и макроэкономической теории, в котором математическое моделирование стало возможным не только на микроуровне (Вальрас), но также и на макроуровне. Первая такая модель появилась уже в 1937 году.

Кейнс отдает одну из ключевых ролей предположению в экономическом поведении. „Когда ждут повышения цен и хозяйственная жизнь сообразуется с этим, то этого вполне достаточно, чтобы вызвать на некоторое время повышение цен, а когда ожидание оправдывается, повышение еще более усиливается. То же наблюдается и при ожидании падения цен. Относительно слабый предварительный толчок в состоянии вызвать значительное понижение“».

Кейнс вводит связанное с ожиданиями понятие предельной эффективности капитала тес — отношение ожидаемого дохода от капитального имущества к цене предложения этого имущества. Показатель тес уменьшается — при увеличении предложения капитала, а возрастает при новых возможностях его применения, когда ожидается хорошая экономическая конъюнктура.

Классическая теория предполагает, что безработица возможна, в том случае, если экономика отклоняется от состояния совершенной конкуренции. Кейнс же допускает иную ситуацию, например, равновесие с высоким уровнем безработицы. Это становится возможным, поскольку теперь различным допустимым состояниям равновесия соответствуют различные уровни дохода. Значит, по Кейнсу, может возникнуть равновесие, отличное от желаемого.

Отвергая классический постулат о том, что в основе роста капитала лежит бережливость, Кейнс устанавливает связь между ростом дохода и величиной инвестиций, называемую мультипликатором инвестиций. В основу этого понятия положена следующая идея: чем большую часть созданного новыми инвестициями дохода люди расходуют, тем большим будет дальнейший прирост дохода, создаваемый новыми инвестициями.

«…Кейнс отвергает доктрину laissez faire и считает, что государство должно воздействовать на совокупный спрос, если его объем недостаточен, — отмечает В.Н. Костюк. — В качестве инструментов регулирования величины спроса он рассматривает кредитно-денежную и бюджетную политики. Кредитно-денежная политика воздействует на увеличение спроса через понижение процентной ставки, облегчая этим инвестиции. Это требует роста денежной массы. Вызовет ли это инфляцию? Нет, говорит Кейнс, если величина спроса недостаточна (и, следовательно, если велика безработица). Инфляция и высокий уровень безработицы несовместимы между собой…

…В качестве действенного средства, повышающего эффективный спрос при сильной безработице, Кейнс предлагал использовать финансируемые государством общественные работы, которые должны компенсировать снижение занятости в частном секторе. Стимулировать, однако, нужно только те регионы, какие на деле обладают дополнительными ресурсами; в противном случае стимулирование лишь усилит инфляцию. В период подъема экономическая политика должна быть противоположна той, какая применяется при спаде.

Кейнс считал политику laissez faire (пусть все идет, как идет) верной для XIX века, но не для XX века, однако он отвергал экономическую политику лейбористов профсоюзов, поскольку стоял за экономический индивидуализм и свободу. Основная цель экономической политики по Кейнсу — уменьшить избыточный груз, налагаемый переменчивостью и неопределенностью будущего. Уменьшение неопределенности в деньгах выражается через поддержку стабильности внутренних цен. Уменьшение неопределенности в занятости происходит через государственное вмешательство в инвестиции и устойчивость нормы процента».

В преодолении кризиса роль денежной политики важна, но усилий только денежной политики явно недостаточно. «При нынешней организации рынков и при тех влияниях, которые на них господствуют, рыночная оценка предельной эффективности капитала может подвергаться таким колоссальным колебаниям, что их нельзя в достаточной мере компенсировать соответствующими изменениями нормы процента… На этом основании я делаю вывод, что регулирование объема текущих инвестиций оставлять в частных руках небезопасно».

Кейнс считал в период кризиса наиболее важной расширительную бюджетную политику государства. Оно должно взять на себя прямую организацию инвестиций. Однако при этом «если мы совершенно исключим из нашей системы способность к самоизлечению, то нам останется лишь надеяться на случайные улучшения в состоянии здоровья экономики, но никогда не ждать полного выздоровления». Грамотная экономическая политика государства хотя и не в состоянии устранить чередования бумов и спадов, но может ослабить спад или усилить подъем.

Говоря о роли государства, Кейнс, тем не менее, был решительным противником государственной собственности. «Не собственность на орудия производства существенна для государства. Если бы государство могло определять общий объем ресурсов, предназначенных для увеличения орудий производства и основных ставок вознаграждения владельцев этих ресурсов, этим было бы достигнуто все, что необходимо».

«В истории экономической науки Кейнс по праву стоит в первом ряду ученых, оказавших наибольшее влияние на развитие современного им общества, — пишут в своей книге Р. Белоусов и Д. Докучаев. — Кейнс стал знаменит и почитаем еще при жизни, а ожесточенные споры по поводу его взглядов не утихают до сих пор.

Кейнсианство стало заметной научной школой, актуальной и поныне. Идеи Кейнса получили широкое распространение и активно использовались на практике, в частности президентами США Франклином Рузвельтом и Джоном Кеннеди. Даже не во всем подтвердившись, они помогли многим развитым странам создать во второй половине XX века новые механизмы регулирования рыночной экономики, предотвращающие кризисы, подобные страшной депрессии 1930-х годов».

МЕТОД «ЗАТРАТЫ-ВЫПУСК»

В методе «затраты-выпуск» наиболее полно раскрылся исследовательский талант гениального экономиста Василия Васильевича Леонтьева.

Основу подхода Леонтьева к планированию заложили еще французские «физиократы» в XVIII веке во главе с Франсуа Кесне. Они исходили из неверного тезиса, будто только сельскохозяйственная деятельность имеет экономический смысл, а все остальные производства лишь расходуют ресурсы. Но при этом сумели предложить верный методологический подход к проблеме экономического планирования. Физиократы использовали «технологические таблицы», позволяющие учитывать все, что производит и потребляет всякая экономическая система. Подобный подход в девятнадцатом столетии развил в математической форме французский экономист Леон Вальрас.

Признавая систему взаимозависимостей Вальраса, Леонтьев впервые применил на практике анализ общего равновесия в качестве инструментария при формировании экономической политики.

Василий Васильевич Леонтьев (1905–1999) родился в Петербурге. Отец будущего нобелевского лауреата был профессором экономики труда Петербургского университета. В четырнадцать лет Василий окончил гимназию и в 1921 году поступил в Петроградский университет, где изучал философию, социологию, а затем и экономику.

Считаясь вундеркиндом и несмотря на главенство «единственно верного» учения, диамата, он позволял себе называться «меньшевиком». В 1925 году Леонтьев уже окончил четырехгодичный курс университета и получил диплом экономиста. Обучение тогда велось ни шатко ни валко: но юноша прочел в библиотеке университета много книг по экономике на русском, английском, французском и немецком языках.

По окончании университета он устроился преподавать экономическую географию, одновременно подал заявление на визу в Германию, чтобы продолжить образование в Берлинском университете. Разрешение поступило через шесть месяцев. В Германии он продолжил учиться и стал работать над докторской диссертацией в Берлинском университете под руководством известного немецкого экономиста и социолога Зомбарта и крупного статистика-теоретика, выходца из России, Вл. Борткевича. Темой диссертации Леонтьева было исследование народного хозяйства как непрерывного процесса. Не оставляя учебу, он начал свою профессиональную карьеру в качестве экономиста-исследователя Института мирового хозяйства при Кильском университете, занимаясь изучением производной статистического спроса и кривой предложения. В 1928 году Леонтьев получил степень доктора наук.

Глубина экономического мышления сочеталась у Леонтьева с сильной математической подготовкой. В конце двадцатых — начале тридцатых годов он провел ряд оригинальных исследований по изучению эластичности спроса и предложения, статистическому измерению промышленной концентрации, использованию кривых безразличия для объяснения некоторых закономерностей международной торговли. Одна из первых научных статей Леонтьева была посвящена анализу баланса народного хозяйства СССР за 1923–1924 годы, который представлял собой первую в экономической практике тех лет попытку представить в цифрах производство и распределение общественного продукта с целью получения общей картины кругооборота хозяйственной жизни. Баланс явился прообразом разработанного впоследствии ученым метода «затраты-выпуск». Статья была написана на немецком языке и опубликована в октябре 1925 года. Перевод на русский язык под названием «Баланс народного хозяйства СССР. Методологический разбор работы ЦСУ» появился два месяца спустя в декабрьском номере журнала «Плановое хозяйство».

В 1929 году Леонтьев отправился в Азию в качестве экономического советника министерства железных дорог в правительстве Китая. После возвращения в Германию продолжал работать в Институте мирового хозяйства.

В 1931 году директор Национального бюро экономических исследований (США), известный американский экономист-статистик, специалист в области анализа экономических циклов и конъюнктуры У. Митчелл пригласил Леонтьева на работу в бюро, и тот переехал в США.

С 1932 года Леонтьев начал преподавать политическую экономию в Гарвардском университете. В том же году Леонтьев организовал в Гарварде научный коллектив под названием «Гарвардский проект экономических исследований», бессменно возглавлял его до закрытия в 1973 году. Этот Коллектив стал центром исследований экономических процессов по методу «затраты-выпуск». Одновременно все эти годы Леонтьев оставался профессором Гарвардского университета, а с 1953 по 1975 год был также заведующим кафедрой политической экономии им. Генри Ли.

Предложенная Леонтьевым алгебраическая теория анализа «затраты-выпуск» сводится к системе линейных уравнений, в которых параметрами являются коэффициенты затрат на производство продукции. Реалистическая гипотеза и относительная простота измерений определили большие аналитические и прогностические возможности метода «затраты-выпуск». Леонтьев показал, что коэффициенты, выражающие отношения между секторами экономики (коэффициенты текущих материальных затрат), могут быть оценены статистически, что они достаточно устойчивы и что их можно прогнозировать. Более того, им было показано существование наиболее важных коэффициентов, изменения которых необходимо отслеживать в первую очередь.

В конце восьмидесятых годов на встрече в редакции газеты «Правда» ученого попросили рассказать, как родился метод «затраты-выпуск», что он собой представляет.

Вот что сказал Леонтьев: «Чтобы прогнозировать развитие экономики, нужен системный подход. Экономика каждой страны — это большая система, в которой много разных отраслей, и каждая из них что-то производит — промышленную продукцию, услуги и так далее, которые передаются другим отраслям. Каждое звено, компонент системы может существовать только потому, что он получает что-то от других…

…Допустим, надо рассчитать эффективность производства хлеба. Мы делаем расчет: сколько на одну тонну расходовать муки, дрожжей, молока и так далее по всем компонентам согласно рецепту. Затем определяем трудовые затраты в нормо-часах. Все эти расчеты делаются в натуральных (физических) показателях. Очень важно не считать сразу в деньгах. На основе расчетов расхода материальных ресурсов и трудовых затрат на конкретное изделие или объект в натуре анализируются и сравниваются предполагаемые результаты в денежном выражении.

Аналогичный подход применяется и при расчете любых видов продукции — стали, автомобилей, обуви. Во всех подготовительных расчетах учитывается расход компонентов, необходимых для производства данного вида продукции. И лишь затем с учетом цен и уровня зарплаты выбирается наиболее эффективный вариант выпуска конечной продукции. С учетом такого анализа, например, текстильная промышленность в свое время перекочевала из развитых стран в развивающиеся, так как ей требовалось много рабочих рук. А сейчас благодаря новой технике она возвращается назад».

В семидесятые годы в одной из работ Василий Васильевич писал: «Чтобы понять смысл преобразования, ведущего к построению так называемой редуцированной матрицы „затраты-выпуск“ для народного хозяйства, попросим читателя мысленно представить себе ситуацию, в которой все предприятия страны разбиваются на две группы: I группа — „контрактные“ отрасли, II группа — „субконтрактные“ отрасли.

Всякая контрактная отрасль, то есть отрасль из I группы, покрывает свои прямые потребности в продукции других отраслей I группы путем прямых закупок, и каждая отрасль II группы совершает прямые закупки у других отраслей II группы. Однако продукция отраслей II группы, поставленная отраслям I группы, производится на основе специальных контрактов. По условиям такого контракта отрасль I группы, размещая заказ в некоторой отрасли II группы, обеспечивает последнюю продукцией всех отраслей I группы (включая свою собственную) в количестве, необходимомдля выполнения данного заказа, для чего данная отрасль закупает все эти товары (у производящих их отраслей I группы) за свой счет. Взаимоотношения между контрактной (I группы) и субконтрактной (II группы) отраслями, таким образом, будут аналогичны взаимоотношениям между потребителем, самостоятельно приобретающим материю, и портным, шьющим из этой материи костюм.

Каждая отрасль I группы, определяя объемы закупок товаров и услуг, производимых отраслями этой же группы, должна будет добавить к прямым потребностям своей собственной отрасли товары и услуги, которые согласно контракту будут обработаны для нее различными отраслями II группы. Подсчет этих суммарных закупок дает итоговый вектор затрат для любой из отраслей I группы…

…Эти две таблицы отличаются друг от друга точно так же, как сокращенное расписание движения поездов, указывающее только некоторые крупные станции, отличается от полного подробного расписания, где выделены и все промежуточные остановки. Деление всех секторов отраслей на группы I и II должно конечно же зависеть от специфики задачи, для которой служит агрегирование.

Используя редуцированную матрицу в процессе планирования, мы можем быть уверены, что если отраженные в ней потоки затрат и выпуска в отраслях I группы сбалансированы правильно, то и баланс между выпуском и затратами всех отраслей II группы, не вошедших в матрицу, также будет обеспечен».

«Расчеты по методу „затраты-выпуск“ (в советской науке их стали называть экономико-математическими моделями межотраслевого баланса) требуют современной вычислительной техники, без которой они реально не вторгаются в мир экономического анализа, прогнозирования и планирования, — пишут в предисловии к книге Леонтьева академик С.С.Шаталин и доктор экономических наук Д.В.Воловой. — Начиная с 1933–1934 годов Леонтьев сосредоточивается на преодолении этих трудностей путем сбора коэффициентов для 44-отраслевой таблицы „затраты-выпуск“ (около 2000 коэффициентов) и составляет план работы. Поскольку решение системы, состоящей из 44 линейных уравнений, оказалось далеко за пределами возможного, для расчетных целей 44 отрасли были объединены в 10. Для проверки стабильности коэффициентов текущих материальных затрат в США были составлены отчетные межотраслевые балансы за 1919–1929 годы».

Результат этого исследования («Количественный анализ соотношений „затраты-выпуск“ в экономической системе США») был опубликован в 1936 году. Центральное место в нем занимала таблица коэффициентов, составленная для экономики США в 1919 году, размерностью 41x41. В следующем году В.В. Леонтьев опубликовал работу «Внутренние взаимосвязи цены, выпуска продукции, сбережений и инвестиций». Примерно в эти же годы В.В. Леонтьев работает с профессором Массачусетского технологического института Джоном Б. Вилбуром — изобретателем компьютера, способного решать системы из девяти линейных уравнений. В. Леонтьев свел 41-размерную матрицу к 10-размерной и использовал компьютер Вилбура для получения коэффициентов полных затрат валовой продукции на производство единицы конечной продукции. Леонтьев, возможно, был первым, кто применил компьютер в исследовании структуры экономических систем.

В 1941 году была составлена 41-размерная таблица межотраслевых потоков, рассчитанная для 1929 года, и агрегирована затем в 10-размерную. На ее основе были рассчитаны объемы выпуска валовой продукции, необходимые для удовлетворения конечного спроса (валовое накопление, текущее потребление, правительственные закупки).

Сравнение таблиц позволило проверить устойчивость коэффициентов материальных затрат и выяснить возможности эффективного прогнозирования. Хотя сравнение таблиц не позволило прийти к однозначному выводу, тем не менее, межотраслевые таблицы для прогнозирования были признаны вполне целесообразными. Статистическое Бюро занятости США, пригласив Леонтьева в качестве консультанта, составило таблицу, включающую 400 отраслей. Она была использована для прогнозирования занятости населения в послевоенный период. Метод «затраты-выпуск» стал широко использоваться во всем мире.

В 1944 году Леонтьев составил таблицу коэффициентов текущих материальных затрат за 1939 год и, сопоставив ее с предыдущими, обнаружил достаточную степень устойчивости большинства коэффициентов за два десятилетия. Используя последнюю таблицу, он опубликовал в 1944–1946 годах три статьи в журнале «Ежеквартальник по политической экономии», где с помощью своего метода дал оценку влиянию занятости, заработной платы и цен на выпуск валовой продукции по отдельным отраслям американской промышленности.

С конца сороковых годов, после основания Гарвардского проекта экономических исследований с целью применения и распространения метода «затраты-выпуск», особое внимание Леонтьев уделял развитию межрегионального анализа «затраты-выпуск» и составлению матрицы инвестиционных коэффициентов, с помощью которых можно было бы судить о последствиях изменения конечного спроса на инвестиции. Этим было положено начало динамическому методу «затраты-выпуск», на основе которого стало возможным анализировать экономический рост. На протяжении пятидесятых и шестидесятых годов Леонтьев совершенствовал свою систему. С появлением более сложных компьютеров он увеличивал количество секторов экономики, подлежащих анализу, освобождался от некоторых упрощающих допущений, прежде всего от условия, что технические коэффициенты остаются неизменными, несмотря на изменение цен и технический прогресс. На основе метода «затраты-выпуск» Леонтьева и сотрудники Гарвардского проекта экономических исследований проводили оценки инфляционного влияния в регулировании заработной платы, рассчитывали затраты на вооружение и их воздействие на разные отрасли экономики, осуществляли прогнозирование темпа роста отраслей экономики и необходимые для этого капитальные вложения.

Одним из важнейших результатов этих исследований стал т. н. «парадокс» или «эффект Леонтьева», заключающийся в том, что если принять во внимание прямые и косвенные затраты в процессе воспроизводства, то экспорт для США оказывается более трудоемким и менее капиталоемким, чем импорт. Это означает, что хотя в США очень сильна инвестиционная сфера и высока заработная плата, они импортируют капитал и экспортируют труд.

Поскольку метод «затраты-выпуск» доказал свою полезность в качестве аналитического инструмента в сфере региональной экономики, шахматные балансы по методу Леонтьева стали составляться для хозяйства отдельных американских городов. Постепенно составление таких балансов стало стандартной операцией. Управление межотраслевой экономики в составе министерства торговли США, например, начало публиковать такие балансы каждые пять лет. ООН, Всемирный банк и большая часть правительств различных стран мира, включая СССР, взяли на вооружение метод Леонтьева в качестве важнейшего метода экономического планирования и бюджетной политики. Он стал главной составной частью систем национальных счетов большинства стран мира, применяется и совершенствуется до сих пор правительственными и международными организациями и исследовательскими институтами во всем мире. Анализ по методу «затраты-выпуск» признан классическим инструментом экономического анализа, а его автор считается ученым, внесшим крупнейший вклад в экономическую науку XX века.

В 1973 году Леонтьев был удостоен Нобелевской премии по экономике «за развитие метода „затраты-выпуск“ и его применение к решению важных экономических проблем».

НОВАЯ ХРОНОЛОГИЯ

Сегодняшняя хронология древней и средневековой истории создана и в значительной мере завершена в серии фундаментальных трудов XVI–XVII веков, начинающейся трудами Иосифа Скалигера и Дионисия Петавиуса (Петавия).

Они впервые применили астрономический метод для подтверждения позднесредневековой версии хронологии предыдущих веков. Считается, что они тем самым превратили эту хронологию в научную. Для хронологов XVII–XVIII веков доказательства оказались достаточными, чтобы полностью довериться дошедшей до них хронологической сетке дат.

В XIX веке хронологи видели свою задачу только в уточнении деталей. В XX веке уже сама мысль о том, что на протяжении нескольких сотен лет хронологи следовали ошибочной схеме, казалась абсурдной, поскольку вступала в противоречие со сложившейся традицией. Тем не менее историки вынуждены были признать, что испытывают серьезные трудности при попытках согласовать многие хронологические данные древних источников с установившейся скалигеровской хронологией.

Сомнения в правильности принятой сегодня версии хронологии имеют давнюю традицию. Еще в XVI веке профессор Саламанкского университета де Арсилла опубликовал свои работы, где доказывал, что вся древняя история сочинена в Средние века. К подобным выводам пришел также иезуитский историк и археолог Жан Гардуин. В 1902–1903 годах немецкий приват-доцент Роберт Балдауф написал книгу «История и критика». В своем сочинении Балдауф на основании чисто филологических соображений доказывал, что не только древняя, но и ранняя Средневековая история являются «фальсификацией эпохи Возрождения и последующих за ней веков».

Несколько ранее уничижительной критике подверг скалигеровскую хронологию известный английский ученый Эдвин Джонсон (1842–1901): «Мы значительно ближе во времени к эпохе древних греков и римлян, чем это написано в хронологических таблицах». Он призвал к пересмотру всей хронологии античности и средневековья.

Особое место среди критиков Скалигера—Петавиуса занимает знаменитый Исаак Ньютон, который был автором нескольких глубоких работ по хронологии. В них он приходит к выводу об ошибочности скалигеровской версии в некоторых ее важных разделах.

Главным образом Ньютон проанализировал хронологию Древнего Египта и Древней Греции нашей эры. Он пришел к следующим выводам.

Часть истории Древней Греции должна быть приближена к нам в среднем на 300 лет. История Древнего Египта, охватывающая согласно традиционной хронологии несколько тысяч лет, поднята вверх и спрессована Ньютоном в отрезок времени длительностью всего в 330 лет. Примечательно, что некоторые фундаментальные даты древней египетской истории подняты Ньютоном вверх примерно на 1800 лет.

В современную эпоху вопрос о научном обосновании принятой сегодня хронологии поднял выдающийся русский ученый-энциклопедист Николай Александрович Морозов (1854–1946).

Отец Морозова принадлежал к старинному дворянскому роду. В двадцать лет Николай стал народовольцем. В 1881 году его приговорили к бессрочному заключению. Во время заключения в Петропавловской и Шлиссельбургской крепостях Морозов самостоятельно изучил химию, физику, астрономию, математику, историю. На свободу он вышел лишь в 1905 году, начав заниматься активной научной и научно-педагогической деятельностью. После Октябрьской революции Морозова назначают директором естественно-научного института имени Лесгафта. Тогда-то при поддержке группы энтузиастов и сотрудников он методами естественных наук и выполнил основную часть своих известных исследований по древней хронологии.

Проанализировав огромный материал, Морозов выдвинул и частично обосновал фундаментальную гипотезу. Ученый говорит о том, что скалигеровская хронология древности искусственно растянута, удлинена по сравнению с реальной историей. Подобная гипотеза строится Морозовым на обнаруженных им «повторах», то есть текстах, описывающих, вероятно, одни и те же события, но датированных разными годами и считающихся сегодня различными. Ученый считал, что древняя хронология является достоверной, лишь начиная с IV века нашей эры.

Новый этап в строительстве новой хронологии связан с именем академика А.Т. Фоменко. Окончательная в целом версия хронологии древней и средневековой истории была предложена им в 1979 году. Вместе с ним исследованием вопроса занималась группа математиков, в основном из Московского государственного университета.

Новая концепция основывается, прежде всего, на анализе исторических источников методами современной математики и обширных компьютерных расчетов.

В результате длительных исследований Фоменко обнаружил многочисленные факты искажения мировой истории и истории России. Оказалось, например, что в действительности средневековая Русь и Великая «Монгольская» орда — это одно и то же.

В предисловии к книге «Русь и Рим. Правильно ли мы понимаем историю Европы и Азии?» ее авторы Г.В. Носовский и А.Т. Фоменко пишут: «Созданная окончательно в XVI веке нашей эры и принятая сегодня хронология истории древнего и средневекового мира, по-видимому, неверна. Это понимали многие выдающиеся ученые. Но построить новую, непротиворечивую концепцию истории оказалось очень сложной задачей…

…Известная нам сегодня древняя история — это письменная история, то есть опирающаяся в основном на письменные источники. Конечно, кое-что написано на камнях, но эти свидетельства приобретают смысл лишь после того, как в целом здание истории уже построено на основании письменных текстов, то есть летописей и т. д.

Сегодня чаще всего мы имеем лишь весьма поздние версии, созданные спустя несколько сотен лет после событий…

…Безусловно, в основе письменных документов лежала какая-то реальность. Однако одно и то же реальное событие могло отразиться в нескольких разных летописях, и при этом существенно по-разному. А иногда настолько по-разному, что на первый взгляд невозможно поверить, что перед нами два разных описания одного и того же события…..Наконец, изучая письменную историю, нужно постоянно помнить о том, что слова, имена, географические названия могли со временем менять свой смысл. Одно и то же слово могло обозначать в разные исторические эпохи совсем разные понятия. Кроме того, многие географические названия перемещались по карте с течением веков».

Фоменко и его единомышленники привлекли к своим исследованиям вычислительную технику. Оставалось лишь разработать программы и подготовить для использования тысячи текстов-хроник.

«Исследование текстов-хроник — дело для математики принципиально новое, — пишут авторы книги „Русь и Рим“. — Можно обнаружить лишь относительную близость с некоторыми задачами, которыми ранее математика занималась: с прочтением шифров, восстановлением исходного расположения карты в колоде по виду нескольких перетасованных карт и т. п. Поэтому для нашего исследования пришлось разработать принципиально новые методы статистического исследования, в которых учитывается специфика исходного материала. Особое внимание уделялось тому, чтобы эти методы не дублировали друг друга, исследовали различные по сути данные, чтобы выводы, основанные на их результатах, были взаимно независимыми, что необходимо для их перекрестной проверки. Мы не можем позволить себе еще больше запутать историю, которая и без того давно запуталась в своей хронологии.

Важнейшей особенностью статистических методов является то, что они основаны только на количественных характеристиках текстов и не анализируют их смысловое содержание (которое может быть весьма неясным и истолковываться по-разному). В этом их принципиальное отличие от методов работы историка. Из этого различия, кстати, видно, что математик, занимающийся анализом исторического материала, ни в коем случае не может и не должен пытаться подменить собой специалиста-историка. Математик должен заниматься той частью содержащейся в древних хрониках информации, на которую историк никогда не обращал внимания (а если и обращал, то ничего не мог из нее извлечь ввиду огромной трудоемкости этой работы, не говоря уже о том, что к ней нужен совершенно иной профессиональный подход)».

Для составления своей хронологии ученые использовали несколько новых математических методов, таких как принцип корреляции максимумов, принцип затухания частот, принцип малых искажений, метод анкет-кодов, метод хронологического упорядочения и датировки географических карт.

Как пример можно привести использование принципа корреляции максимумов. Слово авторам методики:

«Возьмем все тексты-хроники, которыми располагаем, — и те, которые говорят о хорошо знакомых событиях и людях и привязаны к единой хронологической шкале, и те, в которых имена незнакомы, а хронология не расшифрована, — и разобьем каждую хронику на одинаковые „главы“ (заранее задавшись их длиной: год, или 5, или 10 лет, как удобнее). Подсчитаем: сколько текста приходится на каждую „главу“. Теперь любую хронику можно изобразить в виде графика, где по горизонтали будут расположены по порядку „главы“, то есть одинаковые отрезки времени, а по вертикали — объем текста каждой „главы“. Такой график — своеобразный „портрет“ хроники, ее „дендрологического распила“. Но и сама хроника, как мы знаем, — это „портрет“ событий, происшедших когда-то, в какой-то отрезок времени, в каком-то царстве-государстве. И мы уже знаем, что даже многоступенчатое переписывание хроник и объединение их в „Истории“, хотя и искажает получившийся на графике „портрет“ событий, но не так уж сильно. Пусть даже мы не знаем, в какой стране и когда происходят события данной конкретной хроники, — взаимное сличение „портретов“ хроник поможет найти ответ.

Главная примета здесь — максимумы (всплески) на графике. Они могут становиться выше или ниже в различных хрониках, говорящих об одном и том же, но взаимное положение их должно быть одинаково. Именно то, насколько точно совпадают максимумы при наложении друг на друга двух различных графиков, и называется здесь „корреляцией“ (то есть взаимозависимостью). Высокий уровень корреляции — значит, графики действительно совпадают, значит, рассматриваемые две хроники говорят об одном и том же (и за это они называются „зависимой парой текстов“), низкий уровень корреляции — графики и хроники чужие друг другу („независимая пара“)».

Информация считается достоверной, если она подтверждается большинством математических методов. После этого вся проверенная таким способом информация наносилась на большой карте в несколько десятков квадратных метров, которую авторы назвали Глобальной хронологической картой (ГХК).

К материалу, собранному на ГХК, были применены математические методики распознавания повторов в истории. После расчетов на компьютерах удалось обнаружить пары эпох, считающихся в традиционной хронологии различными. Однако математические показатели близости у них оказались чрезвычайно малыми, что указывает на заведомо зависимые события.

В этом случае можно говорить, что это одни и те же события, представленные вследствие ошибок средневековых хронистов как различные события, будто бы происходившие в очень отдаленные друг от друга исторические эпохи.

А.Т. Фоменко и Г.В. Носовский делают следующие выводы: «Глобальная хронологическая карта (отобразившая современное представление о древней истории, воспроизводящая любой современный учебник до истории) распадается, как мы видим, на четыре слоя, на четыре практически тождественные истории, сдвинутые друг относительно друга во времени. Начиная с середины XVI века и ближе к нам „скалигеровский учебник“ — ГХК не содержит никаких дубликатов, так что историческую схему XVI–XX веков мы можем считать в основном достоверной. На интервале 900-1300 годов дубликаты уже присутствуют. Часть „современного учебника“, описывающая этот период, представляет собой сумму двух хроник: некоторой реальной хроники, довольно скудной, описывающей реальные события 900—1300 годов, и реальной хроники, описывающей события XIV–XVI веков. Почти любое событие, датируемое 300–900 годами нашей эры, является суммой двух-трех-четырех более поздних событий; информацией, действительно относящейся к этому времени, могут быть разве только имена некоторых исторических персонажей и в лучшем случае несколько полулегендарных эпизодов. И наконец, любое событие, датируемое ранее чем 300 годом нашей эры, полностью мифично и является либо „отражением“ более поздних событий, либо полностью плодом чьего-то воображения, либо, чаще всего, суммой того и другого одновременно.

Глобальная хронология в окончательном виде была создана в конце XVI–XVII веках, и именно в эту эпоху (что очень важно) заканчивается последний период, опустившийся в прошлое и породивший в древности дубликаты, „отражения“, — период С. Тем самым авторы последнего переноса исторических событий в прошлое выдают себя, вернее, время, когда они работали: после Петавиуса, то есть после его смерти в 1652 году. Создав изуродованную схему датирования событий античной и средневековой истории, завершатели его дела как бы поставили фирменное клеймо на готовое изделие — на глобальную хронологию Европы, созданную в том же фантастическом духе фирмой Скалигера—Петавиуса».

СПИСОК ЛИТЕРАТУРЫ

Александер Ф., Селесник Ш. Человек и его душа. Познание и врачевание от древности и до наших дней. М., 1995.

Алпатов В.М. История лингвистических учений. М., 1999.

Арбузов А.Е. A.M. Бутлеров — великий русский химик. М., 1961.

Асратян Э.А. Иван Петрович Павлов. М., 1974.

Бажанов А.И. Физики-лауреаты. М., 1971.

Баландин Р.К. Поиски истины. М., 1983.

Бахтамов Р. Фигуры не имеет. М., 1977.

Бахтеев Ф.Х. Николай Иванович Вавилов. М., 1988.

Белов А.В. Обвиненные в ереси. М., 1973.

Белоусов Р.С., Докучаев Д.С. Экономика. М, 2000.

Бляхер Л.Я., ред. История биологии. М., 1975.

Бор Н. Избранные научные труды. М.,1971.

Бори М. Моя жизнь и взгляды. М., 1973.

Бублейников Ф.Д. Галилео Галилей. М., 1964.

Бюлер В. Гаусс. М., 1989.

Васильев А.В. Николай Иванович Лобачевский. М., 1992.

Вер Г. Карл Густав Юнг. Челябинск, 1998.

Волошинов А.В. Пифагор. М., 1993.

Вяльцев А.Н., Григорян А. Т. Г. Герц. М., 1968.

Гайсинович А.Е. Зарождение и развитие генетики. М., 1988.

Гребеников Е.А., Рябов Ю.А. Поиски и открытия планет. М.,1975.

Гумилевский Л.И. Чаплыгин. М., 1969.

Гурштейн А.А. Извечные тайны неба. М., 1991.

Дадун Р. Фрейд. М., 1994.

Дальма А. Эварист Галуа — революционер и математик. М., 1984.

Дорфман Я.Г. Всемирная история физики с древнейших времен до конца XVIII века. М., 1974.

Дягилев Ф.М. Из истории физики и ее творцов. М., 1986.

Еремеева А.И., Цицин Ф.А. История астрономии. М., 1989.

Имшенецкий А.А. Луи Пастер. Жизнь и творчество. М., 1961.

Инфельд Л. Эварист Галуа. Избранник богов. М., 1965.

Исмаилова С. Энциклопедия для детей. Геология. Т.4, М., 1995.

Зайцев Б. Генном расшифрован — что дальше? Эхо планеты. 2001, № 9.

Зубкова И.Г. Лингвистические учения конца XVIII—начала XX века М 1989.

Казначеев В.П. Учение В.И.Вернадского о биосфере и ноосфере. Новосибирск, 1989.

Капица СП., ред. Замечательные ученые. М., 1980.

Карцев В.П. Ньютон. М., 1987.

Климишин И.А. Элементарная астрономия. М., 1991.

Кляус Е.М. Г.А.Лоренц. М.,1974.

Кляус Е.М., Франкфурт У.И., Френк A.M. Нильс Бор. М., 1977.

Кобзерев Ю. А. Ньютон и его время. М., 1978.

Колтун М. М. Мир физики. М., 1984.

Коновалов А. Кто быстрее. Вокруг света. 2001, № 7.

Корочкин Л.И. Клонирование животных. Соросовский образовательный журнал. 1999, № 4.

Корсунская В.М. Карл Линней. Спб., 1975.

Костюк В.Н. История экономических учений. М., 1998.

Кочетков Н.К., Соловьев Ю.И., ред. История классической органической химии. М., 1992.

Кошманов В.В. Георг Ом. М., 1980.

Кудрявцев П.С. История физики. Т. 1–3, М., 1956-1 971.

Кудрявцев П.С. Эванджелиста Торричелли. М.,1958. Кюри М. Пьер Кюри. М., 1968.

Лазарев А. Р. Циолковский. М., 1962.

Лаптев Б.Л. Н.И.Лобачевский и его геометрия. М., 1976.

Леонтьев В.В. Экономические эссе. Теория, исследования, факты и политика. М., 1990.

Леонтьев Л.А. Революционный переворот в политической экономии. М., 1955.

Леонтьев Л.А. К изучению «Капитала» К.Маркса. М., 1961.

Липсон Г. Великие эксперименты в физике. М, 1972.

Льоцци М. История физики. М., 1970.

Макареня А.А., Рысев Ю.В. Д.И. Менделеев. М., 1977.

Манолов К.Р. Великие химики. М., 1986.

Манолов К.Р., Тютюнник В.М. Биография атома. М., 1985.

Мирский М.Б. Революционер в науке, демократ в жизни. М., 1988.

Мицук О. Альберт Эйнштейн. Минск, 1998.

Никифоровский В.А. Из истории алгебры XVI–XVII веков. М., 1979.

Новиков И.Д., Шаров А.С. Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла. М., 1989.

Носовский Г.В., Фоменко А.Т. Русь и Рим. М., 1997.

Пашинин П.П. Александр Михайлович Прохоров. М., 1989.

Пекелис В.Д. Кибернетическая смесь. М. 1991.

Петров Б.Д., ред. История медицины. T.I. M., 1954.

Платонов Г.В. Климент Аркадьевич Тимирязев. М., 1955.

Пономарев Л.И. По ту сторону кванта. М., 1971.

Понтекорво Б.Э. Ферми. М.,1971.

Попова Ю.М., Розанова В.Б. Николай Геннадьевич Басов. М., 1982.

Порудоминский В.И. Пирогов. М., 1969.

Поспелов Д.А., ред. Информатика. М., 1994.

Пузанов И.И. Жан Батист Ламарк. М., 1959.

Редже Т. Этюды о вселенной. М., 1985.

Свечников А.А. Путешествие в историю математики, или Как люди учились считать. М., 1995.

Слепчук Е. О чем молчит великая молекула. Эхо планеты. 2001, № 9.

Смирнов Г. Менделеев. М., 1965.

Сойфер В.Н. Исследования геномов к концу 1999 года. Соросовский образовательный журнал. 2000, № 1.

Соловьев Ю.И. История химии. М., 1983.

Спиридонова Н.С., ред., Политическая экономия. М., 1970.

Стройк Д.Я. Краткий очерк истории математики. М., 1990.

Тарасов Б.Н. Паскаль. М., 1982.

Филонович С.Р. Шарль Кулон. М., 1988.

Фрейд 3. Я и Оно. М.-Харьков, 1998.

Фролов Ю.П. Иван Петрович Павлов. М., 1953.

Хайнинг К., ред. Биографии великих химиков. М., 1981.

Халамайзер А.Я. Софья Ковалевская. М. 1989.

Храмов Ю.А. Физики. Биографический справочник. М., 1983.

Чирков Ю.Г. Фотосинтез: два века спустя. М, 1981.

Шилейко А. В. Беседы об информатике. М.,1989.

Шноль С.Э. Биология. 1997.

Шпаусус 3. Путешествие в мир химии. М., 1967.

Шредингер Э. Новые пути в физике. М., 1971.

Юшкевич А. П., ред. Математика XVII столетия. М, 1970.

Юшкевич А.П., ред. Математика XVIII столетия. М., 1972.

Яновская М.И. Роберт Кох. М., 1962.

Детская энциклопедия. Т.3, 1961.

Лауреаты Нобелевской премии. М., 1992.

Резерфорд — ученый и учитель. Сб. статей. М., 1973.

Энциклопедический словарь Брокгауза Ф.А. — Ефрона И.А. М., 1890.


Оглавление

  • ВВЕДЕНИЕ
  • ОСНОВЫ МИРОЗДАНИЯ
  •   ЗАКОН АРХИМЕДА
  •   АТМОСФЕРНОЕ ДАВЛЕНИЕ
  •   ЗАКОН БОЙЛЯ-МАРИОТТА
  •   ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ
  •   СПЕКТР СВЕТА
  •   ОТКРЫТИЕ КИСЛОРОДА
  •   ТЕОРИЯ ГОРЕНИЯ
  •   ОСНОВНОЙ ЗАКОН ЭЛЕКТРОСТАТИКИ
  •   ИНТЕРФЕРЕНЦИЯ
  •   ЭЛЕКТРИЧЕСТВО У ЖИВОТНЫХ
  •   ЗАКОН ПРОСТЫХ ОБЪЕМНЫХ ОТНОШЕНИЙ
  •   ЗАКОН ЭРСТЕДА
  •   ЭЛЕКТРОДИНАМИКА
  •   СПЕКТРАЛЬНЫЙ АНАЛИЗ
  •   ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ
  •   ЗАКОН ОМА
  •   ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
  •   ЗАКОН МИНИМУМА
  •   ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
  •   ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА
  •   ЗАКОН ДЕЙСТВУЮЩИХ МАСС
  •   ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ
  •   ОРГАНИЧЕСКИЙ СИНТЕЗ
  •   БЕНЗОЛ
  •   ПЕРИОДИЧЕСКИЙ ЗАКОН
  •   СТЕРЕОХИМИЯ
  •   «АШ-ТЕОРЕМА»
  •   ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ
  •   РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ
  •   ЭЛЕКТРОН
  •   РАДИОАКТИВНОСТЬ
  •   КВАНТЫ
  •   СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ
  •   СВЕРХПРОВОДИМОСТЬ
  •   ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА
  •   КВАНТОВАЯ МЕХАНИКА
  •   ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ
  •   ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ
  •   РЕАКЦИЯ ДЕЛЕНИЯ
  •   КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
  •   ЛАЗЕР
  • МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
  •   ТЕОРЕМА ПИФАГОРА
  •   ЕВКЛИДОВА ГЕОМЕТРИЯ
  •   ОСНОВЫ АЛГЕБРЫ
  •   ЛОГАРИФМЫ
  •   ВЕЛИКАЯ ТЕОРЕМА ФЕРМА
  •   ТЕОРИЯ ВЕРОЯТНОСТЕЙ
  •   ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ
  •   ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ
  •   ТЕОРИЯ ГРУПП
  •   НЕЕВКЛИДОВА ГЕОМЕТРИЯ
  •   КИБЕРНЕТИКА
  • ТАЙНЫ ВСЕЛЕННОЙ
  •   ГЕОЦЕНТРИЧЕСКАЯ МОДЕЛЬ МИРА
  •   ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ
  •   СПУТНИКИ ЮПИТЕРА
  •   ПЛАНЕТА УРАН
  •   ОСНОВНЫЕ НАЧАЛА ГЕОЛОГИИ
  •   ПЛАНЕТА НЕПТУН
  •   КОСМОНАВТИКА
  •   КОНЦЕПЦИЯ ДРЕЙФУЮЩИХ КОНТИНЕНТОВ
  •   ЗАКОН ХАББЛА
  •   КЛАССИФИКАЦИЯ ГАЛАКТИК
  •   БИОСФЕРА
  •   НООСФЕРА
  •   КОНЦЕПЦИЯ «БОЛЬШОГО ВЗРЫВА»
  • ТАЙНЫ ЖИВОГО
  •   ОСНОВЫ АНАТОМИИ
  •   БОЛЬШОЙ КРУГ КРОВООБРАЩЕНИЯ
  •   МИКРОБЫ
  •   КЛАССИФИКАЦИЯ РАСТЕНИЙ
  •   ТЕОРИЯ ЭВОЛЮЦИИ ОРГАНИЧЕСКОГО МИРА
  •   СРАВНИТЕЛЬНАЯ АНАТОМИЯ
  •   ОСНОВЫ ЭМБРИОЛОГИИ
  •   ТОПОГРАФИЧЕСКАЯ АНАТОМИЯ
  •   НАРКОЗ
  •   ПРОИСХОЖДЕНИЕ ВИДОВ
  •   БИОЛОГИЧЕСКАЯ ТЕОРИЯ БРОЖЕНИЙ
  •   ОСНОВЫ ГЕНЕТИКИ
  •   ФОТОСИНТЕЗ
  •   ОСНОВЫ ИММУНОЛОГИИ
  •   ВОЗБУДИТЕЛЬ ТУБЕРКУЛЕЗА
  •   ФИЗИОЛОГИЯ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ
  •   ХРОМАТОГРАФИЯ
  •   ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ
  •   ПСИХОАНАЛИЗ ФРЕЙДА
  •   ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ
  •   ПСИХОАНАЛИЗ ЮНГА
  •   ПЕНИЦИЛЛИН
  •   ГЕОГРАФИЧЕСКИЕ ЦЕНТРЫ ПРОИСХОЖДЕНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ
  •   ДНК
  •   КЛОНИРОВАНИЕ
  •   ГЕНОМ ЧЕЛОВЕКА
  • ЗАКОНЫ ОБЩЕСТВА
  •   ОСНОВЫ КЛАССИЧЕСКОЙ ЭКОНОМИКИ
  •   ТЕОРИЯ НАРОДОНАСЕЛЕНИЯ
  •   ЛИНГВИСТИЧЕСКАЯ ТЕОРИЯ ГУМБОЛЬДТА
  •   ТЕОРИЯ ПРИБАВОЧНОЙ СТОИМОСТИ
  •   ЛИНГВИСТИЧЕСКАЯ КОНЦЕПЦИЯ СОССЮРА
  •   КЕЙНСИАНСТВО
  •   МЕТОД «ЗАТРАТЫ-ВЫПУСК»
  •   НОВАЯ ХРОНОЛОГИЯ
  • СПИСОК ЛИТЕРАТУРЫ