Металлы в живых организмах [Лев Александрович Николаев] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

Лев Александрович Николаев Металлы в живых организмах

Введение

Роль металлов в развитии и становлении технической культуры человечества исключительно велика. Твердость, пластичность, ковкость сделали их незаменимым материалом для изготовления орудий труда и производства. Исторически сложившиеся названия "бронзовый век", "железный век" говорят о сильном влиянии металлов и их сплавов на все направления развития производства. Позже были открыты электрические и магнитные свойства металлов и наступил "век электричества", а затем — уже в наше время — "век электроники". Близкие перспективы электроники — это полная автоматизация производства, создание "мыслящих" машин, роботов, успешное завоевание космоса.

И в нашей повседневной практике мы ежеминутно встречаемся с металлами. Мы нажимаем кнопку выключателя, и электроны начинают бег по металлическим проводникам, попадая в металлические детали лампочки, или плитки, или электромотора. Электроны пришли в движение потому, что где-то на электростанции работает генератор, в котором металлический ротор вращается в магнитном поле, усиленном за счет удивительных свойств металла — железа. Выглянув на улицу, мы видим сотни автомашин, каждая из которых сделана из металла. Мы видим стальные мосты, стальные рельсы, мачты электропередач, трамваи и, наконец, самолеты, в конструкциях которых использованы алюминий, железо, медь, хром, ванадий, титан... Везде металлы!..

Ну а в нас самих содержатся ли они? Есть ли металлы в клетках растений, животных, человека? Конечно, речь идет не о металлах в свободном состоянии, но ведь металлы легко переходят в ионное состояние, образуя соли. Есть ли они в клетках? Если да, то зачем и что они там делают? Случайные ли это примеси или необходимые составные части живого вещества?

В этой книге мы и попробуем ответить на поставленные вопросы. Бионеорганическая химия, к области которой они относятся, — молодая наука. Она еще далеко не все знает о биологической роли металлов. Но все-таки знает многое.

Глава 1. Почему организмы иногда называют биологическими машинами?

Функции тех устройств, которые называют машинами при всем их разнообразии, связаны с целенаправленным использованием энергии. Результат деятельности машин — либо перенос массы, либо получение продукции, отличающейся от исходного сырья.

Мы можем заметить, что превращения различных форм энергии также характерны для машин: электрическая энергия в электромоторе превращается в механическую энергию движения (вращения); химическая энергия реакций окисления-восстановления в гальванических элементах и аккумуляторах превращается в электрическую, а эта последняя в механическую (в электромобилях) или теплоту; реакция горения топлива в паровой машине или двигателе внутреннего сгорания переходит в механическую энергию и т. д.

Происходит ли что-либо подобное в клетках и соответственно в организме? На первый взгляд аналогия между клеткой и машиной кажется весьма сомнительной. Жесткие металлические конструкции, большие скорости движения отдельных частей, провода, болты, гайки, тяжелые станины — как все это не похоже на нежные комочки белка, составляющие содержимое хрупких клеток! Можно ли говорить о сходстве столь различающихся объектов? Однако успехи молекулярной биологии с каждым днем все больше убеждают нас в том, что аналогия между клетками и машинами не поверхностна, а выражает глубокую природную закономерность.

Сравним типичные особенности работы машин в технике и "машин" в биологии. Технические машины требуют энергии, без притока энергии (механической, электрической, теплоты и т. п.) они работать не могут. Клетки и клеточные системы, т. е. организмы, также нуждаются в энергии. Использовать теплоту для прямого ее превращения в работу клетка не способна — для этого надо, чтобы существовала хотя бы небольшая разность температур или давлений, а все части клетки находятся практически при одной и той же температуре и под одинаковым давлением (в термодинамике такие условия называются изобарно-изотермическими). Основной источник энергии для живых систем заключается в пищевых веществах — клетки пользуются химической энергией, запасенной в углеводах, жирах или белках пищи. Так, процесс брожения, протекающий в бескислородной среде и схематически выраженный уравнением

Процесс брожения, протекающий в бескислородной среде, доставляющий энергию анаэробным микроорганизмам

доставляет энергию так называемым анаэробным микроорганизмам, живущим в бескислородной среде (анаэроб — "живущий без воздуха").

Аэробные микроорганизмы используют ту же реакцию, но более рационально. Эти организмы живут только в атмосфере, содержащей кислород, и поэтому они имеют возможность полностью окислить углевод, например глюкозу, до углекислого газа в процессе дыхания

Процесс брожения, доставляющий энергию аэробным микроорганизмам

получая при этом гораздо больше энергии, чем анаэробы.

Известны и такие микроорганизмы, которые способны в зависимости от условий, а именно наличия или отсутствия кислорода в окружающей их среде, приводить в действие тот или другой механизм использования энергии (факультативные микробы). Такими интересными свойствами обладают, между прочим, всем известные дрожжевые клетки — они вызывают процесс брожения, но вместе с тем способны и к процессу дыхания, в котором углеводы окисляются полностью до углекислого газа и воды.

Итак, клетки не похожи на паровую машину, в которой источником работы является горение топлива, создающее разность температур, но клетки определенно похожи на гальванические элементы, производящие работу за счет реакции окисления-восстановления, и отчасти на двигатели внутреннего сгорания, производящие работу за счет энергии сильно сжатого газа, возникшего при сжигании жидкого топлива.

В настоящее время созданы топливные элементы, превращающие энергию окисления угля или жидких углеводородов в электрическую энергию; эти устройства очень экономичны и, несомненно, сыграют роль в энергетике будущего. Вот с ними у клеток еще более глубокое сходство.

Современная техника использует энергию химических реакций для практических целей. Но, например, о применении солнечной энергии для широкого решения производственных задач пока еще только мечтают... А вот живые организмы могут извлекать энергию из потока солнечного излучения. Огромные массы микроорганизмов, плавающие в волнах океанов и морей, леса и травы, покрывающие сушу, располагают аппаратом, с помощью которого они используют энергию света для химических синтезов. В этом аппарате важную роль играет ион металла магния, входящий в состав хлорофилла.

Не кажется ли вам, что в области использования энергии клетки — хрупкие комочки живой ткани — обогнали могучую технику человека с ее громоздкими и сложными машинами? Это впечатление усилится, если вспомнить о существовании организмов, которые получают энергию, стимулируя какой-либо определенный химический процесс и затем используя эту энергию для создания множества разнообразных соединений. Так, известны бактерии, живущие за счет окисления ионов железа (II) (железобактерии), бактерии,- для которых источником энергии является окисление серы в серную кислоту (серобактерии тиооксиданс), бактерии, "питающиеся" нафталином, другими словами, окисляющие это вещество для получения энергии, и даже бактерии, для которых источником энергии служит окисление водорода — по существу, та реакция, которая протекает при взрыве гремучего газа.

В результате целенаправленного превращения химической энергии микроорганизм из несложных исходных веществ создает сложные частицы белков, жиров и нуклеиновых кислот. Неплохо бы построить, например, завод по производству серной кислоты, в котором энергия окисления серы питала бы производство белков, углеводов и жиров. Мало того, представим себе, что этот завод обладает способностью строить другие такие же заводы, — ведь клетки делятся!

Может быть, клетки с точки зрения энергетики заслуживают названия "сверхмашин" — машин будущего? В высших организмах, в частности в организмах позвоночных, мы обнаруживаем совершенные и экономичные устройства — мышцы, в которых химическая энергия превращается в механическую. Если бы удалось создать нечто подобное в технике, т. е. превратить энергию окисления топлива при низкой температуре (37°С — температура тела человека) в механическую работу, — это было бы крупнейшим достижением! Вот почему анализ механизмов, действующих в биологических системах, представляет огромный интерес с точки зрения и биолога, и биохимика, и инженера.

Продолжим сопоставление клетки и машины. Объектом работы машины является какой-либо материал, взятый в больших по сравнению с молекулами кусках (металл, дерево, полимер). Машина изменяет его форму по заданной программе (например, вытачивает болт), удаляя лишний материал, или производит ряд последовательных операций, перемещая в пространство отдельные детали (так действует, например, автомат, выпускающий электрические лампочки), или, наконец, просто вращает вал (кардан у автомашины), сообщая всему устройству движение.

Существуют ли в биологических машинах аналоги всему этому?

Прежде всего, придется констатировать, что клетка, в отличие от макроскопической (т. е. обычной в нашей технической практике) машины, имеет дело не с огромными совокупностями молекул, а с отдельными молекулами. Каждая молекула жира, белка или сахара, попав в сферу деятельности клетки и будучи поглощена ею, подвергается индивидуальной обработке. Следовательно, и "инструменты" для этого тоже должны иметь молекулярные масштабы. Молекулярная биология помогла разобраться в деталях устройств, позволяющих целенаправленно перекраивать молекулы.

Тут сразу возникает вопрос о направлении воздействия. Технические машины в этом отношении сомнений не вызывают — мы ясно представляем себе задачу каждой из них. Но что, собственно, "хочет" биологическая машина? Какова цель ее деятельности?

Смысл работы клеточных механизмов в настоящее время в значительной мере раскрыт. Молекулы пищевых веществ — белков, жиров и углеводов (в основном) — расщепляются на менее сложные частицы. Эти частицы одинаковы для каждого вида биомолекул, независимо от того, из каких исходных молекул они получены. Так, из различных белков получаются небольшие молекулы аминокислот, и, несмотря на то, что в разных белках они были сцеплены (пептидными связями) в различных последовательностях, после разрушения белковых частиц мы получим смесь одних и тех же аминокислот (с относительно небольшими количественными различиями). Различные углеводы превращаются в одну и ту же кислоту — пировиноградную, а жиры расщепляются до жирных кислот, от молекул которых постепенно откалываются однотипные фрагменты.

После этого начинаются два важнейших процесса: окисление ("сжигание") части полученных обломков молекул, сопряженное с запасанием энергии окисления в виде фосфорноазотных органических соединений, и синтез новых молекул, в частности тех белков, которые нужны данному организму. При достаточном количестве пищи синтезируется и гликоген — углеводный биополимер, окисление которого дает много энергии. Это будущее "топливо" откладывается впрок в печени и мышечной ткани.

Энергия окисления переходит в скрытую химическую энергию фосфорно-азотных органических соединений (прежде всего аденозинтрифосфорной кислоты — АТФ) в результате сложного процесса, сопряженного с переносом электронов от окисляемого вещества к кислороду воздуха, которым дышит организм.

Понятно, что для выполнения такой работы необходимо, во-первых, ускорять только строго определенные реакции, чтобы продукты того или иного процесса не представляли собой смесь неопределенного состава; во-вторых, необходимо для этого иметь катализаторы, стимулирующие только те превращения в некоторой части молекулы, которые ведут к образованию требуемых обломков, т. е. сырья для следующих химических операций.

Выполнение операций в определенной последовательности требует пространственного разделения областей реакций. Они не могут происходить все в одном месте — нужна, очевидно, некоторая жесткая структура, нечто вроде каркаса, на котором производится постепенная. перестройка молекул. Значит, клетка не может быть однородной по всей своей массе. Химик назовет такую систему гетерогенной — разнородной. Действительно, клетка имеет ядро, оболочку и так называемые органеллы — небольшие частицы, в которых получается энергия (митохондрии), производится синтез белков (рибосомы), удаляются отходы производства (аппарат Гольджи); работают и другие устройства.

По мере усложнения организма клетка становится все более совершенной. Как и в машинном производстве, в клетке (и в коллективах клеток) огромную роль играет регулирование. В организмах оно достигается с помощью гормонов и нервных импульсов, так что весь организм в целом представляет собой единую систему с множеством тонких внутренних связей и органами восприятия сигналов внешней среды.

Вот теперь мы подошли к тому вопросу, о котором и будет речь в этой книге. Пригодны ли те органические соединения, о которых уже многое известно биологам и биохимикам, а именно белки, липиды (жиры), углеводы, — для строительства всех биологических машин, их регулирования и обеспечения их устойчивости в течение длительных сроков жизни организма?

Внимательный анализ этой проблемы и изучение опытных данных о составе живых систем приводят нас к выводу, что необходимое сочетание прочности основных биологических структур и высокой химической активности, характерной для реакции в клетках, не может быть достигнуто, если для создания биологических машин пользоваться только органическими веществами.

Необходимым компонентом живых систем должны быть ионы металлов.

Ознакомимся со свойствами некоторых биологически активных органических соединений и теми функциями, которые способны выполнять ионы металлов.

Из курса химии известно, как построены белки, жиры и углеводы. Их молекулы содержат цепи атомов. У белков атомы углерода соединены перемычками, состоящими из групп NH-СО. Перемычки возникают потому, что огромная молекула белка получается в результате соединения (конденсации) аминокислот. В простейшем случае аминокислота глицин NH2-СН2-COOH может образовать дипептид — продукт конденсации двух молекул глицина по реакции:

Дипептид — продукт конденсации двух молекул глицина

Таким путем, очевидно, можно соединять друг с другом и молекулы других аминокислот; всего в живых организмах насчитывается 20 аминокислот различного строения.

Каждая молекула белка состоит из нескольких сотен аминокислотных остатков — химики называют такую частицу полипептидом ("многопептидом").

Молекулы жиров содержат цепи атомов углерода и эфирные группы -СОО-, связывающие цепи жирных кислот и глицерина:

Молекулы жиров содержат цепи атомов углерода и эфирные группы -СОО-

( — остаток жирной кислоты, например пальмитиновой С15Н31СООН).

Для молекул углеводов также характерно наличие цепей атомов углерода, но эти цепи для углеводов, относящихся к полисахаридам (крахмал, гликоген), содержат перемычки из атомов кислорода.

Мы только напоминаем об этих данных, так как для нас сейчас важно обратить внимание на распространенность в биологических объектах органических молекул, которые характеризуются наличием ковалентных связей.

Действительно, атомы углерода в цепочках -С-С-С-, имеющихся и в белках, и в жирах, и в углеводах, соединены парами общих электронов; связи между атомом углерода и атомом азота в перемычке (связующем звене) -NH-СО- также ковалентные; ковалентными являются и связи С-О в молекулах углеводов. Их энергия довольно велика.

Легко ли заставить молекулы биологически активных веществ вступать в реакции? Остановимся на одной из наиболее важных и общеизвестных реакций — реакции горения. Ведь мы знаем, что углеводы (например, обычный сахар), белки и жиры "сгорают" в организме, образуя в конечном счете воду и диоксид углерода (углекислый газ). Попробуем окислить сахар или жир до этих продуктов вне организма. Мы обнаружим, что сахар можно хранить годами на воздухе, а значит — в присутствии кислорода, и он не покажет никаких признаков окисления. Жир испортится — прогоркнет, т. е. станет добычей различных микроорганизмов, но тоже, конечно, не сгорит; признаки его окисления мы сможем обнаружить, но до превращения его в воду и диоксид углерода будет очень далеко. Белки подвергнутся высыханию, разрушительному действию микроорганизмов, но не сгорят!

А ведь в клетках организма процессы окисления идут очень быстро. Так, например, утомленный бегун на финише восстанавливает силы буквально за несколько минут, выпив раствор глюкозы.

Почему же организм так легко справляется с задачей ускорения нужных ему реакций? Ответ на этот вопрос не вызывает сомнений у биохимиков: потому, что в клетках имеются мощные катализаторы — ферменты, стимулирующие при невысоких температурах реакции окисления.

Можно попробовать зажечь кусочек сахара — он загорится с трудом лишь при энергичном нагревании в пламени газовой горелки. Но попробуйте нанести на его поверхность немного порошка оксида меди — в этом случае сахар удастся зажечь просто от пламени спички. Иногда этот опыт проделывают, применяя вместо оксида меди табачную золу, — она содержит малые количества оксидов металлов и также проявляет ускоряющее действие. Что же здесь играет роль катализатора? Конечно, металл! Металл в ионном состоянии. Соединения меди, железа, марганца, ванадия, кобальта и других в большом числе реакций действуют как катализаторы окислительно-восстановительных реакций. Нет такого органического соединения, не содержащего металла, которое обладало бы столь сильно выраженными каталитическими свойствами в реакциях окисления.

Но, кроме катализа, в биологических машинах осуществляется еще один процесс, который и в технических машинах, и на заводах играет большую роль. Этот процесс — транспорт! Переносы полуфабрикатов из цеха в цех или в сложных машинах от одной части к другой совершенно необходимы для нормальной работы, они должны совершаться с определенной скоростью и бесперебойно.

Нечто подобное происходит и в организмах. Нельзя прервать без угрозы для жизни транспорт кислорода от легочных альвеол к клеткам. Известно, что переносчиком кислорода служит гемоглобин, содержащий железо. Нет такого органического соединения, не содержащего ионов металла, которое способно было бы выполнять эту функцию!

После завершения окислительных реакций в крови накапливаются гидрокарбонаты. Кто не знает, что мы выдыхаем диоксид углерода СО2! Но многим не приходит в голову, что сами по себе гидрокарбонаты вовсе не так быстро разлагаются с выделением угольной кислоты (а затем и диоксида углерода), чтобы реакция разложения могла совершиться в надлежащей мере за время одного вдоха.

Налейте в стакан раствор питьевой соды (это и есть гидрокарбонат натрия) и проследите за его состоянием в течение нескольких часов. Если опыт проделать при комнатной температуре, вы вообще ничего не обнаружите, если же раствор нагреть до 37°С, то признаки выделения газа будут еле заметны.

Что же помогает нам дышать? За счет чего ускоряется разложение гидрокарбонатов до СО2? Оказывается, тут действует органическое соединение, содержащее цинк. Опять мы сталкиваемся с наличием в биологических машинах металла. Но ведь в организмах наблюдается и еще одно интересное явление, тоже напоминающее работу завода, — перенос электронов, т. е. появление электрического тока. Врач, исследующий состояние сердца, снимает электрокардиограмму — он исследует токи, возникающие в работающей сердечной мышце. Но не только в сердце, а и в других мышцах организма протекают токи. Нервная сеть проводит электрические импульсы. В процессах окисления также происходит перенос электронов — мы знаем это из школьного курса химии. В клетках такие переносы тоже совершаются, но на большие расстояния; как доказано, электроны, переходя от атома к атому, отдают часть своей энергии, и за ее счет клетка строит сложные молекулы аденозинтрифосфорной кислоты, "начиненные" энергией, — настоящие химические аккумуляторы энергии.

Можно ли осуществить передачу электрического сигнала на большие по сравнению с молекулой расстояния, располагая только прочными органическими соединениями, содержащими лишь ковалентные связи? Теория и опыт говорят нам, что внутри большой органической молекулы возможно движение π-электронов; π-электроны образуют в некоторых молекулах единую общую систему, но заменить ими те потоки электронов, которые появляются при протекании быстрых окислительно-восстановительных реакций, нельзя. Для этого необходим катализатор, содержащий металл.

Передачу нервного импульса также можно осуществить лишь с участием ионов металлов — натрия и калия.

Регулирование работы даже таких биологических катализаторов (некоторых ферментов), которые, казалось бы, не содержат прочно связанного металла, возможно только с помощью ионов металлов (кальция, магния, марганца и др., см. гл. 5).

Итак, биологические машины для своей согласованной работы нуждаются в металлах, и эти металлы должны входить в их состав в виде ионов.

За последние годы получено много данных о концентрации элементов в различных организмах и установлен несомненный факт накопления металлов в клетках простейших (одноклеточных организмов), извлекающих их из воды океанов и морей. Нельзя сказать, что биохимия может объяснить причины концентрирования ряда металлов в клетках, так как функции многих из них остаются неизвестными, но упорное извлечение организмами определенных элементов из морской воды делает вполне вероятным предположение, что живые клетки в какой-то степени нуждаются в них. В таблице 1 показано, насколько увеличивается в среднем концентрация ионов металлов в клетках простейших (эукариотных организмов) в результате их жизнедеятельности по сравнению с концентрацией этих же элементов в окружающей среде (морская вода).

Таблица 1. Накопление металлов в клетках простейших в морской воде

Металл | Увеличение концентрации в организме по сравнению со средой
Цезий, барий, сурьма, висмут | в 10 раз

Цинк, никель, титан, хром, олово, кобальт, кадмий, серебро | в 100 раз

Марганец, железо, медь, теллур, свинец, торий, цирконий, лантан | в 1000 раз

Алюминий | в 10000 раз

В крови человека найдено 76 элементов, из них только 14 не являются металлами. Высказывались предположения (Л. Б. Меклер), что все вообще элементы необходимы для нормальной жизнедеятельности организма.

Исследования в этом направлении проводятся во многих лабораториях, но выводы приходится делать с большой осторожностью. Между степенью концентрирования элемента и его биологической функцией нет прямой и простой связи.

Значение для организма того или иного элемента совершенно не определяется его концентрацией в организме. Так, например, железо и кобальт, содержащиеся в организме в очень малых количествах, жизненно необходимы, и падение концентрации ниже допустимого ведет к тяжелейшим расстройствам. Мы поймем, почему это так, если вспомним, что катализаторы вообще могут производить значительные эффекты, действуя в, малых концентрациях; соединения железа и кобальта (а также ряда других металлов) выполняют в организмах главным образом каталитические функции. С другой стороны, даже те металлы, которые, казалось бы, не выполняют полезной работы в клетке и могут даже повредить ей (см. гл. 12), например свинец, концентрируется в ней в такой же мере, как и железо. Еще более странным кажется накопление алюминия, о функциях которого известно очень мало. Надо иметь в виду, что тяжелые металлы и металлы, образующие катионы с большим зарядом (алюминий), могут захватываться в течение жизни клетки и задерживаться в ней в силу того, что они прочно соединяются с белками.

Решающее значение имеют опыты, в которых из окружающей среды последовательно исключаются те или иные микроэлементы и отмечаются те из них, удаление которых тормозит или прекращает жизнедеятельность и развитие клеток. Такие эксперименты выполнены по отношению к ограниченному числу металлов. Поэтому мы опишем в дальнейшем именно те металлы, без которых клеткам и организму определенно не обойтись и функции которых достаточно известны.

Глава 2. Микроэлементы

Правильная оценка значения того или иного элемента в жизни организма стала возможной после многолетних наблюдений над состоянием животного и растительного мира в различных районах земного шара и кропотливой работы по сопоставлению данных наблюдений с результатами химических анализов почвы и почвенных вод в этих же районах.

В расширение кругозора наших знаний о роли элементов в биологических системах внесли большой вклад исследования акад. В. А. Вернадского, акад. А. П. Виноградова и их учеников. Было доказано, что между химическим составом почв и формами растений, развивающихся на них, имеется глубокая связь. Так, на почвах, богатых кальцием (карбонатные породы, известняки), развиваются растения характерных видов — кальцефильная флора; избыток цинка в почве ведет к появлению особых видов цветов (фиалки) и т. д.

Земную оболочку (литосферу, гидросферу и атмосферу, вместе взятые) называют биосферой, она является ареной жизненных процессов, потребляющих различные соединения элементов и создающих новые. Масштабы этого биогеохимического круговорота колоссальны — биосфера содержит 100 млрд. т живого вещества. Фотосинтетические процессы в течение года потребляют 175 млрд. т углерода, превращая его в различные органические соединения. Водоросли, губки, растения суши накапливают кремний — жесткая трава прибрежных мест, о которую так легко порезать пальцы, содержит много кремния; корненожки, кораллы собирают кальций — он необходим им для постройки прочных защитных оболочек; иглокожие концентрируют ванадий и т. д. После гибели всех этих организмов образуются скопления веществ, состав которых отражает особенности не только геохимических процессов (выветривания, растворения минералов), но и в не меньшей степени характер существования живых систем.

Поэтому природа даже в тех ее формах, которые, казалось бы, не имеют отношения к жизни, в действительности создана при активном участии живых организмов. Коралловые острова и коралловые рифы, тянущиеся на тысячи километров и достигающие в высоту 2-3 км, созданы живыми существами, построившими их в основном из карбоната кальция.

Раскрытие этих важных закономерностей и помогло понять данные наблюдений, относящиеся к вопросу о жизненной ценности того или иного элемента. На полях Австралии, которые ничем особенным не выделялись среди других пастбищ, скот часто заболевал анемией; было выяснено, что причиной является недостаток в почве соединений меди. Еще более тяжелая картина анемических расстройств у крупного рогатого скота наблюдалась в некоторых прибалтийских районах: сильное исхудание, слабость, малокровие сопровождали эту болезнь, приведшую к гибели многих животных. Тонкий химический анализ выявил дефицит в почвах этих районов элемента кобальта. Немногое было известно о роли этого металла в жизненных процессах. Тревожные сигналы из угрожаемых районов заставили попытаться изучить проблему более детально.

Больные анемией животные быстро поправлялись при введении в их корм солей кобальта. Надо было, очевидно, искать кобальт среди тех веществ, которые находятся в нормальном, здоровом организме. Громадная работа, о трудностях которой мы позже расскажем, увенчалась успехом. Было доказано, что кобальт входит в состав витамина B12, который, как и медь, необходим для процесса кроветворения. Результат этот имел далеко идущие последствия: удалось разработать методы надежного лечения опасной болезни — злокачественной анемии, поражавшей животных и человека и считавшейся до этого времени почти неизлечимой.

Недостаток меди и железа в почвах отражается и на состоянии растений — они заболевают хлорозом. В зеленых частях растения задерживается образование хлорофилла, снижается и процент витаминов.

Избыток некоторых элементов также представляет опасность. Известны заболевания животных, вызванные избыточным содержанием в почвах молибдена, селена, фтора и др. Все это указывает на то, что животный и растительный мир находится в постоянном взаимодействии с веществами литосферы (суши) и гидросферы (водная оболочка Земли).

А атмосфера? Имеет ли она отношение к жизни? Конечно! Мы ведь дышим кислородом атмосферы, а дыхание живых существ и работа многочисленных заводов обогащает атмосферу углекислым газом. Не все знают, что и появилась-то кислородная атмосфера на Земле именно вследствие деятельности фотосинтезирующих организмов, разлагавших воду и выделявших кислород. Лишь малая часть кислорода, по-видимому, возникла за счет разложения воды ультрафиолетовым излучением Солнца. Кислород, оказавшись в атмосфере, не только способствовал формированию микроорганизмов аэробного типа, но и окислял соединения металлов с низшими степенями окисления: соединения железа (II) превратились в соединения железа(III), оксиды марганца(II) образовали оксиды марганца (IV) и т. д. Живая и неживая природа постоянно влияют химически друг на друга, и было бы странным предполагать, что деятельные и хорошо растворимые соединения многих металлов не будут так или иначе вовлечены в жизненный круговорот.

На основе тех наблюдений, о которых шла речь выше, и начала постепенно развиваться отрасль науки, которую ныне называют бионеорганической химией. В ее задачи входило прежде всего выяснение роли каждого элемента в биологических процессах.

Сведения о функциях классических элементов жизни — углерода, кислорода, водорода, фосфора, серы, азота — достаточно подробны, их расширение составляет цель работы биохимиков. К области биохимии относят и данные о функциях йода и других галогенов. Поэтому на долю бионеорганической химии остаются главным образом металлы. Вспомним, что к металлам относится большинство элементов, и перспективы развития бионеорганической химии по этой причине разнообразны и значительны. Успехи, уже достигнутые на этом пути, в большой мере обусловлены введением в практику новых современных методов исследования, позволивших составить достаточно ясное представление о структуре биологических машин клетки и о месте, которое занимают в таких машинах ионы металлов.

Подводя предварительный итог опытным данным, можно сказать, что особенно важными следует считать ионы меди, железа, цинка, кобальта, марганца, молибдена, кальция, натрия, калия и магния. Это не значит, что остальные металлы не играют биологической роли. Весьма вероятно, что мы просто еще не знаем многого, что составит в будущем содержание бионеорганической химии, и пока вынуждены ограничиться наиболее изученными явлениями, относящимися к этой области. Кроме того, даже те металлы, которые при нормальном состоянии организма не занимают в его работе заметного места, можно иногда с успехом применять для лечения заболеваний. Примером этого может служить серебро — некоторые его соединения обладают бактерицидными свойствами, причем уничтожают бактерии даже в очень малых концентрациях, они применяются для этих целей в медицине.

Рассматривая элементы, заполняющие таблицу Менделеева, можно выделить те, из них, которые играют особенно важную (и лучше изученную) роль в процессах, поддерживающих жизнь и развитие организмов, — так называемые биогенные элементы. Кроме уже известных легких элементов Н, О, С, N, P, S, Mg, Ca, Na, К, мы найдем и более тяжелые — Fe, Co, Cu, Zn, Cr, Mn, Мо и др., относительно функций которых сведения не всегда достаточно полны (это относится, например, к хрому).

Основная масса биологически активных металлов расположена в средней части первого большого периода и относится к переходным элементам. Исключение составляют только четыре металла: натрий, калий, магний, кальций, которые содержатся в организмах в сравнительно больших количествах. Роль лития неясна, хотя и он, по-видимому, выполняет какие-то биологические функции, по крайней мере, в растениях.

Переходные элементы содержатся в организмах в очень малых количествах, и уже из этого можно сделать осторожный вывод, что их значение (доказанное прямым опытом!) должно быть связано с катализом. Ведь именно активные катализаторы могут способствовать быстрым изменениям состава вещества, действуя в малых концентрациях. В дальнейшем мы увидим, что такое предположение в большинстве случаев оказывается верным. Но вышеназванные металлы могут еще выполнять (вместе с органическими соединениями) и другую работу — переносить с места на место группу атомов или целые молекулы, закреплять молекулы в определенном положении, поворачивать их, поляризовать и т. п.

Таблица 2. Влияние недостатка и избытка металлов на состояние растений и животных

Металл | Влияние недостатка металла (иона) на состояние организмов | Влияние избытка металла (иона) на состояние организмов
Литий | - | Развитие особых форм растений — литиевая флора

Натрий | У животных: мышечные боли, слабость. У растений: торможение образования хлорофилла | Гипертония (у человека). Развитие галофитных форм у растений

Магний | У растений: мраморность листьев. У животных: травяная тетания | У человека возможно отравление магнием (паралич дыхания)

Кальций | У животных: остеопороз | Антагонист магния, применяют при отравлении магнием

Алюминий | - | Развитие особых форм растений

Марганец | У растений: хлороз. У птиц: нарушения развития крыльев | Нарушения развития растений. В высоких степенях окисления сильно токсичен

Железо | У растений: хлороз, замедление образования хлорофилла. У животных анемические явления | В больших количествах токсично для животных и растений

Медь | У животных: анемия (при содержании ниже 10-4%). Заболевания растений | В повышенной концентрации токсичен для животных и растений

Кобальт | У животных: анемия (ниже 2*10-6%) | В повышенной концентрации токсичен для животных и растений

Цинк | Заболевания растений | Токсичен для животных и растений

Молибден | Заболевания бобовых растений | При избытке в почвах — заболевания скота

В таблице 2 в сжатой форме отмечено, какое действие вызывает в растениях повышение и понижение содержания металлов в почвах и как это сказывается на состоянии животных.

Глава 3. Комплексные соединения

В каком же виде находится тот или иной металл в клетках организма? Бесспорно, в виде положительно заряженного иона. Как хорошо известно, соли металлов под действием воды (а в клетках организмов содержится около 70-75% воды) диссоциируют — распадаются на положительные ионы металлов (катионы) и отрицательно заряженные ионы (анионы) кислотных остатков, например:

Cоли металлов под действием воды

Следовательно, в водных растворах солей находятся катионы металлов, им-то и надо приписать все те свойства, с которыми встречается ученый, исследующий роль металлов в организмах.

Так ли это? Не совсем так!

Ион металла, находящийся в водном растворе того или иного вещества, вовсе не безразличен к своему окружению. Он вступает во взаимодействие с молекулами воды и образует соединения, в которых на один ион приходится от 4 до 8 (а в отдельных случаях и более) молекул воды. Казалось бы, нет прямой связи между валентностью металла и числом присоединяемых молекул, да и вообще непонятно, как нейтральная (т. е. не имеющая свободных валентностей) молекула воды может присоединяться к иону.

Теория валентности приписывала каждому атому определенное число единиц валентности (обозначаемых черточками), причем предполагалось, что атом водорода одновалентен. Если какие-либо другие атомы присоединяли к себе, например, два, три или четыре атома водорода, то это означало, что данные атомы двух-, трех- и четырехвалентны: двухвалентна сера в сероводороде H2S, трехвалентен азот в аммиаке NH3, четырехвалентен углерод в метане СН4 и т. д. Величина валентности изменяется от 1 до 8, и если в молекуле соединения все валентности насыщены (нет свободных единиц-черточек), то такая молекула уже не может соединяться с другой частицей. Поэтому молекула воды, структурная формула которой , не должна, казалось бы, присоединяться к иону металла.

Фактически дело обстоит не так, и молекулы воды образуют с ионами металлов разнообразные соединения. Они отличаются рядом характерных свойств, в частности окраской.

Хлорид меди CuCl2 высушенный, т. е. безводный, окрашен в светло-коричневый цвет. Бросим щепотку этой соли в воду, получится раствор голубой окраски. Ионы хлора бесцветны, голубую окраску надо приписать соединению иона меди и молекул воды. Проверим это. Попробуем заменить воду иным растворителем, например ацетоном; если голубая окраска свойственна водному соединению, то в ацетоне должна наблюдаться другая окраска, независимо от того, реагирует ли ион меди с ацетоном или нет. Хлорид меди растворяется в ацетоне, образуя раствор зелено-коричневого цвета. При добавлении в него избытка воды раствор делается голубым. Все это убеждает нас в том, что ионы металла с водой (и, вероятно, с ацетоном) образуют какие-то соединения. Еще Д. И. Менделеев — творец сольватной теории растворов — указывал на бесспорные признаки химической реакции в процессе растворения многих веществ. Измерения обнаруживают и выделение теплоты при растворении безводных солей: безводные хлорид и сульфат меди сильно разогреваются при добавлении к ним воды. С другой стороны, если попробовать удалить воду из раствора сульфата меди, то можно получить красивые синие кристаллы, имеющие состав CuSO4*5H2O. Для того чтобы удалить и эти оставшиеся молекулы воды (четыре из них, как доказано, окружают ион меди и одна соединена с сульфат-ионом), придется сильно нагреть кристаллы; тогда они, теряя воду, становятся почти белыми.

Все это позволяет сделать уверенный вывод, что молекулы способны прочно присоединяться к ионам меди, заметно изменяя их свойства, в частности окраску. Молекулы воды присоединяются и к ионам других металлов — кальция, железа, магния, натрия и др. При медленном испарении воды из растворов солей удается получить кристаллы, содержащие соль и определенное количество молекул воды на каждую молекулу соли. Выделенные в чистом виде, такие соединения носят название кристаллогидратов. К кристаллогидратам относят соединения: CuCl2*2H2O, CuSO4*5H2O, а также СаСl2*6Н2O, CaSO4*2H2O, Na2SO4*10H2O и др.

Но не только вода, а и другие соединения могут взаимодействовать с ионами металлов в растворах. Добавим, например, к водному раствору какой-либо соли меди (можно взять раствор хлорида СuСl2) избыток водного аммиака. Сначала появится зеленовато-голубой осадок, затем он быстро исчезнет, а жидкость приобретет красивый темно-синий цвет. Что произошло? Первые порции водного аммиака вступили в реакцию с хлоридом меди, и получился осадок гидроксида меди (II):

Реакция водного аммиака с хлоридом меди

Растворение осадка и появление синей окраски указывают на развитие другой реакции. В результате взаимодействия гидроксида с молекулами аммиака, которые всегда имеются в водном растворе аммиака, получилось соединение — аммиакат меди:

Взаимодействие гидроксида меди с молекулами аммиака

Это соединение способно диссоциировать, отщепляя ионы ОН-:

Диссоциация аммиаката меди

Молекулы аммиака прочно связаны с ионами меди, и синяя окраска — это свойство именно комплексного иона Cu(NH3)24+. Следовательно, к ионам металлов могут присоединяться не только молекулы воды, но и молекулы других соединений, в частности аммиака.

Обширные исследования таких комплексных молекул и ионов привели ученых к выводу, что комплексообразование представляет собой одно из самых распространенных явлений в химии металлов. Было установлено, что практически ионы всех металлов способны образовывать комплексные соединения с различными молекулами органических и неорганических соединений. Известны, например, следующие соединения: Со(NН3)6Сl2, Pt (NH3)Cl2, Сr(NН3)6Сl3, [NiEn3]Cl2 и др. (Символ Еn обозначает молекулу этилендиамина H2N — CH2 — СН2 — NH2.) Прочно связанные молекулы аммиака или этилендиамина в этих соединениях размещены в непосредственной близости от центрального иона металла — их называют лигандами (что значит "связанные").

Лиганды могут нести электрический заряд, т. е. быть ионами. В таких случаях заряд всего комплексного иона получается алгебраическим суммированием заряда всех лигандов и заряда центрального иона. Примером может служить комплексное соединение иона железа (II) с цианид-ионами CN-. Комплекс [Fe(CN)6]4- имеет отрицательный заряд, так как центральный ион заряжен двумя положительными, а шесть ионов-лигандов несут шесть отрицательных зарядов. Комплексный ион может удерживать четыре однозарядных катиона, например четыре иона калия. Выделенная из раствора комплексная соль имеет состав K4[Fe(CN)6].

Число лигандов, располагающихся в непосредственной близости от центрального иона, называют координационным числом иона (сокращенно его обозначают КЧ). Часто встречаются координационные числа 2, 4, 6; числа 3, 5, 7 встречаются крайне редко. Известны и очень большие координационные числа — 8, 12, 18. В таблице 3 приведены некоторые примеры типичных координационных соединений[1] с различными КЧ.

Величина координационного числа определяется относительными размерами иона и лигандов и величиной электрического заряда центрального иона. Большой заряд и малые размеры иона благоприятствуют высоким координационным числам.

Таблица 3. Координационные числа некоторых комплексных соединений (комплексных ионов) иих геометрическая форма

Формула иона | КЧ | Геометрическая форма иона
[Ag(NH3)2]+ | 2 | Линейная

[HgI3]- | 3 | Треугольник

[Cu(NH3)4]2+, [PtCl4]2- | 4 | Квадрат

[MnCl5]3- | 5 | Пирамида

[PtCl6]2-, [Ca(H2O)6]2+, [Fe(CN)6]4- | 6 | Октаэдр

[Zr(C2O4)4]4- | 8 | Куб

Иногда в молекуле органического соединения находятся две или более групп, способных присоединяться к иону металла. В таких случаях одна молекула-лиганд занимает вблизи от иона (в так называемой координационной сфере иона) не одно, а два или более мест.

Примером может служить уже упоминавшееся соединение иона меди с молекулами этилендиамина. Этилендиамин H2N-СН2-СН2-NH2 имеет в составе две группы — NH2, активно присоединяющиеся к иону меди, и каждая молекула занимает два места в координационной сфере:

Cоединение иона меди с молекулами этилендиамина

Как видно из формулы, комплексообразование в этом случае приводит к возникновению циклов: ион меди, соединяясь с атомами азота, замыкает два цикла (пунктир обозначает связи между ионом и атомами азота лиганда). Такие комплексы называют хелатными ("клешнеобразными").

В таблице 3 указано соединение иона циркония с анионами щавелевой кислоты. Здесь лигандом является отрицательно заряженный ион С2O4-. Формула щавелевой кислоты:

Формула щавелевой кислоты

Формула аниона:

Формула аниона щавелевой кислоты

Каждый анион занимает два координационных места; всего четыре таких частицы-лиганда занимают восемь мест, поэтому координационное число циркония равно 8.

По мере расширения круга исследований неорганических и органических веществ число комплексных соединений металлов с различными лигандами все увеличивалось. Постепенно выяснилось, что перед химиками открывается совершенно новая область науки, имеющая первостепенное значение для решения целого ряда теоретических и практических вопросов. Ученым пришлось заново пересмотреть теорию химической связи и понятие валентности. Большой вклад в учение о комплексных соединениях внесли русский ученый Л. А. Чугаев и его ученики, синтезировавшие множество новых веществ и изучившие их свойства. Позже успешная работа над координационными соединениями была продолжена в исследованиях школы акад. И. И. Черняева, А. А. Гринберга, физико-химиков Л. Полинга, Р. Пирсона, К. Бальхаузена и др.

Достижения химии комплексных соединений оказали сильное влияние на развитие биохимии. Если ранее можно было только констатировать, что металлы — железо, медь, кобальт, цинк и др. — необходимы для жизни организмов, то теперь удалось раскрыть механизм их работы и понять, что ион металла всегда действует в форме комплекса.

Для биохимии особенно важны комплексные соединения железа и магния, в которых четыре координационных места занимает одна частица, называемая порфином:

Комплексные соединения железа и магния

Практически в организмах встречаются комплексы, в которых некоторые атомы водорода в порфине замещены на различные органические группы -СН3, -СН2-СН2-СООН и др., но основной каркас этой сложной молекулы сохраняется в целом ряде важнейших веществ: в гемоглобине, хлорофилле и в различных ферментах, ускоряющих процессы обмена веществ.

Молекулы комплексных (координационных) соединении отличаются вполне определенной геометрической структурой. Так, два одинаковых лиганда часто располагаются около иона металла таким образом, что центры иона и частиц-лигандов оказываются на одной прямой. Три лиганда размещаются по углам треугольника, четыре — по углам квадрата или четырехгранника (тетраэдра) шесть — по углам восьмигранника (октаэдра) (рис. 1), восемь — по углам куба. Если лиганды неодинаковы, то геометрические формы могут быть и не совсем правильными (искаженными), но тем не менее лиганды остаются фиксированными в определенных точках пространства вокруг центрального иона. В последнем столбце таблицы 3 указаны характерные геометрические формы некоторых координационных соединений, образующих в растворах ионы с различными КЧ.

Рис. 1. Расположение лигандов (L) вокруг центрального иона в комплексных соединениях: а — квадрат; б — тетраэдр; в — октаэдр. Центральный ион отмечен буквой М

Геометрическая форма того или иного комплексного иона сохраняется и в том случае, когда вещество выделяют из раствора в виде кристаллов. Следовательно если, например из раствора соли K2PtCl6, содержащего ноны К+ и [PtCl6]2-, выделить кристаллы этой соли то и в кристаллах сохранятся октаэдры (восьмигранники) PtCl62-, т. е. анионы наряду с катионами — ионами калия К+.

Устойчивость геометрической формы комплексного нона ведет к двум важным следствиям.

Во-первых, оказывается, что одно и то же координационное соединение, содержащее лиганды нескольких видов, может существовать в нескольких формах, различающихся способом размещения лигандов и соответственно физическими и химическими свойствами. Так, соединение Pt(NH3)2(NO2)2Cl2, имеющее лиганды трех сортов, может существовать в пяти различных формах (положение иона платины указано точкой в центре квадрата):

Соединение Pt(NH3)2(NO2)2Cl2, имеющее лиганды трех сортов, может существовать в пяти различных формах (положение иона платины указано точкой в центре квадрата):

Все пять форм были получены советскими учеными И. И. Черняевым и Г. С. Муравейской. Это явление аналогично явлению изомерии, характерному для органических соединений. Очевидно, все вышенаписанные формулы представляют строение изомеров одного и того же координационного соединения Pt(NH3)2(NO2)2Cl2.

Во-вторых, геометрическая форма комплекса влияет на способность центрального иона металла вступать в те или иные взаимодействия с дгими молекулами. Если ион металла имеет координационное число 6 и находится в центре октаэдра, то он, конечно, довольно хорошо изолирован от внешней среды, и молекулам, с которыми о бы вступить в соединение, трудно до него добраться. Но если тот же ион располагается в центре плоского квадрата и имеет КЧ, равное 4, то он открыт с двух сторон. Даже в том случае, когда с одной стороны ион уже присоединил какую-либо частицу (например, частицу белка), все равно с другой стороны к нему открыт доступ.

Именно так обстоит дело с гемоглобином. Комплекс железа с протопорфирином (замещенным порфином) имеет плоское строение, КЧ равно 4. Кроме того, с одной стороны к иону железа присоединена молекула белка (глобин), но шестое место в координационной сфере свободно. Это место и занимает молекула кислорода, переносимого гемоглобином в процессе дыхания. Если бы комплекс железа имел КЧ, равное 6, и ион железа был бы изолирован от среды, гемоглобин не мог бы переносить кислород, необходимый для дыхания клеток.

Как видно, даже геометрические особенности координационных соединений имеют жизненно важное значение. Одной из самых характерных особенностей химии координационных соединений является глубокое различие между свойствами простого иона и иона, окруженного лигандами. Иначе говоря, свойства комплексного иона существенно зависят от химической природы как центрального иона, так и лигандов (табл. 4).

Таблица 4. Сравнение свойств комплексов и гидратированных ионов тех же металлов

Ион металла | Лиганд | Свойство комплексов с данным лигандом | Свойства гидротированного иона
Медь | Аммиак, амины | Реагируют с целлюлозой, темно-синяя окраска; бурно разлагают пероксид водорода | Не реагируют с целлюлозой, слабоголубая окраска; медленно разлагают пероксид водорода

Железо | Порфин (его производные) | Переносят кислород. Энергично разлагают пероксид водорода, ускоряют окисление различных веществ | Не способен переносить кислород. Окислительные свойства выражены относительно слабо

Цинк | Белки То же | Ускоряют разложение гидрокарбонатов. Способствуют усвоению белков | Не влияет на разложение гидрокарбонатов и усвоение белков

Молибден | Белки | Способствуют усвоению бактериями атмосферного азота | Не влияет на усвоение атмосферного азота

Магний | Производное порфина | Хлорофилл обусловливает превращение диоксида углерода и воды в углеводы (фотосинтез) | Не ускоряет фотосинтез

Ионы металлов, не связанные с лигандами, встречаются редко. В сущности, химик может наблюдать свойства такого "простого" иона металла разве что при очень высоких температурах в газообразной среде, нагревая ту или иную соль до температур порядка тысяч градусов. В растворах солей ионы металлов связаны с молекулами воды (гидратированы) и, следовательно, находятся там в виде комплексов. Но заменим молекулы воды на молекулы аммиака, например в растворе соли меди CuCl2. Как мы уже знаем, при этом получится темно-синий комплекс, имеющий свойства, которых нет у гидратированного иона.

Гидратированные ионы слабо окрашены, они легко взаимодействуют с ионами карбоната, образуя осадок карбоната меди, практически не реагируют с целлюлозой. А вот комплексные ионы Cu(NH3)42+ с ионами карбонатов СО32- осадка не образуют, а целлюлозу (например, вату) в щелочной среде растворяют (на этом основан один из способов получения искусственного шелка). Ионы цинка в виде гидратного комплекса не влияют на разложение кислых солей угольной кислоты, а комплексное соединение цинка, содержащееся в крови, ускоряет распад гидрокарбонатов и выделение из крови в легкие диоксида углерода. Не будь этого комплекса в организме, мы не могли бы дышать, так как освобождение крови от углекислоты происходило бы слишком медленно. Наконец, если бы исчезло комплексное соединение магния — хлорофилл, то растения не могли бы развиваться и жизнь на Земле, лишившись притока поддерживающей ее солнечной энергии, прекратилась бы! Отсюда следует, что, изменяя состав комплексов, природа может в очень широких пределах варьировать свойства соединений данного металла и для решения множества биохимических задач обходиться относительно небольшим числом металлов.

Суммируем вкратце, что мы узнали о том, каким образом действуют ионы металлов в клетках организма.

Металлы находятся в клетках в виде комплексных соединений с различными органическими, веществами: белками, различными производными порфина и др. Комплексные ионы присоединяют к себе частицы-лиганды так, что получается правильная геометрическая форма: треугольник, тетраэдр, октаэдр и т. п. Одно или два места около иона могут остаться свободными, и туда попадают другие молекулы, например молекула кислорода в частицу гемоглобина. Все лиганды занимают определенные положения и относительно иона, и относительно друг друга; они, как говорят, правильно ориентированы в пространстве.

Ион металла имеет положительный заряд и притягивает к себе отрицательные заряды — электроны, находящиеся в молекулах (или ионах) лигандов. Таким образом, молекулы лигандов поляризуются. Но свойства комплексного иона так своеобразны и так сильно зависят от природы лигандов, что приходится предположить, что между лигандами и центральным ионом металла образуются химические связи. Это значит, что ион и лиганды имеют общие электроны.

Вопрос об электронном строении координационных соединений вызывал споры среди ученых на протяжении не одного десятка лет. Казалось очень странным, что к соединению, в котором явно насыщены все валентности, можно присоединить нейтральные молекулы. Придумывали очень сложные структурные формулы, приписывали атомам несвойственные им валентности, но все это не привело к успеху. Только развитие теории строения атома и химической связи, а также достижения квантовой химии помогли понять, почему образуются координационные соединения и какова их роль в процессах обмена веществ в организмах.

Почему вообще возникает химическая связь? Рассмотрим простой пример: соединяются атомы лития и фтора. В атоме лития, как известно, содержится три электрона. Два из них связаны очень прочно, а третий находится во втором слое и связан слабее. В атоме фтора во втором слое уже семь электронов (а всего их в атоме фтора девять). При взаимодействии атома лития с атомом фтора слабо связанный электрон лития переходит к атому фтора и занимает место во втором слое. Этот процесс сопровождается уменьшением запаса потенциальной энергии атомов и происходит легко. Избыток энергии выделяется в виде теплоты и частично в виде света. После перехода электрона атом фтора приобретает отрицательный заряд, так как у него теперь один "лишний" электрон, а атом лития заряжается положительно (у него не хватает одного электрона). Оба заряженных атома (их надо называть уже не атомами, а ионами) притягиваются друг к другу и образуют молекулу фторида лития:

Молекула фторида лития

(При понижении температуры получится кристалл фторида лития, в котором находятся ионы лития и фтора.) В этом простом примере валентность атома лития и атома фтора равна единице. Восемь электронов, окружающих ядро иона фтора, и пара электронов около ядра иона лития, как доказано, образуют очень простое сочетание. Соответственно и хлорид лития — прочное соединение. Опыт и теория показали, что так просто нельзя себе представлять картину образования химических связей во всех случаях. Во-первых, отданный атомом лития электрон не полностью переходит "во владение" атома фтора. Фактически получается пара электронов, область движения которых охватывает оба атома. Во-вторых, химическая связь может образоваться и тогда, когда оба связывающих электрона принадлежат одному атому. Рассмотрим в качестве примера атом азота, вступающий в соединение с тремя атомами водорода. В результате получается молекула NН3 — молекула аммиака; атом азота в ней, очевидно, трехвалентен. Схематически это и отражено в формуле:

Атом азота, вступающий в соединение с тремя атомами водорода

В атоме азота пять внешних электронов. Три из них использованы для соединения с атомами водорода. Каждый атом водорода отдает по одному электрону для образования пар, связывающих оба атома. Схема электронного строения аммиака выглядит так:

Схема электронного строения аммиака

Здесь электроны, принадлежавшие атомам водорода, условно обозначены крестиками, электроны азота — точками. Легко заметить, что атом азота имеет пару электронов, которая не принимает участия в связывании.

Допустим, что молекулы аммиака попадают в среду, в которой находятся ионы водорода Н+ (в раствор какой-либо кислоты). Ионы водорода немедленно присоединяются к свободной паре электронов азота, и получится химическая связь — точно такая же, как и три другие. Однако на этот раз в образовании связи принимали участие электроны не двух атомов, как в предыдущем примере, а только одного! Связи, возникшие таким путем, называются координационными.

А не могут ли сами молекулы аммиака за счет своих свободных электронных пар присоединяться к ионам металлов? Весь вопрос в том, будет ли происходить при этом снижение запаса потенциальной энергии всех частиц, — это ведь обязательное условие образования прочных химических связей.

Развитие идей квантовой механики привело к выводу, что электроны в атомах размещены на определенных энергетических уровнях и переход электрона с одного уровня на другой соответствует скачкообразному изменению запаса энергии атома. Чем больше номер периода, в котором находится элемент, тем больше число уровней в его атоме. На каждом уровне может находиться лишь строго определенное число электронов (на первом уровне два электрона, на втором — восемь, на третьем — восемнадцать и т. д.).

Если число электронов на данном уровне мало (или если на уровне вообще нет электронов, хотя они могли бы там находиться), то другая частица, имеющая свободную (неподеленную) пару электронов, вполне может передать эту пару на свободный (вакантный) уровень.

Ион меди располагает такими свободными уровнями, поэтому четыре молекулы аммиака легко передают ему четыре пары своих электронов, в результате чего и возникают четыре химические связи, соединяющие ион меди с молекулами аммиака, — получается тот самый темно-синий комплексный ион Cu(NH3)42+, о котором шла речь выше.

В примере с фторидом лития было указано, что электроны, связывающие ионы лития и фтора, образуют общую систему и движутся так, что в своем движении они охватывают оба атома. Квантовая механика ничего не говорит о движении электрона, ее методы позволяют вычислить только вероятность того, что электрон находится в данной части пространства. Поэтому вместо того чтобы рисовать пути движения электрона в атоме или молекуле (траектории или орбиты), ограничиваются геометрическим описанием той области пространства около ядра атома, где вероятность найти электрон достаточно велика. Эта область пространства может иметь форму сферы (s-электроны), или гантели (р-электроны), или розеткообразной фигуры (d-электроны). Часто поэтому говорят об электронных "облаках", когда хотят приближенно представить себе распределение электронных зарядов в атоме или молекуле.

В координационных соединениях, имеющих электроны электронных пар различных лигандов и электроны иона металла, существуют электронные облака, охватывающие сразу несколько частиц (ион и отдельные группы атомов в лигандах). Точные расчеты распределения вероятностей найти электрон в этом облаке очень сложны и требуют знания волновых функций электронов во всех частицах. Волновой функцией называют математическую зависимость между координатами электрона в атоме (именно к волновой функции относится термин "орбиталь", который не надо путать с "орбитой" прежних теорий строения атома).

Мы не будем углубляться в квантовую механику — для нас достаточно знать, что электроны иона металла и электроны соединенных с ним атомов лигандов образуют общие электронные облака. Так обстоит дело в соединениях иона меди с аммиаком, железа с порфином и т. д. В дальнейшем мы несколько подробнее разберем этот вопрос на примере соединений железа, входящих в состав ферментов, а теперь перейдем к общему описанию ферментов — удивительных веществ, ускоряющих химические реакции в клетках и действующих более точно и согласованно, чем химические цехи на самых лучших современных заводах.

Глава 4. Ферменты и металлы

Ферментами называют природные белковые катализаторы. Некоторые ферменты имеют чисто белковый состав и не нуждаются для проявления своей активности в каких-либо иных веществах. Однако существует обширная группе ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения — их обычно называют коферментами. В большинстве случаев связь между коферментом и белком слабая и кофермент можно отделить от белка. Субстратом называется вещество, которое изменяется под действием фермента.

Известны сочетания кофермента с белком, в которых связи между ними прочны и разделить кофермент и белок можно только с большим трудом. Тогда вместо "кофермент" применяют термин "простетическая группа". Такие прочные связи обнаружены в ферментах, содержащих гем — комплексное соединение железа с производным порфина, упоминавшееся в предыдущей главе. В качестве активаторов-кофакторов в ферментах встречаются ионы железа, меди, цинка, магния, марганца, калия, натрия, молибдена. Роль коферментов в важнейших процессах, катализируемых ферментами, играют сложные вещества, молекулы которых иногда представляют сочетание нескольких звеньев, состоящих из органических оснований, углеводных остатков, остатков аминокислот и т. п.

Многие коферменты являются витаминами и жизненно необходимы для организма. Установлено, что для нормальной работы фермента иногда требуется и кофермент, и ион металла, образующие вместе с молекулой субстрата тройной комплекс. Так металлы входят в состав биологических машин как незаменимая часть. Ионы магния нужны для работы по переносу остатков фосфорной кислоты, для этих же целей нужны и ионы калия; гидролиз белков требует ионов цинка и т. д. Ниже мы разберем эти вопросы детально.

Ферменты, как правило, ускоряют однотипные реакции, и лишь немногие из них действуют только на одну определенную и единственную реакцию. К таким ферментам, обладающим абсолютной специфичностью, относится, в частности, уреаза, разлагающая мочевину. Большинство ферментов не столь строги в выборе субстрата. Одна и та же гидролаза, например, способна катализировать гидролитическое разложение нескольких различных сложных эфиров.

По мере того как в биологических исследованиях их химическая сторона углублялась и химики все чаще становились помощниками и сотрудниками биологов, число вновь открываемых ферментов неуклонно возрастало; вскоре их пришлось считать уже не десятками, а сотнями. Такое расширение круга биологических катализаторов вызвало некоторые трудности в классификации и номенклатуре ферментов.

Раньше ферменты называли по тому субстрату, на который они действовали, с прибавлением окончания "аза". Так, если фермент действует на сахар мальтозу, то его называли "мальтаза", если на лактозу — "лактаза" и т. д. В настоящее время принята номенклатура, в которой название отражает также и химическую функцию фермента. Частица "аза" сохранена для простых ферментов. Если же в реакции участвует комплекс ферментов, применяют термин "система".

Ферменты делят на шесть классов:

   1. Оксидоредуктазы. Это ферменты, катализирующие окислительно-восстановительные реакции. Примером оксидоредуктаз могут служить пируватдегидрогеназа, отнимающая водород от пировиноградной кислоты, каталаза, разлагающая пероксид водорода, и др.

   2. Трансферазы. Трансферазы осуществляют перенос с одной молекулы на другую целых атомных групп. Они могут переносить группы СН3, СООН, Н2РО3 и др.

   3. Гидролазы. Эти ферменты вызывают разрыв связей типа

   4. Гидролазы вызывают разрыв связей

и подобные им с последующим присоединением воды:

   5. Гидролазы вызывают разрыв связей с последующим присоединением воды

К гидролазам относятся пищеварительные ферменты пепсин, химотрипсин и др., а также липазы, расщепляющие жиры.

   6. Лиазы. Лиазы тоже расщепляют связи С-С, С-N, С=O и др., но без участия воды, т. е. негидролитическим путем.

   7. Изомеразы. Эти ферменты способствуют частичной перестройке молекул субстрата.

   8. Лигазы. Лигазы обеспечивают соединение молекул субстрата, причем энергия, необходимая для этого, доставляется аденозинтрифосфатом (АТФ).

Уже простое перечисление этих функций наводит на мысль, что ферменты действуют в клетках не в одиночку, а совместно, последовательно перекраивая молекулы пищевых веществ: разрывая одни связи, создавая другие, изменяя общий каркас молекулы, перенося на нее или отнимая от нее целые группы атомов и т. д. Ферменты, в отличие от большинства технических катализаторов, функционируют в составе сложных систем; работа их согласована так, что продукт деятельности одного фермента обязательно попадает в сферу влияния вполне определенного другого, и скорости превращений на всех стадиях химического конвейера клетки также строго согласованы и регулируются автоматически.

Клетка и организм располагают и средствами управления своими "химическими заводами", так как клетка не только пользуется ферментами, но и сама создает их. Если при данных условиях работу какой-либо цепочки ферментов необходимо прекратить, так как вырабатываемый ею продукт имеется в избытке, выключается синтез соответствующих ферментов или подавляется деятельность одного из них, и таким образом весь конвейер временно останавливается. Это значит, что ферментная система пространственно организована. Она организована также во времени, потому что ферменты активируются и даже появляются в большей концентрации в те моменты, когда клетка нуждается в их деятельности.

Молекулярная масса ферментов велика и измеряется десятками, сотнями тысяч и даже миллионами. Ниже (табл. 5) приведены молекулярные массы некоторых ферментов.

Изучение химического состава ферментов показало, что все они без исключений содержат белок. Белковая природа ферментов объяснила многие детали их синтеза в клетках, причины, по которым они легко фиксируются на мембранах. И вместе с тем появилась важная проблема в теории катализа — вопрос о механизме действия биологических катализаторов, которые, обладая очень сложной геометрической структурой, не являются вполне "жесткими", подобно кристаллическим оксидам или металлам, а могут изменяться уже в процессе каталитической реакции.

Таблица 5. Молекулярные массы ферментов (по X. Неттеру)

Фермент | Относительная молекулярная масса | Функция фермента
Рибонуклеаза | 1,4*104 | Гидролиз рибонуклеиновой кислоты

Химотрипсин | 2,16*104 | Гидролиз белков

Пепсин | 3,9*104 | Гидролиз белков

Уреаза | 48*104 | Разложение мочевины

Амилаза | 15*104 | Гидролиз крахмала

Карбонангидраза | 3*104 | Разложение гидрокарбонатов

На белковых молекулах ферментов имеются зоны или области, в которых и развивается каталитическая реакция. Можно, по аналогии с обычными катализаторами, называть эти зоны активными центрами. Активный центр ферментов, катализирующих некоторые окислительно-восстановительные реакции, в частности каталазы (разлагающей пероксид водорода), состоит из комплексного соединения железа с порфирином (замещенным порфином). Направленность действия фермента в значительной мере зависит от природы того белка, который входит в его состав.

В состав различных ферментов входят разные металлы. Так, марганец входит в состав аргиназы, разлагающей некоторые составные части белков, цинк — в карбон-ангидразу. Медь содержится в аскорбиноксидазе — ферменте, окисляющем витамин С. Во многих растениях содержится фермент пероксидаза. Он усиливает окисление органических веществ пероксидом водорода. Активная группа этого фермента состоит из комплексного иона железа такого же типа, что и в каталазе. Если добавить к ферменту раствор сероводорода, то железо прочно соединится с серой и фермент потеряет активность.

В других ферментах, например в тех, которые катализируют гидролитическое разложение белков (пепсин в желудочном соке), активный центр не содержит инородных соединений, а представляет собой просто совокупность отдельных частей длинной цепеобразной молекулы белка, сближенных друг с другом в результате изгиба сложной цепи. Следовательно, активный центр фермента может возникнуть как результат определенной деформации белковой частицы; другими словами, геометрические особенности полипептидной цепочки, из которой белки и состоят, имеют большое значение для проявления каталитических свойств.

Рис. 2. Превращение окисленной формы кофермента НАД в восстановленную. Водород от окисляемого вещества (субстрата, обозначенного SH2) переходит к НАД+ (на кольцо пиридина в никототинамиде) в виде гидридного иона Н-. Другой ион водорода Н+ переходит в окружающую среду

Очень большую роль в обмене веществ играют ферменты, облегчающие перенос водорода, — дегидрогеназы. Они содержат белковую часть и кофакторы. Важнейшим кофактором (коферментом) является так называемый НАД, или никотинамидадениндинуклеотид, молекула которого состоит из сочетания аденина (органическое основание), рибозы (углевод, содержащий пять атомов углерода) и двух остатков фосфорной кислоты, связывающих "мостиком" другой остаток рибозы, соединенный в свою очередь с никотинамидом:

Молекула НАД или никотинамидадениндинуклеотид

Это сложное соединение, связанное с белком, обладает способностью, отнимая от другого вещества водород, присоединять его и передавать дальше следующему переносчику. При этом водородный атом присоединяется к никотинамидному кольцу в виде отрицательного иона Н-, образуя восстановленный НАД — НАД*Н, а второй ион Н+ субстрата поступает в окружающую среду. В целом от молекулы субстрата отнимается два атома водорода (рис. 2). Аналогичные функции выполняет и другой кофермент — ФАД, или флавинадениндинуклеотид, построенный так же, но содержащий вместо никотинамида флавиновую группу более сложного строения. Благодаря флавиновой группе ФАД способен восстанавливаться, присоединяя два атома водорода и образуя ФАД*Н2 (рис. 3).

Рис. 3. Восстановление флавинадениндинуклеотида (показана флавиновая часть молекулы ФАД)

Рассмотрим некоторые важные ферменты, в состав которых входит железо.

Каталазы. Ферменты, относящиеся к этой группе, разлагают пероксид водорода на воду и кислород. Широкая распространенность и большая активность, о которой мы упоминали, позволяют обнаружить фермент в различных животных и растительных тканях простейшими средствами.

Достаточно бросить в аптечный раствор пероксида водорода кусочек моркови, картофеля, мяса, как сейчас же будет заметно энергичное выделение пузырьков газа (кислорода) на их поверхности: это действует каталаза. Под влиянием пероксида водорода фермент и сам медленно разлагается, но в слабых растворах (а в клетках концентрация пероксида невелика) каталаза работает долго и энергично, устраняя опасности, связанные для организма с действием такого сильного оксислителя, каким является пероксид[2].

Хотя наблюдения подобного рода делались давно, чистую кристаллическую каталазу удалось получить лишь в 1937 г. Молекулярные массы каталаз различного происхождения лежат в пределах 225000-250000; на одну белковую молекулу приходится четыре иона железа.

В процессе взаимодействия каталазы с пероксидом образуется неустойчивое промежуточное соединение зеленого цвета. Именно оно и служит тем важным звеном, которое определяет весь ход каталитического разложения пероксида.

При больших концентрациях пероксида (по Чансу) каталаза образует с пероксидом еще два соединения — одно из них, красного цвета, слабоактивно, а другое вовсе не обладает каталитической активностью.

Промежуточное зеленое соединение реагирует со второй молекулой пероксида по схеме:

Каталитическое разложение пероксида

Ион железа в каталазе находится в степени окисления +2 (см. гл. 7).

В последнее время получены данные, указывающие, что каталаза способна ускорять не только разложение пероксидов, но и другие реакции, например окисление спиртов.

Пероксидаза. Функция фермента пероксидазы заключается в том, что она ускоряет окисление различных веществ (доноров водорода) пероксидом водорода. Первые наблюдения над действием пероксидазы относятся еще к 1855 г. (Шенбейн), но тщательное изучение ее природы и свойств началось только в 30-х гг. нашего века.

Пероксидаза — это белковый комплекс, причем ион железа в нем находится в степени окисления +3. Так же как и в других порфириновых белковых комплексах, пятое место в координационной сфере железа занято белком, а шестое свободно и является реакционным пространством комплекса — к нему присоединяются те группы, которые участвуют в катализе.

Молекулярная масса пероксидазы относительно невелика и составляет 40000. Пероксидаза окрашена в коричневый цвет, в ее белковой части содержится также и углевод (уроновая кислота).

Чанс, исследовавший механизм действия пероксидазы, выделенный из корня хрена (в этом растении содержание пероксидазы особенно велико), пришел к выводу, что фермент образует с пероксидом водорода три соединения, проявляя в этом отношении некоторое сходство с каталазой. Одно из этих соединений зеленое и два — красных. Зеленое очень непрочно и легко переходит в одно из красных (другое получается при большом избытке пероксида). Реакция окисления соединения (например, аскорбиновой кислоты), которое мы условно обозначим АН2, заключается в отнятии от АН2 водорода, соединяющегося с кислородом пероксида. Схема реакции с участием пероксидазы, которую мы обозначим Пер -ОН, такова:

Схема реакции с участием пероксидазы

Некоторые исследователи считают, что в пероксидазе во время этой реакции железо переходит в высшие степени окисления (+4), но окончательно этот вопрос еще нельзя признать решенным.

Модели ферментов. Большой интерес вызывает вопрос о возможности создания катализаторов, менее сложных по составу, чем ферменты, но вместе с тем столь же активных и избирательно действующих. Речь, следовательно, идет о получении моделей ферментов на основе сравнительно простых систем. Еще в начале XX в. Г. Бредиг обнаружил, что мелкораздробленные металлы (например, платина) проявляют способность сильно ускорять некоторые реакции, в частности разложение пероксида водорода. Такие "металлические модели", конечно, мало походили на белковые катализаторы, но все же стало ясно, что высокая каталитическая активность не является свойством, присущим только ферментам.

В 50-х г. Л. А. Николаев исследовал "медные модели" фермента каталазы, состоящие из комплексных соединений меди, и доказал, что ион меди, окруженный молекулами аммиака или аминогруппами, например в комплексах:

Ион меди, окруженный молекулами аммиака или аминогруппами

проявляет очень большую каталитическую активность в реакции разложения пероксида водорода. Позже были изучены реакции гидролиза (Р. Густавсон и С. Чибрик), ряд окислительных реакций (А. П. Пурмаль и др.), исследован механизм процессов катализа (А. П. Пурмаль, А. Я. Сычев и др.) и установлено, что многие комплексные соединения металлов вполне могут рассматриваться как модели активных групп металлосодержащих ферментов.

В настоящее время ведутся работы по изучению сочетаний комплекс металла — высокомолекулярный носитель; такая система уже совсем близка к природным ферментам. С другой стороны, фиксируя природный фермент на носителе, например на силикагеле, в приборе, называемом хроматографической колонкой, можно повысить его устойчивость и сделать более удобным использование фермента в производственных условиях. Такие "иммобилизованные" ферменты (т. е. зафиксированные на носителе) находят все большее применение в технологии производства пищевых продуктов.

Глава 5. Активаторы и киназы

Мы переходим теперь к тем случаям участия металлов в действии ферментов, когда ион металла, не образуя прочных комплексов, тем не менее сильно повышает активность фермента, иначе говоря, играет роль активатора.

Ион металла, белок фермента и превращаемая молекула того или иного соединения (субстрат) в процессе реакции образуют различные промежуточные структуры. На рисунке 4 показаны возможные сочетания иона металла (М), субстрата и белка-фермента (Ф). Субстрат играет роль лиганда и обозначен L.

Рис. 4. Возможные сочетания белка (L), иона металла (М) и фермента (Ф)

Ион металла может действовать на лиганд, уже соединенный с белком, может располагаться между ними ("мостик"), может вступать в соединение с другой точкой белковой молекулы. При этом ион металла выполняет в общем случае сразу несколько функций: он поддерживает лиганд (субстрат) и белок в определенном пространственном положении, удобном для реакции, оказывает на связанные с ним молекулы или группы атомов поляризующее действие, смещая в них электроны, и, наконец, он может действовать как катализатор. Различить эти отдельные функции в общем эффекте повышения активности фермента очень трудно, и чаще всего механизм работы активаторов остается спорным.

Доказано, что ионы металлов делают более устойчивой ту форму белковой молекулы фермента (ее активной области), которая проявляет наибольшую каталитическую активность.

Важным ферментом, содержащим ион металла, а именно цинка, является карбоксипептидаза. Карбоксипептидаза вместе с другими ферментами, катализирующими гидролиз, разлагает молекулу пищевого белка на отдельные аминокислоты, из которых потом клетка построит нужные ей белки. Специальность карбоксипептидазы — отщепление аминокислотных остатков от того конца полипептидной цепочки белка, на котором находится карбоксильная группа, например:

Специальность карбоксипептидазы — отщепление аминокислотных остатков от того конца полипептидной цепочки белка, на котором находится карбоксильная группа

R обозначает какой-нибудь радикал, например СН3. Под влиянием карбоксипептидазы произошло отщепление концевой аминокислоты (в данном случае глицина); к концам разорванной связи присоединились ионы Н+ и ОН- молекул воды, как это вообще происходит при гидролизе пептидных связей NH-СО.

Молекулярная масса карбоксипептидазы 87000; молекула ее состоит из трех субъединиц и включает 307 аминокислотных остатков. Молекула имеет шаровидную форму, на ее поверхности недалеко от иона цинка обнаружены углубления и канал, по-видимому, содержащие молекулы воды и предназначенные для правильного размещения той части белковой цепочки, на которую действует фермент. Активный центр этого фермента построен довольно сложно и содержит большое число аминокислотных остатков, положение которых в настоящее время известно достаточно точно. Ион цинка связан с двумя остатками гистидина и глутаминовой кислоты (рис. 5).

Рис. 5. Строение активного центра фермента карбоксипептидазы (расстояния между атомами даны в нанометрах)

Цинк удается заместить на ионы других металлов: кобальт(II), марганец(II), никель(II), причем получаются активные карбоксипептидазы. Относительная легкость такой замены и образование активных соединений с другими ионами — характерный признак многих случаев активации; здесь специфичность металла менее выражена, чем, например, в гемовых комплексах.

Все эти ионы способствуют связыванию субстрата (т. е. полипептидных белковых цепей) с активными центрами, кроме того, ион металла оттягивает на себя электроны кислорода карбонильной группы С=O (в пептидной связке СО-NH), в результате чего двойная связь между С и О поляризуется и облегчается ее реакция с водой, приводящая к разрыву С-N связи:

Ион металла оттягивает на себя электроны кислорода карбонильной группы С=O

(волнистая линия — полимерная молекула белка).

Ионы цинка, как мы уже упоминали, входят в состав еще одного фермента, функции которого тесно связаны с дыханием, — карбонангидразы. Этот фермент был выделен из эритроцитов человека и животных и оказался белковым соединением с молекулярной массой около 30000. На одну молекулу фермента приходится один атом цинка. В зависимости от источника получения молекулярная масса несколько колеблется, поэтому считают, что существует несколько видов карбонангидразы (изоферменты).

Карбонангидраза катализирует процессы гидратации диоксида углерода, т. е. образование иона НСО3-, и процессы дегидратации, связанные с выделением диоксида углерода вследствие разложения аниона угольной кислоты. Первый процесс совершается в клетках, отдающих СО2 как продукт своей жизнедеятельности, а второй — в альвеолах легких, где выделение СО2 должно происходить в надлежащем темпе.

Обе реакции можно записать так:

Карбонангидраза катализирует процессы гидратации диоксида углерода и процессы дегидратации

Первая представляет гидратацию СO2, вторая — разложение иона НСО3-.

Роль иона цинка еще не выяснена окончательно. Вероятно, ион цинка катализирует разложение НСО3- в результате образования комплекса, претерпевающего быстрый распад:

Ион цинка катализирует разложение НСО3- в результате образования комплекса, претерпевающего быстрый распад

Прямая реакция соответствует разложению бикарбонатов и протекает в легочных альвеолах, а обратная соответствует связыванию СO2 в клетках.

Ион цинка находится глубоко в центральной части белковой молекулы и связан с белком, насколько можно судить, с помощью трех гистидиновых остатков.

Киназы. Мы убедились, что для работы биологических машин необходимы переносы электронов и кислорода; дело, однако, этим не ограничивается. Ферменты клетки не перемешаны в беспорядке — важнейшие из них фиксированы в определенных зонах различных органелл (митохондрий, рибосом и др.), и перестройка молекул пищевых веществ, как уже упоминалось, идет строго согласованно и в нужной последовательности.

Для такой работы необходимо иметь средства, чтобы переносить и другие группы — особенно те, которые существенно изменяют запас энергии в молекуле и таким образом изменяют ее реакционную способность. Ферменты, катализирующие переносы фосфатной группы PO32- от молекулы аденозинтрифосфорной кислоты к другим молекулам, называются киназами (от греч. kineo — "двигаю, перемещаю").

Аденозинтрифосфорная кислота, сокращенно обозначенная АТФ, является одним из самых важных биологически активных соединений. Подвергаясь гидролизу, эта кислота отщепляет одну молекулу фосфорной кислоты (Ф), образуя аденозиндифосфорную кислоту (АДФ); при этом выделяется относительно много энергии. При образовании АТФ из АДФ и Ф энергия соответственно поглощается. Ниже приведено уравнение гидролиза АТФ[3] (и обратный процесс):

Уравнение гидролиза АТФ (и обратный процесс)

Если АТФ реагирует с какой-либо другой молекулой, например с молекулой глюкозы, то, передавая ей фосфатную группу, она передаетмолекуле и значительный запас энергии (заряжает молекулу глюкозы энергией):

Реакция АТФ с молекулой глюкозы

Вот почему АТФ в клетках выполняет функции аккумулятора энергии.

Именно такого типа реакции, происходящие с переносом фосфата от АТФ на другой субстрат, и катализируются киназами. Киназы активируются ионами металлов, чаще всего магнием, а также кальцием и марганцем. Специфичность в этих случаях менее выражена, и указанные ионы можно иногда заменить на ионы кобальта или цинка. Но все ионы металлов, необходимые для работы киназ, двузарядны (степень окисления +2). Молекулярные массы киназ около 1000000, но неодинаковы у различных ферментов этой группы.

Ион металла, по-видимому, связывает АТФ и белок; доказано, что ионы металлов-активаторов образуют с АТФ комплексы. Способ связывания иона металла не всегда удается точно определить, хотя это важная сторона вопроса. Так, например, ион кальция активирует киназы, если он связан с белком-ферментом (Ф) через субстрат реакции:

Ион кальция активирует киназы, если он связан с белком-ферментом (Ф) через субстрат реакции

но тормозит реакцию, если связан непосредственно с белком:

Ион кальция тормозит реакцию, если связан непосредственно с белком

Кроме того, ионы металлов, как активные частицы, способны вступать в реакции комплексообразования и с молекулами субстрата — того вещества, на которое переносится группа РО32-. По-видимому, основным этапом действия киназ является образование комплекса металл — АТФ, который, фиксируясь на белке, отдает фосфатный остаток субстрату.

В качестве субстратов особенно важны креатин и глюкоза (хотя изучены и другие реакции, например перенос РО32- на пируват, аргинин и др.).

Креатин, содержащийся главным образом в мышечной ткани, выполняет функции, аналогичные функциям АТФ. Он запасает энергию, образуя креатинфосфат; именно эта энергия и расходуется, например, при мышечной работе. Поэтому образование креатинфосфата

Образование креатинфосфата

представляет с точки зрения биохимика большой интерес. В реакции

В реакции равновесие смещено влево

равновесие смещено влево.

Таким образом, ионы металлов (особенно магний) необходимы для нормального использования химической энергии фосфорных соединений, в частности для нормальной работы мышц.

Фермент, катализирующий образование креатинфосфата, называется креатинкиназой. Другой фермент — гексокиназа — катализирует перенос фосфорильной группы от АТФ к глюкозе:

Гексокиназа катализирует перенос фосфорильной группы от АТФ к глюкозе

Фермент содержится в мышечной ткани, а также в мозге и дрожжевых клетках. Для его работы необходим ион магния. Вероятно, магний образует комплекс с АТФ: Mg*АТФ2-, присоединяющийся к белку-ферменту; ион магния, как полагают, с белком непосредственно не связан.

Характерной особенностью киназ является то, что их белковая часть испытывает определенные изменения формы при взаимодействии с субстратами. Фермент приспособляется к структуре той молекулы, на которую он действует.

Число различных ферментов, активизируемых теми или иными ионами металлов, очень велико. Ограничимся сведениями о киназах, но следует иметь в виду, что, изучая действие иона металла (не только двухзарядного!) на организм или клетку, всегда надо помнить о возможности активации ферментов этим ионом.

Глава 6. Основные стадии обмена веществ — метаболизма

Мы рассмотрим, конечно, не все пути обмена веществ в организме — это составляет содержание биохимии, а ограничимся некоторыми важнейшими отрезками путей, связанных с участием металлов.

В качестве примера проанализируем путь превращений глюкозы в организме — так называемый гликолиз.

Для удобства разделим весь процесс на отдельные стадии и представим его схематически (рис. 6). Глюкоза из пищи (или получившаяся из запасов гликогена в печени) прежде всего подвергается в клетках действию аденозинтрифосфорной кислоты (АТФ), которая переводит ее в глюкозо-6-фосфат. Эта реакция, как и последующие, катализируется специальными ферментами, о которых речь пойдет дальше. Пока отметим только химическую сторону превращений глюкозы.

Рис. 6. Последовательные стадии гликолиза (брожения). Ионы магния, кальция и калия активируют ферменты гликолиза и ускоряют реакции

Полученный глюкозо-6-фосфат химически более активен, чем исходная глюкоза, — в этом, собственно, и заключается биохимический смысл фосфорилирования — превращения углевода в его фосфорильное производное. Затем происходит перегруппировка атомов, и получается уже не глюкозо-, а фруктозо-6-фосфат; далее следует вторичное фосфорилирование, и образуется фруктозо-1,6-дифосфат. Снова действует фермент (альдолаза), и цепочка из шести углеродных атомов фруктозодифосфата разрывается. Получается два трехуглеродных соединения: 3-фосфоглицеринальдегид и фосфодиоксиацетон. Эти родственные триозофосфаты могут взаимопревращаться. Фосфоглицеринальдегид подвергается действию фермента (дегидрогеназы) и кофермента — окислителя, сокращенное название которого НАД, а полное — никотин-амидадениндинуклеотид. НАД присоединяет к себе от окисляемого вещества (т. е. от фосфоглицеринальдегида) ион водорода, несущий отрицательный заряд, так называемый гидридный ион Н-. (Столь необычное состояние иона водорода характерно для гидридов некоторых металлов, например калия или натрия.) Молекула НАД действует в форме положительного иона НАД+ и переходит в нейтральное состояние. Второй ион водорода отщепляется от фосфоглицеринальдегида в виде Н+ и поступает в окружающую среду.

В реакцию вступает неорганический фосфат, и в результате образуется богатая энергией 1,3-дифосфоглицериновая кислота (ее соль — 1,3-дифосфоглицерат).

Отдавая один фосфорильный остаток АДФ и превращая ее в АТФ, эта кислота сама переходит в 3-, а затем 2-фосфоглицериновую кислоту. Последняя теряет воду (дегидратация) и превращается в фосфоенолпировиноградную кислоту и ее соль — фосфоенолпируват, которые восстанавливаются с помощью НАД*Н до молочной кислоты (точнее — лактата, так как получается не свободная кислота, а ее соль, имеющая такое название).

Несмотря на разнообразие стадий гликолиза, реакции совершаются согласованно во всех его частях благодаря действию специфических катализаторов — ферментов и ионов металлов, стимулирующих работу ферментативных механизмов. Ионы магния способствуют образованию фосфата глюкозы и дифосфата фруктозы. Ионы кальция и калия облегчают восстановление фруктозодифосфата до фосфоглицеринового альдегида. Ионы калия и магния облегчают образование пировиноградной кислоты. Образование АТФ из АДФ также ускоряется ионами магния.

На пирувате и лактате дело, однако, не кончается. Лактат является конечным продуктом лишь в отсутствие кислорода, в анаэробных условиях (например, в мышцах человека). При большой мышечной нагрузке он поступает с током крови в печень, где частично окисляется до диоксида углерода и большей частью до пирувата.

Клетка располагает еще одним замечательным аппаратом, который позволяет извлекать из углеводов гораздо больше энергии (сжигая их до конца — до СО2 и Н2О), чем это можно сделать с помощью только гликолиза. Этот аппарат — цикл Кребса, сопряженный с дыхательной цепью.

Рис. 7. Упрощенная схема цикла Кребса (цикла трикарбоновых кислот). Указаны ионы металлов, ускоряющие отдельные реакции цикла

Цикл Кребса называется так по имени ученого, открывшего его. Другое его название — цикл трикарбоновых кислот, которые играют здесь важную роль (рис. 7). В этот цикл вовлекается пировиноградная кислота, теряющая сначала водород и СO2; реакция имеет сложный характер и связана с участием системы ферментов. При этом от молекулы пировиноградной кислоты остается группа СН3СО — ацетил[4]. Ацетил реагирует со щавелевоуксусной кислотой (четырехуглеродной двухосновной карбоновой кислотой), образуя лимонную (шестиуглеродную трехосновную) кислоту. С этого, собственно, и начинается работа цикла. Затем следуют реакции образования цисаконитовой и изолимонной кислот, в молекулах которых имеется по шести атомов углеродов. Под влиянием фермента дегидрогеназы от изолимонной кислоты отщепляются два атома водорода, в результате чего она превращается в щавелевоянтарную кислоту (на схеме не показана), которая под действием декарбоксилазы отщепляет углекислый газ; при этом число атомов углерода в продукте реакции — кетоглутаровой кислоте — становится равным пяти. Кетоглутаровая кислота интересна тем, что в том месте, где она образуется, цикл пересекается с еще одним путем метаболизма. Так, при ее взаимодействии с аммиаком или ионами аммония образуется глутаминовая кислота, которая в дальнейших реакциях может превращаться и в другие аминокислоты; таким путем, в частности, в корневой системе растений аммиак вовлекается в синтез аминокислот.

Кофермент А состоит из аденин-нуклеотида, двух остатков фосфорной кислоты, пантотеновой кислоты (пант. к.) и аминоэтантиола

Продолжим наше движение по циклу. Кетоглутаровая кислота превращается в янтарную (имеющую четыре атома углерода), теряя углекислый газ и два атома водорода; при этом одна молекула воды входит в цикл. Далее следуют реакции превращения янтарной кислоты в фумаровую, фумаровой — в яблочную и яблочной — в щавелевоуксусную. Как видно из рисунка 7, все эти превращения сопровождаются отщеплением двух пар атомов водорода и присоединением молекулы воды. Щавелевоуксусная кислота также может быть источником образования аминокислоты (аспарагиновой), однако ее основная функция заключается в том, что она в форме, содержащей двойную связь (енол), вступает в реакцию с остатком уксусной кислоты СН3СО (в составе ацетил-КоА), снова запуская цикл.

В работе цикла принимают участие ионы железа и магния, ускоряющие реакции, отмеченные на схеме стрелками. Так, активный центр фермента аконитазы содержит цистеин и ионы двухзарядного железа. Ионы железа в аконитазе осуществляют своеобразную функцию — они способствуют переносу группы ОН от одного атома углерода к другому, что необходимо для превращения лимонной кислоты в изолимонную. Ионы магния участвуют в работе фермента, который катализирует отнятие водорода от изолимонной кислоты. Скорость этой реакции определяет скорость прохождения всего цикла.

Подводя итог работы цикла за один оборот, мы видим, что молекула пировиноградной кислоты в результате прохождения цикла присоединила три молекулы воды, отдала в общей сложности пять пар атомов водорода и образовала три молекулы углекислого газа. Этот результат можно записать уравнением:

Молекула пировиноградной кислоты в результате прохождения цикла присоединила три молекулы воды, отдала в общей сложности пять пар атомов водорода и образовала три молекулы углекислого газа

Куда же девается водород, потерянный в этих реакциях? Он присоединяется к коферменту НАД+, а затем через флавиновые ферменты и цитохромы добирается до кислорода, образуя в конечном счете воду[5].

Обратим внимание на необычайную деликатность обращения химических машин клетки с тем сырьем, которое им приходится перерабатывать, и на то, как много сложных промежуточных этапов включает этот замечательный цикл, образующий водород и углекислоту и разделяющий их. Необходимо помнить, что каждый этап связан с определенным ферментом (всего в цикле участвуют восемь ферментов) и, следовательно, со специфическим белком, участвующим в катализе. Для чего все это? Неужели нельзя окислить уксусную кислоту менее хитроумным способом? Можно. Достаточно, например, насыпать в тигель перекиси натрия и добавить туда немного концентрированной уксусной кислоты, чтобы увидеть признаки бурной реакции: возникает пламя, выделяется теплота, и органическое соединение полностью сгорает до углекислого газа и воды. Однако энергия, полученная столь эффектным способом, теряется и, рассеиваясь в окружающей атмосфере, не может быть использована даже для простого нагревания.

Клетки используют энергию окисления для достижения многих разнообразных целей: механической работы мышцы, поддержания температуры тела и, самое главное, для осуществления химических синтезов, в частности синтеза белков. Вот почему окисление, при котором теплота просто рассеивается, неприемлемо для клеток. Здесь энергию надо сохранить и использовать не только на получение водорода, но и на его дальнейшее окисление таким образом, чтобы последнее было сопряжено с другой реакцией, поглощающей энергию, аккумулирующей ее, например, в форме связей в АТФ.

Водород после завершения цикла Кребса находится в форме НАД*Н, т.е. связан с коферментом фермента дегидрогеназы. Оказалось, что водород, отдаваемый НАД-Н, присоединяется затем к флавиновым ферментам (иначе называемым флавопротеидами, ФП), которые в свою очередь переходят в гидрированную форму, а кофермент НАД возвращается в прежнее состояние (НАД+) и готовится к приему новых частиц Н-. От флавиновых ферментов водород движется через дыхательную цепь, состоящую из белковых соединений железа — так называемых цитохромов, причем собственно по цепи цитохромов переходят электроны, а водород в виде ионов Н+ остается в водной среде.

Неожиданно выяснилось, что между циклом трикарбоновых кислот и дыхательной цепью существует еще одно звено. Его открыл Мортон в Англии, а затем Крейн и Грин установили характер его функций. Это соединение способно обратимо окисляться и восстанавливаться и представляет собой хинон с длинной боковой цепью: его назвали убихиноном ("вездесущий хинон"). Для хинонов характерна реакция восстановления: превращение кето-групп С=O в спиртовые группы С-ОН, сопровождающиеся перестройкой системы двойных связей, как это показано на схеме. Именно убихинон и передает электроны от флавиновых ферментов в цепочку цитохромов (сокращенно его обозначают KoQ):

Для хинонов характерна реакция восстановления

Подробнее мы опишем свойства цитохромов и работу дыхательной (или электронпереносящей) цепи в следующей главе.

От цитохромов электроны попадают к атомам кислорода. Получившиеся отрицательно заряженные ионы кислорода соединяются с ионами Н+, образуя воду — конечный продукт окисления.

Окислению в организме подвергаются, конечно, не только углеводы. По энергетической ценности на втором месте после углеводов стоят жиры. Подобный способ извлечения энергии применяется клетками и для окисления жиров в результате их превращения в ацетил-КоА.

Пути превращения белков в клетках сложны и многообразны. При гидролизе белков под влиянием протеолитических ферментов образуются аминокислоты. Последние могут дезаминироваться, иначе говоря, терять аминогруппу, или переаминироваться, т. е. обменивать группу NH2 на кетогруппу. Это дает возможность аминокислотам наряду с другими веществами принимать участие в цикле Кребса, в общем потоке жизненно важных реакций. Так, аминокислота — аспарагиновая (четыре атома углерода), теряя аминогруппу в процессе дезаминирования, превращается в щавелевоуксусную кислоту (четыре атома углерода), активно участвующую в цикле Кребса. Другой участник цикла — кетоглутаровая кислота (пять атомов углерода) — может появиться в результате превращений глутаминовой кислоты (пять атомов углерода), гистидина и др. Эти реакции перебрасывают мост между обменом белков и обменом углеводов и жиров. Цикл Кребса является, таким образом, универсальной биохимической машиной, перерабатывающей разнообразное сырье в углекислый газ и водород.

Сопоставляя особенности действия ферментов, участвующих в первых стадиях обработки пищевых веществ, с функциями последующих биохимических "блоков", нетрудно заметить, что наиболее специфичными по отношению к природе сырья являются начальные стадии. Углеводы подвергаются воздействию одних ферментных систем, жиры — других, а в результате из тех и других образуется ацетил-КоА. Очевидно, что коль скоро дело дошло до цикла Кребса, чувствительность к природе сырья снижается и проявляется только на перекрестках цикла и путей аминокислотного обмена. Еще менее специфично действие флавиновых и цитохромовых систем: откуда бы ни взялся водород, но если он попал к флавиновым дегидразам, они все равно отдадут его электроны в общий поток, текущий через систему переносчиков к кислороду.

Все рассмотренные выше процессы представляют собой реакции расщепления и последующего окисления. Энергия, выигранная при этом, накапливается в конечном счете в макроэргических связях аденозинтрифосфата (АТФ) или, более точно, в системе АТФ — вода (т. е. энергия, о которой идет речь, по величине равна энергии гидролиза АТФ).

Статьи расхода энергии в клетке и организме в целом весьма разнообразны. Энергия нужна для механической работы, связанной, например, с мышечной деятельностью, для поддержания надлежащего темпа выделения теплоты и, наконец, для многочисленных синтезов. Большое число молекул создается в живом организме, и притом так, что их образование требует затрат энергии. Затраты покрываются с помощью АТФ. Запас АТФ сам по себе невелик, но если организм располагает резервом в виде гликогена (углеводный биополимер), то в надлежащий момент гликоген переходит в глюкозу, затем глюкоза окисляется, и таким путем вновь возникает АТФ (см. гл. 8). Непосредственно к месту потребления энергия доставляется в форме макроэргических связей этого соединения.

Процессы, которые мы рассматривали до сих пор, состоят из последовательных реакций перестройки и синтеза молекул, причем источником энергии служат реакции, освобождающие скрытые запасы химической энергии. Так, энергия, заключенная в системе глюкоза — кислород, больше энергии системы углекислый газ — вода; первая система переходит во вторую в результате обмена веществ в организме. Именно благодаря разности в запасе энергии исходных и конечных веществ клетки осуществляют все операции, связанные с синтезом белков, мышечной деятельностью, поддержанием температуры на оптимальном уровне и другими процессами, идущими с затратой энергии.

Глава 7. Железо и медь в организмах; их роль в энергетике клетки

Эти два металла играют исключительно важную роль как в технической культуре человечества, так и в организме человека. Но в технике используют свободные металлы или их сплавы, а в организмах действуют ионы железа и меди.

Природа экономна. Создавая сложные комплексные соединения металлов, она приспособила их для выполнения различных биохимических "обязанностей". Одно и то же соединение железа способно выполнять различные виды работы, смотря по тому, с каким белком оно связано и в каком валентном состоянии находится ион металла. Поэтому железо, как и медь, необходимо и для нормальной деятельности ферментов, и для процесса кроветворения, и для переноса кислорода, и для организации движения электронов от одной молекулы к другой в процессе обмена веществ (метаболизма).

Железо

Как мы уже указывали, ионы железа чаще всего встречаются в форме комплексных соединений с протопорфирином:

Ионы железа чаще всего встречаются в форме комплексных соединений с протопорфирином

Ионы железа в степени окисления +2, занимая внутреннюю область протопорфирина, замещают два атома водорода, которые находятся в группах NH, а два других атома азота соединяются с ионом железа за счет имеющихся у азота пар свободных электронов. При этом возникают сложные электронные орбитали, охватывающие все кольцо атомов С и N, окружающее центральный ион. Получившееся соединение — ферропротопорфирин — называется гемом. Это плоский цикл (макроцикл) с ионом железа(II) в центре. Гем входит в состав гемоглобина:

Ферропротопорфирин — называется гемом. Гем входит в состав гемоглобина

Подобная структура встречается часто, ее находят также в миоглобине и большинстве цитохромов, о которых речь будет ниже.

Гемоглобин — продукт присоединения гема к особому белку — глобину, с которым гем соединен прочно (рис. 8).

Рис. 8. Схема связывания кислорода гемоглобином

Клетки организма для своей жизнедеятельности нуждаются в кислороде. Того кислорода, который просто растворен в воде, а следовательно, может оказаться и в клеточных жидкостях, клетке не хватает. В 1 л воды при 20°С и нормальном давлении растворяется всего 6,6 см3 кислорода (что соответствует содержанию 3*10-4 моль кислорода в 1 л). Обмен веществ идет значительно быстрее, чем процессы проникновения кислорода воздуха в воду, и при такой его растворимости клетки организма просто задохнулись бы. Но кровь обладает особыми свойствами: в тех же условиях в 1 л крови человека растворяется 200 см3 кислорода! Это — результат связывания кислорода гемоглобином — пигментом крови, веществом ярко-красного цвета, содержащимся в красных кровяных шариках — эритроцитах.

Гемоглобин выполняет роль переносчика кислорода от легких к клеткам, причем степень окисления иона железа не изменяется при соединении всего комплекса с кислородом! Соединение это, называемое оксигемоглобином, непрочно: при повышенном давлении кислорода (в альвеолах легких) оно образуется, а там, где давление кислорода ниже (в дышащей клетке), распадается, освобождая кислород. Процесс следует схематическому уравнению:

Соединение это, называемое оксигемоглобином, непрочно: при повышенном давлении кислорода (в альвеолах легких) оно образуется, а там, где давление кислорода ниже (в дышащей клетке), распадается, освобождая кислород

Равновесие смещается в правую сторону в легких и в левую — в клетках. Окраска оксигемоглобина более яркая, поэтому венозная кровь, содержащая восстановленный (лишенный кислорода) гемоглобин, по сравнению с артериальной кажется темной. Каждый эритроцит несет в себе 280 млн. молекул гемоглобина. Молекулярная масса белка-глобина около 65000. Вот какое огромное сооружение тащит эритроцит для того, чтобы обеспечить своевременную доставку кислорода клеткам. На одну молекулу глобина приходится четыре атома железа, иначе говоря, четыре гема. Каждый гем окружен сложной белковой цепочкой, состоящей из остатков аминокислот: 574 аминокислоты израсходовала природа на создание этих цепочек. Всего цепочек четыре: две из них одинаковые и называются α-цепями, а две другие — тоже одинаковые, но отличные от первых, — β-цепями (рис. 9).

Рис. 9. Четвертичная структура гемоглобина. Черные диски обозначают молекулы гема

С каждым атомом железа соединяется одна кислородная молекула, т. е. одна частица гемоглобина может соединиться с четырьмя молекулами кислорода.

Существует какая-то таинственная связь между всеми атомами железа в гемоглобине. Так, если три атома железа соединились с молекулой кислорода О2, то ускоряется связывание кислорода и четвертым атомом железа. Гидрокарбонаты, молочная кислота — продукты жизнедеятельности — ускоряют отщепление кислорода.

Каким образом кислород соединяется с железом? На этот счет нет единого мнения, но несомненно, что кислород попадает на шестое координационное место в гемоглобине. Протопорфирин — плоская молекула. Ион железа окружен четырьмя атомами азота пиррольных ядер. Пятое место в его координационной сфере занято той аминокислотой, которая связывает весь комплекс с белком (по-видимому, это гистидин). Шестое место свободно — это реакционное пространство комплекса, та зона, в которой происходят реакции. Вот в эту зону и попадает молекула кислорода (рис. 8).

Заметим, что синтетические производные порфирина, содержащие вместо железа ионы марганца(II и III), цинка, никеля(II), меди(II), не обладают способностью связывать кислород обратимо (т. е. и поглощать, и отдавать его при изменениях давления газа). Только кобальтовый комплекс (кобоглобин) обнаруживает эту способность, выраженную у него приблизительно в три раза слабее, чем у гема. Интересно, что если в гемоглобине окислить ион железа (II) до степени окисления +3, то способность связывать кислород исчезает. Полагают, что это объясняется неспособностью иона железа(III) легко передавать электроны с низших орбиталей иона на орбитали кислорода.

Огромное значение для правильного функционирования переносчика кислорода имеет строение белковой части — глобина. В результате ряда выдающихся исследований (особенно П. Перутца) было доказано, что каждая из α- и β-цепей свернута так, что ее углеводородная часть спрятана внутри клубка, а группы -ОН, NH2, -СООН, способные образовывать связи с водой, расположены на его наружной стороне. Клубки размещены приблизительно по углам тетраэдра (не совсем правильного). Гемы лежат в особых углублениях на поверхности огромной молекулы и относительно далеко друг от друга. Но когда к гемам присоединяется кислород, происходит смещение β-цепей при неизменном характере свертывания α-цепей. β-цепи расходятся, по-видимому, в результате сдвига атомов железа после их связывания с кислородом; это в свою очередь может облегчить присоединение кислорода к последнему (четвертому) атому железа. Перутц, сравнивая гемоглобин с ферментами, заметил, что между этими веществами имеется сходство: "...это подвижные механизмы, а вовсе не какие-то статические поверхности, волшебно наделенные каталитическими свойствами". Эта мысль, в общем, получила подтверждение: детали биологических машин не абсолютно жестки, они способны приспособляться к контурам обрабатываемых изделий, достигая высокой эффективности и точности, невозможной при использовании жестких инструментов.

Миоглобин. Железопорфириновый комплекс входит и в состав миоглобина — белкового соединения, функция которого заключается в сохранении запаса кислорода в мышцах. Как и гемоглобин крови, миоглобин обратимо связывает кислород.

В отличие от гемоглобина, миоглобин содержит одну белковую полипептидную цепь и всего один гем на молекулу белка. Полученный из тканей кашалота миоглобин оказался состоящим из 153 аминокислотных остатков на молекулу. Полипептидная цепочка имеет спиральные участки. Чередование аминокислот в ней похоже, но не вполне совпадает с последовательностью аминокислотных остатков в белке гемоглобина. Как и в гемоглобине, железо миоглобина находится в степени окисления +2 и сравнительно легко окисляется до степени окисления +3 (полученный продукт называется метмиоглобином — он не способен обратимо связывать кислород).

Современные методы исследования показали, что те углубления на поверхности белковой части гемоглобина и миоглобина, в которых прячется ион железа, устроены так, что ион металла окружен главным образом углеводородными частями молекул аминокислот. Эти части слабо взаимодействуют с водой — обладают гидрофобными свойствами. Поэтому углубление, содержащее ион железа (гидрофобный карман, как его часто называют), не заполняется молекулами воды и вполне доступно для таких молекул, как кислород или оксид углерода(II). Это облегчает, конечно, работу по переносу кислорода, но создает опасность отравления, если организм находится в атмосфере, содержащей угарный газ (СО). Молекула СО тоже попадает в карман и застревает в нем. (Сродство СО к гемоглобину гораздо большее, чем к изолированному гему, т. е. комплексу, не связанному с глобином. То же относится и к миоглобину).

При первых же признаках отравления угарным газом пострадавшего надо вывести на свежий воздух. Кислород быстро вытеснит молекулы СО из соединения с гемоглобином (это соединение называется карбоксигемоглобином) и восстановит нормальный транспорт кислорода к дышащим клеткам.

Описанные комплексы железа с порфириновым циклом переносят кислород. Аналогичные соединения выполняют и множество других функций. Среди них большого внимания заслуживает процесс переноса электронов.

Цитохромы. Мы уже отмечали, что биологические машины работают так, что молекула пищевого вещества не сразу, а постепенно изменяет свой состав. Слишком быстрые реакции могли бы создать беспорядок в клеточных механизмах. Важным этапом обмена вещества (метаболизма) является отщепление от пищевых веществ водорода. Атомы водорода при этом переходят в ионное состояние, а отделенные от них электроны поступают в дыхательную цепь; в этой цепи, переходя от одного соединения к другому, они отдают свою энергию на образование богатых энергией молекул аденозинтрифосфорной кислоты (АТФ), а сами, в конечном счете, попадают к молекуле кислорода и присоединяются к ней. Получившийся ион кислорода О2 образует с ионами водорода Н+ молекулы воды (рис. 10).

Рис. 10. Схема дыхательной (электронпереносящей) цепи: ФП — флавопротеид, FeS-белок — железосерусодержащий белок, KoQ — убихинон, цит b, s1, S2, а, а3 — система цитохромов

Мостиком, по которому бегут энергичные электроны, служат комплексные соединения железа с порфириновым ядром, очень похожие на те, которые входят в состав гемоглобина.

Рассмотрим подробнее природу переносчиков электронов — цитохромов. Название указывает на то, что это — окрашенные соединения ("цитохром" значит "клеточная окраска"[6]). Их существенное отличие от гемоглобина и миоглобина в том, что вся работа цитохромов построена на изменениях степени окисления железа. Переходы Fe3+ + = Fe2+, Fe2+ — ё = Fe3+ и создают возможность перебрасывать электрон от одного цитохрома к другому (рис. 11)

По строению комплексного иона цитохромы очень похожи на гем; различие заключается лишь в боковых цепях порфиринового кольца и, конечно, в том, что в цитохромах железо изменяет степень окисления. Известно несколько цитохромов, отличающихся спектрами поглощения. Кейлин разделил цитохромы на три класса: а, b и с. В настоящее время известно несколько разновидностей цитохромов каждого класса. Лучше других изучен цитохром с, так как только его можно легко выделить из клеток водными солевыми растворами.

Доказано, что в этом соединении протопорфириновое кольцо, содержащее в центре ион железа, связано с белком за счет ковалентных связей атомов кольца с остатком цистеина в молекуле белка. С кислородом или оксидом углерода (II) цитохром не реагирует, поскольку у него шестое координационное место в координационной сфере железа занято аминокислотой — метионином.

Связь с белком через порфириновое ядро настолько характерна, что служит отличительным признаком для отнесения данного цитохрома к классу с. В настоящее время открыто и более или менее изучено много цитохромов этого класса (например, c1, отмеченный на рис. 10), отличающихся строением белковой части, числом гемов в молекуле, молекулярной массой и спектрами поглощения.

В цепи переноса электронов цитохром с передает электроны цитохромам а и а3, эти два цитохрома имеют общее название — цитохромоксидаза. Имеются данные о наличии в цитохромоксидазе ионов меди. Возможно, что медь связывает цитохромы а и а3, передавая электроны от а к а3. Весь комплекс в целом обладает большой молекулярной массой — 240000. Принимая поток электронов от частиц цитохрома с, он направляет его на молекулярный кислород. Следовательно, ион железа(III) в цитохромоксидазе присоединяет электрон от цитохрома с и переходит в ион железа(II), затем электрон присоединяется к кислороду, а железо возвращается к прежней степени окисления (см. рис. 11).

Рис. 11. Принцип действия цитохромов. Ион железа изменяет свою степень окисления, передавая электроны

Заряженные отрицательно ионы кислорода реагируют с ионами водорода окружающей среды и образуют воду, или пероксид водорода Н2O2. Пероксид быстро разлагается специальным ферментом каталазой на воду и кислород. Если бы не было этого процесса, пероксид водорода мог бы оказать вредное действие на вещества клетки.

Цитохромы а и а3 содержат протопорфириновое кольцо такого же типа, как и кольцо в хлорофилле; пятое координационное место в этих цитохромах занято аминогруппой, принадлежащей белковому носителю железо-порфиринового комплекса.

В цепи переноса электронов цитохрому с предшествует еще один цитохром, — именно цитохром b. Этот цитохром также имеет протопорфириновое кольцо с ионом железа в центре, причем кольцо не связано с белком через боковые группы (как у цитохрома с). Молекулярная масса цитохрома типа b равна приблизительно 28000, она значительно меньше, чем у цитохромов а и а3. Цитохром b получает те электроны, которые освобождаются в цикле Кребса и проходят через убихинон.

В общем виде дыхательная цепь представлена на рисунке 10. Между флавопротеидом (ФП) и убихиноном находится еще один вид переносчика — белок, содержащий железо и серу (см. ниже о ферредоксинах). Электроны, проходя всю эту цепочку передатчиков, теряют часть энергии; энергия расходуется на создание молекул АТФ. По всем данным, образование АТФ (окислительное фосфорилирование) происходит на участке дыхательной цепи между b и Сu на участке, предшествующем убихинону, а также между цитохромоксидазой и кислородом.

Механизм окислительного фосфорилирования будет рассмотрен далее (в гл. 8).

Ферредоксины. Итак, мы уже знаем, что перенос электронов осуществляется при помощи ряда соединений (цитохромов), в которых ионы железы связаны в комплекс с протопорфириновым циклом. Однако тщательные химические исследования белков дыхательной цепи привели биохимиков к выводу, что существует целый класс белковых соединений железа иной природы, но также принимающих участие в переносе электронов. Выяснилось, что эти белки содержат железо и серу (железо-серосодержащие белки), причем атомы серы частично входят в состав аминокислоты — цистеина, а частично находятся в какой-то иной форме, получившей название лабильной ("подвижной") серы. Лабильная сера легко выделяется в виде сероводорода H2S при подкислении растворов белка. Известны и такие белки этого класса, которые вовсе не содержат лабильной серы. В настоящее время для всех этих соединений используется термин "ферредоксин" (от fer — "железо" и redoxin — "восстанавливающий и окисляющий белок").

Ферредоксины были найдены в бактериях (клостридиум, кишечная палочка), в растениях (шпинат) и в органах животных (печень, надпочечные железы); они выполняют работу по переносу электронов в таких важных реакциях, как процессы фотосинтеза, фиксации атмосферного азота, образования АТФ и др.

Белковая цепочка ферредоксинов способна складываться так, чтобы взаимодействующие лиганды оказывались в благоприятном для реакции взаимном расположении. На одну молекулу белка приходится от одного до восьми атомов железа. Эти атомы (ионы) соединены с белком через короткие цепочки, состоящие из цистеиновых остатков. По-видимому, в тех белках, которые содержат более одного иона железа, между ионами металла имеется связь, осуществляемая одним электроном так, что все они вместе образуют единую группу, или кластер ("рой").

Если в белке находятся два атома лабильной серы на два атома железа (тип Fe2S2), то возникает связь между ионами железа за счет мостика из атомов серы. Схематически состояния, в которых находится железо и его ближайшее окружение, можно представить так (рис. 12, а): средние и концевые группы лежат во взаимноперпендикулярных плоскостях. В концевых группах символ S обозначает серу аминокислоты цистеина.

Рис. 12. Строение ферредоксина: а — окисленная форма; б — восстановленная форма, S — обозначает серу остатка цистеина

После присоединения электрона может возникнуть структура, показанная на рисунке 12, б.

В процессах фотосинтеза принимают участие именно эти ферредоксины. Их присутствие в хлоропластах растений доказано.

Белки некоторых микроорганизмов содержат один атом железа на молекулу (рубредоксины). Они имеют молекулярную массу около 10000; ион железа в них находится в тетраэдрической координации и окружен четырьмя цистеиновыми остатками. Функция этих белков пока не известна.

В низших организмах и фотосинтезирующих бактериях были найдены белки, содержащие на молекулу четыре и восемь атомов железа. Их внутреннее строение до конца не изучено, но несомненно, что все они содержат цистеиновые остатки, связывающие железные кластеры с белковой частью молекулы, и все обеспечивают передачу электронов в самых разнообразных биохимических процессах — от фотосинтеза до фиксации атмосферного азота.

Из фотосинтезирующих бактерий был выделен ферредоксин типа Fe4S4, с молекулярной массой около 9600. Другой аналогичный белок, содержащийся в этих бактериях, имеет молекулярную массу 10100 и во всех отношениях близок к первому. Оба они — одноэлектронные восстановители. В окисленной форме белок парамагнитен (один неспаренный электрон), в восстановленной — диамагнитен.

Резервы железа

Красные кровяные шарики — эритроциты живут всего около двух месяцев, затем они разрушаются и заменяются новыми. В то же время железо, которое содержится в эритроцитах (в форме гемоглобина), практически не выводится из организма. Человек получает очень немного железа с пищей, поэтому создается впечатление, что железо совершает в организме какой-то круговорот. Следовательно, должно существовать депо — "склад", предназначенный для хранения соединений железа, уже использованных ранее для создания гемоглобина и теперь дожидающихся, когда они снова понадобятся.

Ферритин. Надо иметь в виду, что ионы железа(III) не безвредны — в свободном (т. е. гидратированном) состоянии они обладают токсическими свойствами. Железо в такой степени окисления сохраняется в организме лишь после предварительного обезвреживания.

В 1937 г. из селезенки лошади был получен железосодержащий белок, названный ферритином и оказавшийся тем самым веществом, которое и сохраняет ионы железа (III) в нетоксичной форме. Позже выяснилось, что ферритин встречается не только в органах животных, но и у растений и даже у грибов.

У человека приблизительно 1/4 всего железа, совершающего круговорот, находится в форме ферритина, т. е. в депо, а около 3/4 — в гемоглобине крови.

В ферритине соединения железа связаны с белком и не проявляют токсичности; освобождение железа из ферритина сопряжено с восстановлением иона Fe3+ до степени окисления +2. Молекулярная масса ферритинового белка равна 450000, а у некоторых видов достигает 900000, иначе говоря, очень велика; ферритин окрашен в красно-коричневый цвет и содержит до 4500 атомов железа на молекулу белка.

Ферритин представляет собой белковые частицы, внутри которых, закутанные в полипептидные цепи, находятся ядра, или мицеллы, состоящие из сложных комплексов гидроксида и фосфата железа. Предполагают, что их состав можно приблизительно выразить формулой: (FeO-OH)8*(FeO-ОРО3Н2).

Состав белковой части ферритина в настоящее время известен. В этом белке много остатков глутаминовой кислоты, серина и лейцина, а также аспарагиновой кислоты. Как часто наблюдается у белков, молекула ферритина сложена из меньших по размеру субъединиц; формой она напоминает тутовую ягоду — 20 или 24 небольшие сферические частицы окружают центральное ядро, состоящее из соединений железа. Имеются данные, свидетельствующие о кристаллическом строении ядра; сам ферритин также можно получить в кристаллической форме.

Трансферрины. Ферритин не мог бы успешно выполнять свои функции, если бы не существовало специальных средств доставки ионов железа(III) к клеткам (называемым ретикулоцитами), в которых происходит образование гемоглобина. Дело в том, что при тех значениях кислотности, которые характерны для физиологических условий (рН около 7), ионы железа(III) существуют в виде гидроксида; растворимость его очень мала, и поэтому концентрация ионов железа(III) в растворе, находящемся в равновесии с гидроксидом, составляет ничтожно малую величину, порядка 10-14 моль/л. Из раствора такой концентрации очень трудно "вылавливать" ионы железа. В сыворотке крови, в яичном белке, в молоке, в желудочном соке и других жидкостях и тканях организма были найдены особые белки, отличающиеся способностью активно связывать железо в форме ионов Fe3+. Эти белки получили общее название трансферринов ("переносчики железа"); некоторые ученые делят их на классы: лактоферрины (содержатся в молоке), кональбумин (из яичного белка), сывороточный трансферрин (из крови) и др. Их белковые составные части немного отличаются друг от друга (особенно по содержанию гистидина и аргинина). Молекулярные массы трансферринов лежат в пределах от 77100 до 82000. Эти белки не имеют субъединиц и представляют собой частицы, состоящие из одной полипептидной цепи.

Каждая молекула трансферрина связывает два иона железа(III), причем получается продукт красного цвета. Было доказано, что в реакции связывания принимает участие ион бикарбоната, а ионы железа вытесняют шесть ионов водорода на одну молекулу белка. Поэтому реакцию можно схематически представить так:

Каждая молекула трансферрина связывает два иона железа(III)

Предполагается, что ион бикарбоната увеличивает прочность связи между ионом железа и белком трансферрина. Самым замечательным свойством трансферрина является то, что этот белок "знает", по какому адресу надо доставить ионы железа. Каким-то образом трансферри-новые частицы отличают ретикулоциты от всех других клеток и отдают железо именно клеткам, производящим гемоглобин.

Сначала, по-видимому, трансферрин прочно связывается (адсорбируется) на поверхности ретикулоцита, затем связь между ними упрочняется, и железо переносится в клетку. Возможно, что повышение прочности связи и сопровождается внедрением трансферрина внутрь клетки. Прочность связи ретикулоцит — трансферрин зависит от содержания железа в последнем. Как толькожелезо отдано, связь сразу ослабляется, и белок трансферрина выходит из клетки.

Почти полмиллиона молекул трансферрина может быть размещено на поверхности ретикулоцита. Что происходит дальше и как именно строится молекула гемоглобина в ретикулоцитах, пока еще не выяснено...

Заметим, что кональбумин, содержащийся в яичном белке, играет роль антимикробного фактора и защищает куриные яйца от порчи. Дело в том, что, энергично соединяясь с железом, содержащимся в микроорганизмах, кональбумин прекращает их жизнедеятельность. Так природа экономно использует одно и тоже вещество, применяя его для решения множества разнообразных задач.

Гемэритрин. Химические машины, работающие в организмах, не всегда были такими, какими их сейчас видят биохимики в высокоорганизованных организмах. По мере постепенного развития и усложнения форм жизни изменялись и совершенствовались механизмы обмена веществ. В организмах некоторых беспозвоночных (например, морских червей) функции переноса кислорода выполняет соединение железа — гемэритрин, совершенно не похожее на гемоглобин и не содержащее порфиринового кольца. В этом соединении ионы железа связаны с аминокислотными остатками полипептидной цепи белка, причем для того, чтобы присоединить одну молекулу кислорода, требуется два иона железа (а в гемоглобине — один). Удалось установить, что в гемэритрине пара ионов железа окружена аминокислотными остатками гистидина (четыре остатка) и тирозина (два остатка); предполагают, что и другие аминокислоты (глутаминовая, аспарагиновая кислоты, метионин) участвуют в образовании группировки, окружающей ионы железа.

Свойства железа в таком соединении необычны: при связывании кислорода резко падает магнитная восприимчивость и изменяется окраска гемэритрина — бесцветное соединение становится розово-красным.

Применение наиболее мощных, современных методов исследования (спектроскопия Мессбауера) позволило сделать вывод, что ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием. Возможно следующее расположение ионов железа:

Ионы железа в активном центре гемэритрина находятся в различном положении и связаны через кислородный мостик сильным электронным взаимодействием

Молекула кислорода, по-видимому, присоединяется к мостиковой группе. Возможно, что в результате присоединения кислорода железо(II) переходит в железо(III).

Крупная молекула гемэритрина имеет молекулярную массу около 108000 и состоит из восьми субъединиц (по два атома Fe в каждой). Биологическая роль гемэритрина заключается не только в переносах, но и в резервном хранении связанного кислорода, чем этот белок существенно отличается от гемоглобина. Гемэритрин, по-видимому, выполняет функции и гемоглобина, и миоглобина в организмах беспозвоночных.

В организмах обнаружен ряд белков, способных прочно связывать железо(III). Так, в яичном желтке содержится фосвитин, подавляющий всасывание железа при употреблении яиц в пищу. В желудочном соке найден белок, названный гастроферрином, также прочно соединяющийся с ионами железа. Биологическая роль таких белков не вполне ясна, но высказывается предположение, что они служат в качестве регуляторов поступления железа в клетки. Слишком большой приток ионов железа может оказать вредное действие на клеточные механизмы, поэтому регулирующий аппарат необходим для наиболее эффективной работы биологических машин.

Медь. Медьсодержащие оксидазы

Кроме ионов железа, функцию переноса кислорода и переноса электронов способны выполнять и ионы других металлов, в частности ионы меди.

Соединение, называемое гемоцианином, представляет собой белок, содержащий медь в ионном состоянии. Еще в 1847 г. Харлес, исследуя голубую кровь улитки, пришел к выводу, что голубой цвет обусловлен содержа нием в крови улитки меди вместо железа. Греческое слово "гемоцианин" и означает "синекровный". Гемоцианины различных видов были найдены в моллюсках и членистоногих (в крабах, осьминогах, кальмарах и т. д.), в паукообразных, ракообразных и даже в сороконожках.

Молекулярная масса гемоцианинов колеблется в широких пределах — от 36000 до 825000. Молекула гемоцианина состоит из нескольких равных частей — субъединиц, число которых неодинаково у гемоцианинов различного происхождения. Молекулярная масса наименьших субъединиц равна 36700 (у членистоногих), при содержании меди 0,173%, и 25100 (у моллюсков), при содержании меди 0,253%.

В составе гемоцианина медь находится в степени окисления +1. Предполагается, что два иона меди связывают одну молекулу кислорода: Cu+ — О2 — Cu+, причем возможны состояния Cu2+ — O2- — Cu+ и Cu+ — O2- Cu2+ Медь, несомненно, связана с какими-то лигандами, но их точный состав не известен. Возможно, что лигандами являются аминогруппы или дисульфидные мостики белка.

Число активных центров гемоцианина, т. е. пар ионов меди, связывающих одну молекулу кислорода, колеблется от 6 до 200, смотря по тому, из каких организмов получен гемоцианин.

Гемоцианин — отнюдь не единственное природное соединение меди. В крови и различных органах животных (почки, печень), а также в тканях растений (огурцы, кабачки, лаковое дерево) и грибов найдена медь, находящаяся там в виде комплексных ионов. Насколько можно судить, комплексообразование происходит между ионами меди и различными участками полипептидной белковой цепи; установлено, что медь часто выполняет те или иные биохимические функции совместно с соединениями железа.

Широкая распространенность в природе белков, связанных с ионами меди, и важность сочетании железо — медь в биохимических реакциях, сопровождающих переносы электронов и окисление пищевых веществ, стимулировали исследования роли меди в процессах жизнедеятельности. Но, несмотря на всю мощь современных физико-химических средств анализа, до сих пор не удалось охарактеризовать медь с такой полнотой, какая достигнута по отношению к соединениям железа.

Установлено, что медьсодержащие белки (например, стеллацианин, получаемый из лакового дерева) служат переносчиками электронов. Ионы меди в белках катализируют реакции гидроксилирования и окисления. Последние особенно важны.

Ферменты, ускоряющие реакции окисления, — оксидазы — довольно многочисленны и содержат ионы меди в различных состояниях. Мы рассмотрим некоторые типичные примеры.

Оксидазы, в молекуле которых содержится не менее четырех атомов меди на молекулу фермента, ускоряют восстановление кислорода до воды. Их синяя окраска настолько интенсивна, что эту группу оксидаз иногда называют "синие оксидазы", в отличие от другой группы оксидаз, в молекуле которых всего один-два атома меди ("несиние оксидазы"). Они окрашены менее ярко и катализируют восстановление кислорода до пероксида водорода.

К синим оксидазам относится церулоплазмин — медьсодержащий белок, найденный в плазме крови человека и многих позвоночных (свиньи, лошади, коровы, олени, собаки, кошки и др.). Церулоплазмин плазмы человека содержит всего 0,3 масс. % меди, имеет молекулярную массу 151000. Вероятно, в его молекуле — четыре полипептидные цепочки, две из которых обладают сравнительно небольшой длиной (масса их около 16000) и две длинные (молекулярная масса около 60000). Церулоплазмин удалось получить также в виде кристаллов. Доказано наличие в этом белке и небольшого количества углеводов (8%). Церулоплазмин катализирует окисление ионов железа(II) в ионы железа(III), что может служить объяснением механизма совместного действия обоих этих ионов в процессах переноса электронов и активизации железа. Каталитически ускоряются церулоплазмином реакции окисления полиаминов и полифенолов — обычных составных частей обмена веществ в организмах.

Медь связана с белком церулоплазмина очень прочно, и, по-видимому, на одну молекулу белка приходится шесть атомов меди. Действие ионов меди в реакциях окисления сводится к попеременному окислению и восстановлению, т. е. к переходам типа:

Действие ионов меди в реакциях окисления сводится к попеременному окислению и восстановлению

Имеются данные, показывающие, что только половина атомов меди находится в степени окисления +2; эти ионы окисляются и восстанавливаются по указанной схеме, обратимо. Ионы меди в степени окисления +1 окисляются очень трудно и только при разрушении белковой части фермента. Ионы меди(I) тоже не вполне одинаковы — два из четырех связаны с атомами серы. Пока не ясно, все ли атомы меди принимают участие в указанных выше реакциях окисления-восстановления.

Глава 8. Структурная организация мембран клетки. Окислительное фосфорилирование

Изучая некоторые этапы обмена веществ, мы рассмотрели сложные цепи реакций, в которых соблюдается вполне определенная их последовательность. Продукт одной реакции становится исходным веществом в другой; реакции включаются в строгом порядке, не обгоняя друг друга. Порядок был бы невозможен, если бы участвующие в процессе молекулы были просто смешаны в однородной среде. Действительно, микроскоп открывает перед нами необыкновенно разнообразные и тонко организованные клеточные структуры, которые играют как механическую, так и химическую роль в жизни клетки. Оболочка клетки и все детали ее внутреннего устройства образованы посредством белков и жироподобных веществ, называемых липидами. Сочетание белков и липидов приводит к возникновению макроструктур — тонких пленок, получивших название мембран.

Мембраны отделяют содержимое клетки от внешней среды и обеспечивают разницу концентраций биологически важных веществ внутри клетки и во внешней среде.

Если бы этого не было, химический состав клетки и среды стал бы одинаковым, что, конечно, нарушило бы все процессы жизнедеятельности. Мембраны способны избирательно пропускать в клетку (и в обратном направлении) определенные вещества и осуществляют таким путем контроль над количественным и качественным составом клеточного содержимого.

Химик, смешивающий в пробирке или колбе реагирующие вещества, не думает о форме сосуда, в котором идет реакция: и в колбе, и в пробирке она пройдет одинаково, сосуд не принимает участия в процессе. Клетка, с ее мембранными структурами, ведет себя иначе: в ней нет деталей, которые так или иначе не участвовали бы в реакциях; и среди них мембраны играют важнейшую роль.

По этой причине в настоящее время мембраны привлекают пристальное внимание ученых. Мембранам посвящены сотни работ, ежегодно публикуемых в печати, в нашей стране издается даже специальный журнал "Мембраны". Вопросы строения и функций этих тончайших пленок обсуждаются на конференциях и конгрессах. Можно без преувеличения сказать, что наука мембранология — это участок переднего края современной биохимии и молекулярной биологии.

Было затрачено много труда и времени на выяснение молекулярной структуры мембраны. Достигнутые результаты можно кратко суммировать так. В основном мембраны образованы молекулами липидов; на поверхности мембран находятся слабо связанные молекулы периферических белков. Другие молекулы белков (интегральные белки) погружены в липидный слой. Некоторые из них объединены в более крупные группировки — кластеры. Белковые молекулы взаимодействуют как с липидами, так и с молекулами воды внешней среды, а также в некоторых случаях и с углеводами. Для понимания причин, по которым могла возникнуть такая сложная молекулярная архитектура, надо обратить внимание на особенности строения молекул белков и липидов.

Молекулы белков, как точно установлено, состоят из остатков примерно двадцати α-аминокислот. Они имеют общую формулу NH2 — CH(R) — СООН (в нее не вписывается лишь пролин). Как видно, все аминокислоты содержат полярные группы: карбоксильные — СООН и аминогруппы — NH2, выполняющие соответственно функции кислоты или основания. Кроме того, у части аминокислот полярные группы (-СООН, -NH2, -ОН, -SH) имеются и в боковых радикалах R, тогда как у другой части R — это неполярные углеводородные цепи, прямые, разветвленные или циклические.

В процессе конденсации (см. гл. 1) образуется полипептид — длинная цепочка связанных друг с другом аминокислот:

полипептид — длинная цепочка связанных друг с другом аминокислот

Именно так в клетках из различных аминокислот и получаются молекулы разнообразных белков. На боковых ответвлениях, а также на концах цепочек сохраняются кислые, основные и другие полярные группы; белки поэтому могут реагировать и с кислотами, и с основаниями.

Разнообразие белков связано с разным чередованием двадцати различных аминокислотных остатков. Поэтому число всевозможных белков необычайно велико.

Полипептидная цепочка белка, насчитывающая сотни, а иногда и тысячи звеньев, свернута в спираль, кроме того, эта спираль, в свою очередь, сложена в компактную структуру. В некоторых белках молекула содержит не одну, а две или более полипептидных цепочек, переплетенных друг с другом (например, четыре цепи гемоглобина). Отдельные части полипептидных цепей проявляют, разумеется, не одинаковые химические свойства; в частности, они по-разному относятся к молекулам воды, постоянно присутствующим в любых клетках организма. Аминогруппы -NH2 и карбоксилы -СООН, например, удерживают молекулы воды за счет образования водородной связи. Предполагается, что возникновение водородной связи облегчает отщепление ионов Н+ и ОН-:

Возникновение водородной связи облегчает отщепление ионов Н+ и ОН-

Водородная связь (точки) осуществляется ионом Н+, соединенным одновременно и с атомом кислорода молекулы воды, и с атомом кислорода или азота молекулы белка. Кроме того, диполи (полярные молекулы) воды притягиваются к любому иону в растворе; поэтому те части молекул белка, которые содержат группы -ОН, -СООН, -NH2, а также -SH, вовлекаются в водную среду; их называют гидрофильными ("любящими воду").

Водородная связь (точки) осуществляется ионом Н+, соединенным одновременно и с атомом кислорода молекулы воды, и с атомом кислорода или азота молекулы белка

В противоположность этому, группы углеводородного характера -(СН2)n — СН3 почти не взаимодействуют с молекулами воды (это гидрофобные группы — "боящиеся воды"). Впрочем, если несколько углеводородных цепей расположены по соседству, то они стремятся еще более приблизиться друг к другу, так как окружающие их молекулы воды, вследствие взаимного притяжения, выталкивают углеводородные цепочки из своей среды.

Эти соображения помогут нам понять, почему липиды и белки сыграли роль строительных материалов в формировании мембран. Дело в том, что липиды, при всем их разнообразии, характеризуются общими признаками. В молекулах липидов обязательно имеется длинный (чаще двойной) гидрофобный углеводородный "хвост" на другом конце его — полярная (гидрофильная) группа. На рисунке 13 изображено строение одного из липидов (фосфолипида).

Рис. 13. Строение молекулы одного из фосфолипидов — фосфатидилхолина

Мембраны клеток построены из двух слоев липидов, обращенных друг к другу своими углеводородными частями. Гидрофильные части молекул направлены к внешней (водной) среде. Таким образом вода удерживается на обеих сторонах мембраны, а внутренние части представляют собой переплетение углеводородных хвостов липидов. В эту матрицу и погружены отдельные молекулы белков (интегральных, рис. 14). Белки, благодаря наличию у них и гидрофильных, и гидрофобных частей, могут взаимодействовать как с водной средой, так и с углеводородными цепочками липидных молекул. На поверхности мембраны гидрофильными группами удерживаются еще и периферические белки. В мембранах существуют поры, через которые могут проникать низкомолекулярные вещества. Имеются также и специальные белки-переносчики, которые переправляют через толщу мембраны строго определенные вещества, нужные клетке, и, соответственно, те, от которых она стремится избавиться.

Рис. 14. Строение мембраны. В липидном слое расположены интегральные белки, снаружи слабосвязанные мембранные

Через мембраны вещество может переноситься даже и в том случае, если его концентрация растет в направлении переноса. Это кажется странным. Ведь мы хорошо знаем, что если, например, бросить сахар в воду, то сначала вокруг кусочка сахара образуется насыщенный раствор, а затем сахар распространится по всему объему воды — диффузия идет в направлении убывания концентрации. Нельзя ожидать, что раствор сахара сам собой разделится на чистую воду и чистый сахар. Вообще говоря, этого можно добиться, но обязательно затратив некоторую работу. Откуда же в клетках берется необходимая энергия, когда вещество в мембране переносится в направлении роста концентрации? Оказывается, такой активный перенос совершается за счет энергии АТФ, причем металлы выполняют в механизме переноса существенную роль.

Активный перенос — лишь один из примеров загадочного явления сопряжения процессов, сопряжения, на котором держится вся энергетика жизни. Сейчас мы и разберем данные о ходе важного сопряженного процесса — окислительного фосфорилирования, в котором реакции дыхания сопряжены с синтезом АТФ.

Рис. 15. Строение митохондрии (печени)

Процесс этот развертывается на мембранах митохондрий. Митохондрии — это особые органеллы клетки размером 1-2 мкм, обычно сферической или цилиндрической формы (рис. 15). Они образованы двумя мембранами: гладкой внешней и внутренней, образующей складки, или кристы, заполненные студнеобразной массой белкового характера (матриксом). На мембранах расположены различные ферменты. Особенно интересна внутренняя мембрана, на которой находятся ферменты дыхательной цепи и ферменты, обусловливающие синтез АТФ (рис. 16).

Рис. 16. Участок поверхности внутренней мембраны митохондрии. Сгруппированы все участники дыхательной цепи и синтеза АТФ

В отличие от внешней мембраны, внутренняя непроницаема для большинства низкомолекулярных веществ (для катионов натрия, анионов хлора, брома; калия, магния), а также и для НАД и НАД*Н. В матриксе находятся ферменты, обеспечивающие работу цикла Кребса (цикла трикарбоновых кислот). Кислород и вода проникают внутрь митохондрии через внешнюю мембрану путем обычной диффузии.

Предположим, что в митохондрии окисляется некоторое вещество, содержащее водород, — обозначим его АН2. В результате окисления получается вода и освобождается энергия:

Окисление вещества, содержащее водород в митохондрии

Суть дела заключается в том, как не допустить бесполезного рассеивания этой энергии, превратить ее в энергию химических связей (аккумулировать) и до поры до времени сохранять в такой скрытой форме. Для этого служит другая реакция, а именно — образования аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной кислоты (АДФ) и фосфата (Ф). Простейшая запись этой реакции:

Уравнение выражает процесс аккумулирования энергии в молекулах АТФ

Это уравнение выражает процесс аккумулирования энергии в молекулах АТФ.

Весь вопрос в том, каким способом передается энергия одной реакции веществам, участвующим в другой. Предполагалось существование особых соединений — промежуточных продуктов, связывающих обе реакции. Однако обнаружить их не удалось.

В настоящее время большинство биохимиков склоняются в пользу теории П. Митчела, в которой большая роль отведена возникновению разности потенциала между внешней и внутренней сторонами мембраны митохондрий, в которых происходит образование молекул АТФ. Все события развиваются с участием мембраны, которая и является макроскопическим организатором молекулярных процессов. На рисунке 17 схематически показан этот сопряженный процесс, протекающий на поверхности и в глубине внутренней мембраны.

Рис. 17. Схема окислительного фосфорилирования с участием мембраны (по П. Митчелу). Волнистая линия — путь электрона; условно показано положение переносчиков электронов и фермента АТФазы

Цикл Кребса, действующий в матриксе, передает атомы водорода, отнятые у окисляемого вещества, никотин-амиддинуклеотиду (НАД), превращая его в НАД*Н + Н+. Отсюда водород переходит к флавиновым ферментам- флавопротеидам (ФП), причем восстановленная форма ФП*Н2 отдает ионы водорода Н+ другой стороне мембраны, где они могут быть частично вытеснены ионами натрия или других металлов, а электроны следуют дальше. Они попадают на железосерусодержащий (FeS) белок. Этот белок отдает два электрона двум частицам убихинона Q: присоединяя два иона водорода 2Н+ из матрикса, убихинон при этом образует соединение QH. От цитохрома b к двум частицам QH поступают еще два электрона, а из матрикса присоединяются еще два иона водорода Н+ так, что в конечном счете образуется 2QH2. Затем все четыре иона водорода уходят на другую (внешнюю) сторону мембраны, а электроны начинают движение по цепи цитохромов с1, с, а, а3, попадая в конце концов к кислороду. Заметим, что удаление водородных ионов из внутреннего пространства митохондрии ведет к понижению кислотности внутри митохондрии и повышению ее во внешней зоне.

Ионы водорода, вышедшие на внешнюю сторону мембраны, могут частично замещаться другими катионами. Все это вызывает появление разности потенциалов между двумя сторонами мембраны (трансмембранный потенциал). В нижней части рисунка 17 показано образование АТФ из АДФ и Ф.

Суммарная реакция фосфорилирования (образования АТФ), сопряженная с реакцией окисления НАД*Н, может быть записана так:

Суммарная реакция фосфорилирования (образования АТФ), сопряженная с реакцией окисления НАД*Н

Из этой схематической записи видно, что НАД*Н расстается с атомом водорода и электроном; два атома водорода и атом кислорода (точнее, 1/2 O2) образуют воду, и вместе с тем за счет энергии этого процесса из АДФ и Ф получается АТФ. Ясно, что, удаляя воду, мы сместим равновесие вправо — торону образования АТФ.

По мнению Митчела, фермент АТФ-аза, расположенный в мембране, действует так, что как только от молекул АДФ и Ф отделится молекула воды, ион Н+ втягивается через этот фермент во внутреннее пространство митохондрии (где среда слабощелочная), а ион ОН — переходит на внешнюю сторону мембраны (там среда слабокислая). На той и другой стороне перегородки происходит реакция нейтрализации.

Таким образом, разность потенциалов (разделение зарядов), наведенная в процессе дыхания в направлении, перпендикулярном мембране, является движущей силой процесса сопряженного фосфорилирования. В АТФ, в сущности, запасается энергия образования воды из водорода (отделенного от исходного пищевого вещества) и кислорода воздуха.

И во всемэтом сложном сопряженном механизме ионы металлов играют ответственную роль, обеспечивая транспорт электронов.

Глава 9. Многофункциональные ионы

Кобальт

Cоединение кобальта, проявляющее биологическую активность, содержится в организмах в очень малых концентрациях. Мы уже знаем, что скот, который пасется на пастбищах, бедных кобальтом, часто заболевает анемией; злокачественная анемия поражает и людей: до 1926 г. эта болезнь считалась неизличимой. В 1926 г. Мимо и Мерфи обнаружили, что сырая печень является хорошим средством борьбы со злокачественной анемией. С этого времени начались исследования, направленные на выделение из тканей печени вещества, обладающего лечебным действием. Двадцать два года потребовалось для достижения успеха. В 1948 г. наконец удалось получить в кристаллическом состоянии соединение красного цвета, оказавшееся комплексным соединением кобальта; оно и было действующим началом препаратов печени, излечивающих анемию.

Соединение это содержится в крови человека в концентрации 2,6*10-4 мкг на 1 мл! Оно образуется в кишечнике в результате деятельности бактерий и всасывается при условии, что в организме имеется особое белковое соединение, содержащее углеводы (мукопротеид). Недостаточное содержание кобальта в пище или отсутствие фактора всасывания и обусловливает развитие болезненных симптомов.

Комплексное соединение кобальта получило название кобаламин. Известно несколько производных кобаламина. Продукт, полученный из печени, назвали витамином B12. Его сложная формула приведена на схеме рисунка 18.

Рис. 18. Витамин B12 (цианкобаламин)

Как видно, ион кобальта (II) помещается в центре цикла, очень похожего на порфириновый. Но, внимательно посмотрев на формулу, мы заметим и важное отличие. Комплекс витамина B12 построен так, что два пиррольных ядра (на схеме слева) соединены непосредственно друг с другом, а другая пара пиррольных ядер соединена через группу СН, т. е. так, как у порфириновых колец. Такие циклы называются корриновыми. Типичное для различных кобаламинов строение, по-видимому, имеет отношение и к их своеобразным каталитическим свойствам.

На схеме показано соединение, содержащее цианогруппу (-CN). В природном коферменте вместо этой группы содержится другая, а именно остаток дезоксиаденозина:

Соединение, содержащее цианогруппу (-CN)

Цианогруппа (по которой это соединение часто называют цианкобаламином) может отщепляться в процессе выделения витамина.

Витамин B12 необходим для образования эритроцитов. Механизм его действия еще во многом не ясен, но доказано, что, наряду с другими функциями, этот витамин осуществляет перенос групп -СН3 (и других алкильных групп) на важных стадиях обмена веществ. Перенос этот интересен тем, что в нем промежуточным продуктом является соединение, в котором имеется связь между ионом кобальта и атомом углерода переносимой группы, например -СН3. С точки зрения химика, образование таких связей (металл — углерод) совершенно необычно; соединения этого типа получаются искусственно и хорошо известны, но в природе, как правило, не встречаются. Кобаламиновые комплексы — пока единственный пример такого рода.

Кальций и магний

Мы уже неоднократно имели возможность заметить, что один и тот же металл выполняет несколько биохимических обязанностей: железо переносит кислород и электроны, медь участвует в аналогичных процессах, цинк способствует гидролизу полипептидов и разложению бикарбонатов и т. д.

Но кальций побивает в этом отношении все рекорды. Ионы кальция образуют защитные оболочки у кораллов, скопления которых достигают громадных размеров; кальций необходим для работы ферментов, обеспечивающих мышечную деятельность; кальций регулирует систему свертывания крови, активирует некоторые ферменты; он же входит в состав костей и зубов у позвоночных и т. д.

Круговороту кальция способствует различная растворимость его углекислых солей: карбонат СаСО3 мало растворим в воде, а гидрокарбонат Са(НСО3)2 растворим довольно хорошо, причем концентрация его в растворе зависит от концентрации диоксида углерода и, следовательно, от парциального давления этого газа над раствором; поэтому, когда углекислые воды горных источников вытекают на поверхность земли и теряют диоксид углерода (углекислый газ), карбонат кальция выделяется в виде осадка, образуя кристаллические сростки (сталактиты и сталагмиты в пещерах). Микроорганизмы осуществляют аналогичный процесс, извлекая из морской воды гидрокарбонат и используя карбонат для строительства защитных оболочек.

В организмах высших животных кальций также выполняет функции, связанные с созданием механически прочных структур. В костях кальций содержится в виде солей, близких по составу к минералу апатиту 3Са3(РO4)2*CaF2(Cl). Символ хлора в скобках указывает на частичное замещение фтора на хлор в этом минерале.

Формирование костной ткани происходит под влиянием витаминов группы D; эти витамины, в свою очередь, синтезируются в организмах под влиянием ультрафиолетового излучения Солнца. Значительное количество витамина D имеется в рыбьем жире, поэтому при дефиците витамина в детском питании кальций не всасывается в кишечнике и развиваются симптомы рахита; врачи назначают в качестве лекарства рыбий жир или чистые препараты витамина D. Избыток этого витамина очень опасен: он может вызвать обратный процесс — растворение костной ткани!

Из пищевых продуктов кальций содержится в молоке, молочных продуктах (особенно много его в твороге, так как белок молока казеин связан с ионами кальция), а также в растениях.

Белки, имеющие небольшую молекулярную массу (около 11000) и содержащиеся в мышцах рыб, проявляют способность активно захватывать ионы кальция. Некоторые из них (например, альбумин карпа) были тщательно изучены; их состав оказался необычным: они содержат много аминокислоты аланина и фенилаланина и вовсе не содержат гистидина, цистеина и аргинина — почти неизменных составных частей других белков.

Для комплексных соединений иона кальция характерно образование мостиков — ион связывает преимущественно карбоксильные и карбонильные группы в образующемся комплексе.

Координационное число иона кальция велико и достигает восьми. Эта его особенность, по-видимому, лежит в основе действия фермента рибонуклеазы, который катализирует важный для организма процесс гидролиза нуклеиновых кислот (РНК), сопровождающийся освобождением энергии. Предполагают, что ион кальция образует жесткий комплекс, сближая друг с другом молекулу воды и фосфатную группу; находящиеся в окружении иона кальция остатки аргинина способствуют фиксации фосфатной группы. Она поляризуется кальцием и легче подвергается атаке со стороны молекулы воды. В результате фосфатная группа отщепляется от нуклеотида. Было доказано также, что ион кальция в этой ферментной реакции нельзя заменить на другие ионы с той же степенью окисления.

Ионы кальция активируют и другие ферменты, в частности α-амилазу (катализирует гидролиз крахмала), но в этом случае кальций все же можно заменить в искусственных условиях трехзарядным ионом металла неодима.

Кальций является и важнейшим компонентом той удивительной биологической системы, которая больше всего походит на машину, — системы мышц. Эта машина производит механическую работу за счет химической энергии, заключенной в веществах пищи; ее коэффициент полезного действия высок; она почти мгновенно может быть переведена из состояния покоя в состояние движения (причем в покое энергия не расходуется); ее удельная мощность около 1 кВт на 1 кг массы, скорость движений хорошо регулируется; машина вполне пригодна для длительной работы, требующей повторяющихся движений, срок службы около 2,6*106 операций. Примерно так описал мышцу проф. Уилки в популярной лекции, добавив еще, что машина ("линейный двигатель") может служить пищей.

Ученым очень трудно было выяснить, что же происходит внутри этого "линейного двигателя", каким образом химическая реакция порождает целенаправленное движение и какую роль играют во всем этом ионы кальция. В настоящее время установлено, что мышечная ткань состоит из волокон (вытянутых клеток), окруженных мембраной (сарколеммой). В мышечных клетках находятся миофибриллы — сократительные элементы мышцы, которые погружены в жидкость — саркоплазму. Миофибриллы состоят из сегментов — саркомеров. В саркомерах находится система из нитей двух типов — толстых и тонких.

Толстые нити состоят из белка миозина. Молекулы миозина представляют собой вытянутые частицы, имеющие на одном конце утолщение — головку. Головки выступают над поверхностью нитеобразной молекулы и способны располагаться под различными углами к оси молекулы. Молекулярная масса миозина равна 470000.

Тонкие нити образованы молекулами белка актина, имеющими сферическую форму. Молекулярная масса актина — 46000. Частицы актина расположены так, что получается длинная двойная спираль. Каждые семь молекул актина связаны нитеобразной молекулой белка тропомиозина, несущей на себе (ближе к одному из концов) шарообразную молекулу еще одного белка — тропонина (рис. 19). Тонкая нить скелетной мышцы содержит до 400 молекул актина и до 60 молекул тропомиозина. Таким образом, работа мышцы основывается на взаимодействии деталей, построенных из четырех белков.

Рис. 19. Механизм мышечного сокращения: а — мостики между нитями актина и миозина; б — мышца расслабленная и мышца в состоянии сокращения: нити актина вдвинуты между нитями миозина

Перпендикулярно осям нитей располагаются белковые образования — z-пластинки, к которым прикрепляются одним концом тонкие нити. Толстые нити размещены между тонкими. В расслабленной мышце расстояние между z-пластинками составляет приблизительно 2,2 мк. Сокращение мышцы начинается с того, что под влиянием нервного импульса выступы (головки) молекул миозина прикрепляются к тонким нитям и возникают так называемые сшивки, или мостики. Головки толстых нитей по обе стороны пластинки наклонены в противоположные стороны, поэтому, поворачиваясь, они втягивают тонкую нить между толстыми, что и приводит к сокращению всего мышечного волокна.

Источником энергии для работы мышцы является реакция гидролиза аденозинтрифосфорной кислоты (АТФ); присутствие этого вещества необходимо для работы мышечной системы.

В 1939 г. В. А. Энгельгардт и М. Н. Любимова доказали, что миозин и комплекс его с актином — актомиозин являются катализаторами, ускоряющими гидролиз АТФ в присутствии ионов кальция и калия, а также магния, который вообще часто облегчает гидролитические реакции. Особая роль кальция заключается в том, что он регулирует образование сшивок (мостиков) между актином и миозином. Молекула АТФ присоединяется к головке молекулы миозина в толстых нитях. Затем происходит какое-то химическое изменение, приводящее этот комплекс в активное, но неустойчивое состояние. Если такой комплекс вступит в соприкосновение с молекулой актина (на тонкой нити), то произойдет освобождение энергии вследствие реакции гидролиза АТФ. Эта энергия и заставляет мостик отклониться и подтянуть толстую нить ближе к белковой пластинке, т. е. вызвать сокращение мышечного волокна. Далее к актин-миозиновому комплексу присоединяется новая молекула АТФ, и комплекс немедленно распадается: актин отделяется от миозина, мостик более не связывает толстую нить с тонкой — мышца расслабляется, а миозин и АТФ остаются связанными в комплекс, находящийся в неактивном состоянии.

Ионы кальция содержатся в трубочках и пузырьках, окружающих одиночное мышечное волокно. Эта система трубочек и пузырьков, образованная тонкими мембранами, называется саркоплазматической сетью; она погружена в жидкую среду, в которой и находятся нити. Под влиянием нервного импульса изменяется проницаемость мембран, и ионы кальция, покидая саркоплазматическую сеть, выходят в окружающую жидкость. Предполагается, что ионы кальция, соединяясь с тропонином, влияют на положение нитевидной молекулы тропомиозина и переводят ее в такое положение, при котором активный комплекс АТФ — миозин может присоединиться к актину. По-видимому, регуляторное влияние ионов кальция распространяется с помощью нитей тропомиозина сразу на семь молекул актина.

После сокращения мышцы кальций очень быстро (доли секунды) удаляется из жидкости, вновь уходя в пузырьки саркоплазматической сети, и мышечные волокна расслабляются. Следовательно, механизм работы "линейного двигателя" заключается в попеременном вдвигании системы толстых миозиновых нитей в пространство между тонкими нитями актина, прикрепленными к белковым пластинкам, причем этот процесс регулируется ионами кальция, периодически появляющимися из саркоплазматической сети и снова уходящими в нее.

Ионы калия, содержание которого в мышце гораздо больше содержания кальция, способствуют превращению глобулярной формы актина в нитчатую — фибриллярную: в таком состоянии актин легче взаимодействует с миозином.

С этой точки зрения становится понятным, почему ионы калия усиливают сокращение мышцы сердца, почему они необходимы вообще для развития мышечной системы организма.

Ионы кальция — деятельные участники процесса свертывания крови. Нет надобности говорить, насколько важен этот процесс для сохранения жизни организма. Если бы кровь была лишена способности свертываться, ничтожная царапина представляла бы серьезную угрозу жизни. Но в нормальном организме кровотечение из небольших ран прекращается уже через 3-4 мин. На поврежденных тканях образуется плотный сгусток белка фибрина, закупоривающий рану. Исследование образования кровяного сгустка показало, что в его создании принимают участие сложные системы, включающие несколько белков и специальных ферментов. Не менее 13 факторов должны действовать согласованно для правильного хода всего процесса.

При повреждении сосуда кровеносной системы в кровь поступает белок тромбопластин. Ионы кальция принимают участие в действии этого белка на вещество, называемое протромбином (т. е. "источником тромбина"). Еще один белок (из класса глобулинов) ускоряет превращение протромбина в тромбин. Тромбин действует на фибриноген — высокомолекулярный белок (его молекулярная масса около 400000), молекулы которого имеют нитевидное строение. Фибриноген образуется в печени и является растворимым белком. Однако под влиянием тромбина он превращается сначала в мономерную форму, а затем полимеризуется, и получается нерастворимая форма фибрина — тот самый сгусток, который и прекращает кровотечение. В процессе образования нерастворимого фибрина опять участвуют ионы кальция.

Натрий и калий

Оба эти элемента находятся в первой группе системы Менделеева — они соседи и во многих отношениях похожи друг на друга. Активные, типичные металлы, атомы которых легко расстаются со своим единственным внешним электроном, переходя в ионное состояние, эти элементы образуют многочисленные соли, широко распространенные в природе. Однако более внимательное исследование обнаруживает, что биологические функции натрия и калия не одинаковы. Соли калия лучше поглощаются почвенным комплексом, поэтому в тканях растений оказывается относительно больше калия, тогда как соли натрия преобладают в морской воде. В биологических машинах оба эти иона иногда действуют совместно, иногда прямо противоположным образом.

Рис. 20. Распространение нервного импульса: а — ионы калия покидают нервное волокно быстрее, чем ионы натрия входят в него; б — диффузия ионов натрия усиливается; в — на внешней стороне нервного волокна возникает отрицательный заряд; г — исходное состояние восстанавливается, но отрицательный заряд появляется слева — в направлении распространения нервного импульса

В распространении по нерву электрических импульсов принимают участие оба иона. В покоящемся нерве, во внутренней его части, сосредоточен отрицательный заряд (рис. 20, а), а на внешней стороне — положительный; концентрация ионов калия больше концентрации ионов натрия внутри нерва. При раздражении изменяется проницаемость мембраны нервного волокна, и ионы натрия устремляются внутрь нерва быстрее, чем ионы калия успевают выходить оттуда (рис. 20, б). В результате на внешней стороне нервного волокна появляется отрицательный заряд (там не хватает катионов), а внутри нерва (где имеется теперь избыток катионов) возникает положительный заряд (рис. 20, в). На внешней стороне волокна начинает происходить диффузия ионов натрия от соседних участков к тому, который обеднен ионами этого металла. Энергичная диффузия ведет к появлению отрицательного заряда уже на соседних участках (рис. 20, г), а на исходном восстанавливается первоначальное состояние. Таким образом, состояние поляризации (плюс — внутри, минус — снаружи) передвинулось по нервному волокну. Дальше все процессы повторяются, и нервный импульс довольно быстро распространяется по всему нерву. Следовательно, механизм распространения электрического импульса по нерву обусловлен различной проницаемостью мембраны нервного волокна по отношению к ионам натрия и калия.

Вопрос о проницаемости мембран клеток для тех или иных веществ крайне важен. Прохождение вещества через биологическую мембрану далеко не всегда напоминает простую диффузию через пористую перегородку. Так, например, глюкоза и другие углеводы проходят через мембрану эритроцита с помощью специального переносчика, который проводит молекулы через мембрану. При этом должны выполняться специальные условия — молекула углевода должна иметь определенную форму, она должна быть изогнута так, чтобы ее контур приобрел очертания кресла, иначе перенос может не состояться. Концентрация углеводов во внешней среде больше, чем внутри эритроцита, поэтому такой перенос называют пассивным.

Бывают случаи, когда мембрана наглухо закрывается для определенных ионов: в частности, в митохондриях внутренняя мембрана вообще не пропускает ионов калия. Однако эти ионы попадают внутрь митохондрии, если в окружающей среде имеются антибиотики валиномицин или грамицидин. Валиномицин специализируется, главным образом, на ионах калия (может переносить и ионы рубидия и цезия), а грамицидин переносит, кроме калия, также ионы натрия, лития, рубидия и цезия.

Было выяснено, что молекулы таких проводников имеют форму баранки, радиус отверстия которой таков, что внутри баранки помещается ион калия, натрия или другого щелочного металла. Эти антибиотики назвали ионофорами ("носителями ионов"). На рис. 21 показаны схемы переноса ионов сквозь мембрану молекулами валиномицина и грамицидина. Весьма вероятно, что то токсическое действие, которое антибиотики оказывают на различные микроорганизмы, как раз и связано с тем, что в их присутствии мембраны начинают пропускать внутрь те ионы, которым быть там не полагается; это нарушает работу химических систем клетки микроорганизма и ведет к ее гибели или к серьезнымрасстройствам, прекращающим ее размножение.

Рис. 21. Схема работы переносчиков ионов — ионофоров: а — подвижный переносчик (валиномицин); б — перенос с помощью канала (грамицидин)

Существенную роль в биологических машинах играют активные переносы через мембраны (см. гл. 8). Возникает вопрос: откуда же черпается энергия, необходимая для активного переноса, и можно ли осуществить его без специального переносчика?

Что касается энергии, то в конечном счете она доставляется все теми же универсальными молекулами АТФ или креатинфосфатом, гидролиз которых сопровождается освобождением больших количеств энергии. А вот относительно переносчиков вопрос менее ясен, хотя несомненно, что без ионов металлов калия и натрия здесь не обойтись.

Концентрация различных веществ в клетке (белковых и минеральных) выше, чем в окружающей среде; по этой причине чаще всего клетка оказывается под угрозой чрезмерного проникновения в нее воды (в результате осмоса). Для того чтобы избавиться от этого, клетка выкачивает ионы натрия в окружающую среду и тем самым выравнивает осмотическое давление. По этой причине концентрация ионов натрия в клетке меньше, чем в среде. Здесь опять обнаруживается различие между натрием и калием. Удаляется натрий, и концентрация ионов калия оказывается относительно больше внутри клетки. Так, эритроцит содержит калия примерно в пять раз больше, чем натрия.

И в мышцах велико содержание калия: на 100 г сырой мышечной ткани калия содержится 366 мг, а натрия 65 мг. Калий в мышцах облегчает переход глобулярной формы актина в фибриллярную, которая и соединяется с миозином (см. выше).

Известны некоторые случаи, когда фермент, активируемый ионом калия, подавляется ионами натрия, и наоборот. Поэтому открытие фермента, для действия которого необходимы оба иона, привлекло внимание биохимиков. Фермент этот ускоряет гидролиз АТФ и называется (K + Na) АТФ-аза. Для понимания его роли и механизма действия надо опять обратиться к процессам переноса.

Как мы уже указывали, внутри клеток повышена концентрация ионов калия, а в окружающей клеточной среде относительно больше натрия. Выкачивание ионов натрия из клетки ведет к усиленному поступлению в клетку ионов калия, а также и других веществ (глюкозы, аминокислот). Ионы натрия и калия могут обмениваться по принципу "ион на ион", и тогда не возникает разности потенциалов по обе стороны клеточной мембраны. Но если внутри клетки оказывается больше ионов калия, чем оттуда ушло ионов натрия, возможно возникновение скачка потенциалов (около 100 мВ); система выкачивания натрия называется "натриевым насосом". Если при этом появляется разность потенциалов, то применяют термин "электрогенный натриевый насос".

Введение больших количеств ионов калия в клетку оказывается необходимым, так как ионы калия способствуют синтезу белка (в рибосомах), а также ускоряют процесс гликолиза.

В мембране клетки и располагается (K + Na) АТФ-аза — белок с молекулярной массой 670 000, который до сих пор не удалось отделить от мембран. Этот фермент гидролизует АТФ, а энергия гидролиза используется для переноса в направлении роста концентрации.

Замечательным свойством (К + Na) АТФ-азы является то, что она в процессе гидролиза АТФ активируется изнутри клетки ионами натрия (и тем обеспечивает выведение натрия), а снаружи клетки (со стороны среды) — ионами калия (облегчая их введение в клетку); в итоге и происходит необходимое клетке распределение ионов этих металлов. Интересно отметить, что ионы натрия в клетке никакими другими ионами заменить нельзя. АТФ-аза активируется изнутри только ионами натрия, но ионы калия, действующие снаружи, можно заменить на ионы рубидия или аммония.

Для функций отдельных органов, в частности сердца, имеет значение не только концентрация ионов калия, натрия, кальция и магния, но и их отношение, которое должно лежать в определенных пределах. Отношение концентраций этих ионов в крови человека не слишком отличается от соответствующего отношения, характерного для морской воды. Возможно, что биологическая эволюция от первых форм жизни, возникших в водах первичного океана или на его отмелях, до ее высших форм, сохранила некоторые химические "отпечатки" далекого прошлого...

Возвращаясь к началу этой главы, мы снова вспоминаем о многофункциональности ионов, об их способности выполнять в организмах самые разнообразные обязанности. Кальций, натрий, калий, а также кобальт проявляют эту способность неодинаковым образом. Кобальт образует прочный комплекс корринового типа, и уже этот комплекс катализирует разнообразные реакции. Кальций, натрий, калий выполняют функции активаторов. А вот ион магния может действовать и как активатор, и как составная часть прочного комплексного соединения — хлорофилла, одного из самых важных соединений, созданных природой.

Выдающийся ученый К. А. Тимирязев посвятил хлорофиллу труд, названный им "Солнце, жизнь и хлорофилл", указав в нем, что именно хлорофилл и есть то звено, которое связывает процессы выделения энергии на Солнце с жизнью на Земле.

В следующей главе мы и рассмотрим свойства этого интересного соединения.

Глава 10. Магний и фотосинтез

Ионы магния играют в поддержании жизни на Земле совершенно исключительную роль. Поток солнечной энергии, падавший на поверхность Земли в отдаленные геологические периоды, сначала не использовался примитивными формами живых существ. Положение, однако, постепенно изменялось, и некоторые из организмов приобрели особый аппарат, позволивший им направить этот практически неиссякаемый поток энергии в русло хемосинтеза, заставить свет участвовать в создании необходимых для клетки веществ.

Работа фотосинтетического аппарата позволяет клеткам, которые им вооружились, строить сложные органические соединения, прежде всего углеводы, из диоксида углерода СО2 и воды. В результате фотосинтеза в углеводах запасается энергия солнечного света:

В результате фотосинтеза в углеводах запасается энергия солнечного света

Из уравнения видно, что кислород молекул воды освобождается, а водород идет на образование глюкозы, которая в дальнейшем превращается в крахмал. В процессах фотосинтеза, протекающих в клетках некоторых бактерий, источником водорода служит не вода, а другие вещества (например, сероводород).

Существенной частью биологического аппарата для использования энергии света является хлорофилл. Хлорофилл очень похож на гем: его молекула также содержит порфириновый цикл.

Хлорофилл очень похож на гем: его молекула также содержит порфириновый цикл

Отличие хлорофилла от гема заключается прежде всего в том, что хлорофилл — это комплексное органическое соединение магния, а не железа (как гем). Кроме того, в молекуле хлорофилла к порфириновому циклу присоединен еще и высокомолекулярный спирт — фитол. Известно несколько видов хлорофилла, но основной порфириновый каркас сохраняется во всех его видах. Есть и еще одно отличие гема от хлорофилла. Как видно из схемы, в молекуле хлорофилла, кроме типичных для порфирина четырех пиррольных колец, имеется дополнительный пятый цикл (V), содержащий атом водорода, карбонильную группу С=O и карбометоксильную группу . В целом вся сложная макроциклическая система имеет ароматический характер; термин "ароматический" отнюдь не связан с каким-либо запахом — он указывает на сходство в состоянии электронов этого макроцикла и электронов ароматических углеводородов (а бензол и его гомологи действительно имеют легкий специфический запах). Часть электронов атомов углерода и азота порфиринового кольца — π-электроны — являются общими, так что внутри макроцикла существует своеобразный круговой ток (как и в бензоле).

Атом водорода в цикле V активно вступает в различные реакции обмена.

Исследования свойств хлорофилла показали, что атом магния не находится строго в плоскости макроцикла, а выведен из этой плоскости, располагаясь над ней. Если хлорофилл растворить в жидкости, молекулы которой имеют полярное строение, то молекула растворителя присоединяется к магнию за счет своей пары электронов (такие молекулы называют электронодонорными)[7]. Если же среда, окружающая хлорофилл, неполярна, то молекулы хлорофилла соединяются друг с другом, причем роль электронодонорной группы выполняет группа >С=O цикла V (>С=O... Mg). В бензольном растворе существуют, например, двойные молекулы хлорофилла; в алифатических углеводородах, которые очень слабо присоединяются к магнию, образуются даже частицы, состоящие из десяти молекул хлорофилла. В воде хлорофилл практически нерастворим. Однако молекулы воды связывают молекулы хлорофилла вместе таким образом, что пара электронов атома кислорода воды взаимодействует с атомом магния одной молекулы, а атомы водорода воды образуют водородные связи с группами >С=O и -СООН другой (на схеме символ Сhl обозначает молекулу хлорофилла):

Пара электронов атома кислорода воды взаимодействует с атомом магния одной молекулы, а атомы водорода воды образуют водородные связи с группами >С=O и -СООН другой

В результате возникают очень большие агрегаты частиц хлорофилла (коллоидные частицы). Следовательно, именно особенности строения макроцикла хлорофилла (наличие пятого цикла) и определяют его способность образовывать крупные скопления — агрегаты — тесно связанных частиц.

Свет действует на агрегаты хлорофилл — вода — хлорофилл, вызывает отделение электрона от одной из частиц комплекса, вода обеспечивает разделение зарядов.

В самой общей форме работу фотосинтетического механизма можно представить следующим образом. Молекула хлорофилла помещается между молекулами, способными присоединять и отдавать электроны. Свет, действуя на хлорофилл, переводит его электроны на более высокие энергетические уровни — свет поглощается хлорофиллом. (Возбужденное состояние обозначено на схеме звездочкой над символом хлорофилла Chl*). Затем возбужденный электрон выбрасывается молекулой хлорофилла и переходит к веществу, которое способно его принять, — так называемому акцептору электронов, и почти одновременно хлорофилл получает электроны от другого вещества — донора электронов:

Работа фотосинтетического механизма

Здесь D — донор, А — акцептор электронов; hv — поглощаемый хлорофиллом квант света; Chl — хлорофилл.

Такие акты совершаются очень быстро: за одну секунду на солнечном свету происходит около 1500 вспышек. Между донором и акцептором поток электронов совершает круговой путь, расходуя свою энергию на разложение воды, образование АТФ и НАДФ*Н. Эта приближенная картина уточнялась в течение многих лет, но и поныне не все ее детали достаточно ясны.

В фотосинтетическом аппарате растений действуют две системы переносчиков и содержится хлорофилл двух видов, немного различающихся между собой. Свет с большей длиной волны (700 нм) действует на электроны хлорофилла типа а (система, обозначенная на рис. 22 цифрой I). Другая система (обозначенная цифрой II) содержит хлорофилл b и фикобилиновые пигменты. Она поглощает свет с меньшей длиной волны (680 нм). Именно в системе II разлагается вода и выделяется кислород. В каждой системе имеется по 200-250 молекул хлорофилла; только одна из них (в системе II), получая энергию фотона, передает электрон дальше — к веществу Q, остальной хлорофилл работает как светоулавливающее устройство.

Рассмотрим последовательность процессов фотосинтеза, представленных схемой на рисунке 22 и начнем с той части системы, которая обозначена цифрой II. В этой системе имеются группы молекул хлорофилла, на которые падает свет. В результате поглощения энергии света (квант hv) одна из молекул хлорофилла отдает богатый энергией (возбужденный) электрон веществу-переносчику, который обозначен на схеме буквой Q. Результатом потери электрона будет возникновение положительного заряда на молекуле хлорофилла (в системе II).

В результате поглощения энергии света (квант hv) одна из молекул хлорофилла отдает богатый энергией (возбужденный) электрон веществу-переносчику, который обозначен на схеме буквой Q

Для возвращения в исходное состояние молекула хлорофилла должна получить электрон. Установлено, что источником электронов является вода. Молекулы воды распадаются на ионы Н+ и ОН-. Ионы ОН- отдают свои электроны хлорофиллу, а сами превращаются в нейтральные группы — так называемые радикалы *ОН (каждый из которых содержит один неспаренный электрон). Эти радикалы взаимодействуют друг с другом с выделением кислорода. Считают, что в этих процессах важную роль играют ионы марганца.

Происходящие реакции можно схематически записать так:

Последовательность процессов фотосинтеза

Но вернемся к электронам, текущим от молекулы вещества Q. Эти электроны, теряя свою энергию, двигаются затем по целому ряду переносчиков, которые мы не будем подробно описывать, и попадают в другую часть хлорофильной системы, обозначенной цифрой I. Важнейшим итогом их путешествия по этим переносчикам (до системы I) является образование АТФ, т. е. вещества, богатого энергией.

Заметим, что символом Р700 обозначена на схеме особая молекула хлорофилла, выбрасывающая возбужденные электроны. Среди переносчиков имеются соединения железа — железосерусодержащие и медьсодержащие белки (обозначенные на схеме FeS, Z), а также соединения хиноидной структуры (например, Q и пластохиноны).

В хлорофилльной системе I электроны снова возбуждаются светом и, следовательно, переходят на более высокий энергетический уровень. Их поток через переносчик Z (FeS-белок) и ферредоксин переходит к НАДФ+ и при участии ионов Н+ превращает кофермент в восстановленную форму:

В хлорофилльной системе I электроны снова возбуждаются светом и, следовательно, переходят на более высокий энергетический уровень

В конце концов часть электронов может вернуться на путь, ведущий от переносчика Q к системе I, осуществив тем самым круговое движение электронов.

Итогом всей этой работы электронов, возбужденных светом, является, во-первых, образование АТФ, а во-вторых — получение НАДФ*Н за счет водорода воды. Оба соединения — и АТФ, и НАДФ*Н — необходимы для дальнейшей химической работы по созданию молекул углеводов. Назовем только основные этапы этих сложных реакций.

АТФ отдает энергию, способствуя образованию химически активного соединения углевода рибулозы — рибулозодифосфата (содержащего пять атомов углерода). Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата:

Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата

Это соединение превращается с помощью НАДФ*Н в диоксиацетонфосфат, который является сырьем для синтеза фосфатов фруктозы, глюкозы и затем крахмала.

Синтез только 2 моль диоксиацетонфосфата, из которых образуется одна молекула глюкозы, требует, чтобы в фотохимической системе было произведено 12 моль НАДФ*Н и 18 моль АТФ. Следующие стадии синтеза глюкозы нуждаются в дополнительных количествах НАДФ*Н и АТФ.

Таким образом, образующиеся при фотосинтезе глюкоза и крахмал аккумулируют ту энергию, которую кванты света передали хлорофиллу на первых стадиях фотосинтеза.

В современной науке моделирование фотосинтеза — искусственное создание такой химической системы, которая могла бы, поглощая свет, доставлять нам углеводы, синтезируя их из воды и диоксида углерода, — является одной из самых увлекательных задач. Физики умеют превращать энергию света в электрическую энергию. Остается заставить поток электронов служить химическим целям с таким же совершенством, с каким это происходит в природе.

Для фотосинтеза нужен не только хлорофилл, но и особые мембранные структуры, содержащие белок и ряд ферментов в соответствующем пространственном расположении. Только до тех пор, пока все части этой сложной системы работают согласованно, идет процесс образования органических веществ, запасающих энергию света. В связи с этим познание фотосинтеза оказалось не только химической, но и физической проблемой и потребовало решения многих вопросов, в частности вопроса о передаче энергии возбуждения. Выяснилось, что структуры, необходимые для фотосинтеза, похожи на митохондрии: в зеленых растениях это хлоропласта, у микроорганизмов, многие виды которых способны к фотосинтезу (сине-зеленые, пурпурные бактерии и др.), все необходимые ферменты размещены в клеточной мембране, а мембрана впячивается внутрь клетки, образуя мезосомы.

Эти важные факты говорят о том, что структурная организация: возникновение надмолекулярных структур — митохондрий, хлоропластов — есть необходимое условие сопряжения реакций, доставляющих энергию, и реакций, поглощающих ее. Так в природе осуществляется переход от процессов на молекулярном уровне к процессам в макромолекулярных организациях — клетках и многоклеточных системах, причем и само существование таких систем поддерживается энергетическим сопряжением.

Все эти структуры образовались постепенно, и хлорофилл не сразу появился на Земле.

В осадочных породах, начиная с кембрийского, были обнаружены порфирины, и, как думают ученые, именно они являются остатками древних носителей хлорофилла. Некоторые ученые считают, что хлорофилл совершает свою работу в живых системах вот уже 550 млн. лет.

Хлорофилл и сам был рожден светом. Возможно, как считает М. Кальвин, солнечная радиация, действуя на воду и углекислый газ, привела сначала к появлению муравьиной и щавелевой кислот. Щавелевая кислота Н2С2О4 содержит два атома углерода. При облучении таких двухуглеродных молекул часто образуются четырехуглеродные молекулы; в частности, четыре атома углерода содержатся в кислоте С4Н6O4, называемой янтарной. С другой стороны, прямыми опытами Бахадура, А. Г. Пасынского с сотрудниками и других ученых доказано, что ультрафиолетовая радиация, действуя на растворы нитратов и формальдегида, в которых содержатся соли железа, вызывает появление в растворах аминокислот; аминокислоты могут возникнуть и при действии электрических разрядов на смесь азота, углекислого газа и паров воды. Из янтарной кислоты и аминокислоты глицина, NH2CH2COOH, по-видимому, и образовались порфирины.

Они и были (по А. А. Красновскому) первичными аппаратами для использования энергии света. У наиболее древних видов бактерий — автотрофов — обнаружено наличие свободных порфиринов. Бактерии действовали в лишенной кислорода восстановительной атмосфере, которая была характерна для ранних периодов истории Земли, и содержали восстановленную форму порфирина. Однако свободные порфирины, в силу особенностей их спектра поглощения, не могут обеспечить достаточно полного использования видимой части солнечного излучения. Постепенно химическая эволюция усовершенствовала аппарат и привела к образованию хлорофилла; внедрение магния в структуру порфирина вызвало повышение активности, и, кроме того, магний укрепил связи хлорофилла с белком[8].

Фотосинтез в той его форме, которая приобрела особенно большое значение на Земле, совершается в зеленых частях растений и в водорослях. Трудно представить колоссальные масштабы деятельности зеленых водорослей, плавающих в морях и океанах. За один год они выделяют в атмосферу Земли 3,6*10 т кислорода. Это составляет около 90% всего кислорода, поступающего в атмосферу из океана и с поверхности листьев наземных растений. Следовательно, именно водоросли являются основным поставщиком кислорода. Именно они создают ту часть атмосферы, которая необходима для нашего существования. Наша жизнь неразрывно связана с "дыханием океана" и непрерывной деятельностью микроскопических носителей хлорофилла. К. А. Тимирязев в книге "Солнце, жизнь и хлорофилл" изложил результаты своих фундаментальных исследований в области фотосинтеза и указал, что фотосинтез — это процесс, от которого зависят все проявления жизни на нашей планете.

Развитие фотосинтетических аппаратов знаменовало собой начало совершенно нового периода в эволюции форм жизни на Земле. Появились новые виды живых существ, резко изменились условия питания, состав атмосферы — началось обогащение ее кислородом. Синтез органических веществ в растениях и водорослях обеспечил пищей гетеротрофные[9] организмы; из остатков растений под влиянием химических и биологических факторов начали образовываться массы ископаемых углей. Накопления таких отложений, как нефть и сланцы, — это тоже результат фотосинтетической деятельности.

Пожалуй, невозможно найти другой биохимический аппарат, который мог бы с таким совершенством использовать энергию излучения для химических целей, как это делает хлорофилл. Хлорофилл действительно является звеном между энергией Солнца и жизнью на Земле; этим определяется исключительная роль ионов магния в развитии форм жизни.

Лишь очень небольшая часть энергии, падающей на лист, используется им для целей фотосинтеза, эта часть не превышает 1%. И тем не менее общая продукция фотосинтеза на Земле колоссально велика. Биохимики называют фотосинтез самым крупным из химических процессов на Земле. Действительно, продукция фотосинтеза за год (1011 т органического углерода) в 100 раз превышает ежегодную мировую продукцию угольной и нефтяной промышленности; энергия, которую накапливают фотосинтетические машины в организмах, в 10000 раз превышает энергию воды, используемую в гидростанциях всего мира, и в 100 раз — энергию сгорания угля.

Эти числа, конечно, являются ориентировочными; но тем не менее их порядок дает вполне ясное представление о масштабах биологического процесса, который называется фотосинтезом.

Глава 11. Фиксация атмосферного азота и ионы металлов

Биологические машины по совершенству конструкции и точности работы превосходят многие технические устройства. Но особенно ярко преимущество организмов над механизмами, созданными человеком, проявилось в проблемах фиксации атмосферного азота и фотосинтеза.

В этой главе коснемся вопросов связывания азота. Уже в начале нашего века стало ясно, что запасов природной селитры — распространенного сырья для получения соединений азота (удобрений, лекарств, красителей) хватит приблизительно на 50 лет. Угроза настоящего азотного голода заставила химиков и инженеров тщательно изучать все реакции, в которые вступает свободный азот. Азот, состоящий из двухатомных молекул N2, в большом количестве имеется в воздухе, практически атмосфера — неисчерпаемый источник азота. Но молекулы N2 очень прочны, и число реакций, в которые они вступают при невысоких температурах, невелико.

Так, азот реагирует с металлом литием, образуя нитрид лития, но литий дорог, а регенерировать его нельзя без значительных затрат. При высоких температурах в присутствии катализаторов и при повышенном давлении удается связать азот с водородом в аммиак, но для этого требуется сложное и тоже не дешевое заводское оборудование. В природе существует много видов бактерий (клубеньковые бактерии — азотобактер, клостридиум и др.), фиксирующих атмосферный азот в гораздо более "мягких" условиях и успешно превращающих его в аммиак.

Во всех этих бактериях действует фермент, названный нитрогеназой. Для того чтобы превратить молекулярный азот в аммиак, ферментативные системы заставляют азот реагировать с ионом водорода и электроном. Детальный ход реакции не известен, но в ней, несомненно, принимает участие АТФ.

Белок нитрогеназы представляет собой комплекс двух белков — один из них содержит железо, а другой — железо и молибден. Кроме того, для действия нитрогеназы нужны двухзарядные ионы металлов: магния, марганца или кобальта (но не кальция), причем наибольший активирующий эффект получается с магнием.

Предполагалось, что в реакции фиксации атмосферного азота в качестве промежуточных продуктов получаются соединения N2H2 — диазен и N2H4 — гидразин.

Наличие в нитрогеназе двух металлов заставило предположить, что молекулы диазена и гидразина являются мостиками, связывающими в нитрогеназе ионы металлов. Более обстоятельное исследование привело к выводу, что роль мостика между железом и молибденом играет атом серы:

Роль мостика между железом и молибденом играет атом серы

К атому железа присоединяется молекула азота, так что получается комплекс:

К атому железа присоединяется молекула азота

Затем возникает связь азот — молибден и присоединяется электрон и протон:

Возникает связь азот — молибден и присоединяется электрон и протон

Присоединение водорода ведет к разрыву двойной связи и в конечном счете к образованию аммиака:

Присоединение водорода ведет к разрыву двойной связи и в конечном счете к образованию аммиака

В этом процессе длины связей между атомами растут от стадии к стадии (молекула растягивается), а приток возбужденных электронов дает возможность присоединить протон. Таким образом, связь с металлами облегчает реакцию азота с водородом.

Разумеется, искусственное создание такого двухъядерного комплекса, состоящего из двух металлов и легко осуществляющего фиксацию атмосферного азота, представляется чрезвычайно заманчивым. Но на пути практического решения этой задачи встретились большие трудности; ведь то, что теоретически можно изобразить схемой, — только приближенная картина крайне сложного биохимического процесса, в котором множество важных особенностей не учтено (например, изменения формы белковых молекул, играющие большую роль в катализе).

Тем не менее уже сделаны успешные попытки решить эту задачу. В Советском Союзе работы А. Е. Шилова, М. Е. Вольпина и В. Б. Шура показали, что азот можно связать с помощью соединений титана и магния; особенно активны соединения титана в присутствии соединений ванадия, хрома, железа, молибдена и вольфрама.

По-видимому, удастся разработать технически приемлемую схему фиксации азота, которая не будет уступать биологической. Но это дело будущего.

Глава 12. Металлы полезные и опасные

Большое число важнейших стадий процессов жизнедеятельности контролируется содержащимися в тканях организма ионами металлов. Поэтому вполне понятно, что нарушения в строгом режиме работы систем, содержащих металлы, тяжело сказываются на общем состоянии организма. Зная, какова роль того или иного металла, можно бороться с болезненными, патологическими явлениями и успешно ликвидировать их.

При недостаточном количестве железа врачи вводят ионы железа в форме молочнокислой соли или соли аскорбиновой кислоты. Суточная потребность здорового человека в железе всего около 5-10 мг и легко покрывается обычным рационом; овсяная мука, шпинат, чечевица, фасоль, салат, мясо, яйца и т. п. содержат достаточное количество железа. В лечебных препаратах железо лучше усваивается, если оно находится в состоянии двухзарядного иона. Поэтому аскорбиновая кислота (восстановитель) способствует всасыванию железа. Карбонат кальция и фосфаты, наоборот, тормозят всасывание из-за образования плохо растворимых осадков. Аналогично действуют сода или магнезия, понижающие кислотность желудочного сока.

Известно много препаратов железа, в том числе и содержащих сульфат железа (II), и даже просто порошок металлического железа; некоторые из них, однако, могут вызвать неприятные побочные явления (раздражение слизистых оболочек желудочно-кишечного тракта). Препараты железа рекомендуются для лечения так называемых гипохромных и железодефицитных анемий. При злокачественной анемии рекомендуется введение (лучше внутримышечно или под кожу) растворов витамина B12 (кобаламина — комплексного соединения кобальта, о котором шла речь выше). Человеку в сутки требуется всего 1-2 мкг, т. е. миллионные доли грамма. Этот витамин не только способствует кроветворению, он принимает участие и в других процессах — в синтезе креатина и метионина, в превращениях жиров, в образовании нуклеиновых кислот. Лечебные дозы, конечно, могут быть больше и достигают 100 и 200 мкг при внутримышечных инъекциях. Витамин В12 синтезируется кишечной флорой, но поступает и с пищей: мясо, яйца и особенно печень содержат значительные количества кобаламина. В лечебных целях его иногда комбинируют с солями железа, фолиевой и аскорбиновой кислотами. Соли магния с аскорбиновой кислотой применяют вместе с глюкозой для лечения гипертонической болезни и при нарушениях мозгового кровообращения. Оксид магния (жженая магнезия) рекомендуется для устранения повышенной кислотности и для лечения отравлений кислотами.

Благотворно влияют на организм и солевые растворы, содержащие смеси солей. Так, известная карловарская соль, используемая для лечения болезни печени, желчного пузыря, желчнокаменной болезни, повышенной кислотности, представляет собой (главным образом) смесь солей гидрокарбонатов, хлоридов, сульфатов натрия и калия.

Однако бесконтрольное введение в организм соединений различных металлов может привести к печальным последствиям. Даже поваренная соль — хлорид натрия — не безвредна. Ежедневная норма соли составляет около 10 г; врачи установили, что постоянное превышение этой нормы в два-три раза ведет к развитию гипертонии, а прием очень большой порции соли может оказаться смертельно опасным. В то же время хлорид натрия — жизненно необходимое вещество. Отсюда, конечно, легко сделать вывод, что все дело в концентрации, которую достигает соединение данного металла в клеточном содержимом организма.

Мы, к сожалению, не знаем, каковы биологические функции многих металлов. Вполне вероятно, что некоторые из них (например, ртуть) вообще не выполняют в организме полезной работы и не являются необходимыми. Но как раз среди них обнаружены высокотоксичные, т. е. опасные даже в очень малых концентрациях. Тщательное изучение свойств соединений таких металлов, с одной стороны, помогает разрабатывать правила техники безопасности, а с другой — дает в руки врачей средства для борьбы с некоторыми болезнями. Дело в том, что бактерии, грибки, вирусы погибают под действием соединений "опасных" металлов, и, подбирая дозу и условия применения, можно успешно использовать бактерицидные (убивающие бактерий) свойства ряда металлов в медицине. Врачи применяют, например, ртутно-салициловую мазь, цианид ртути и др.

Из легких металлов токсичными свойствами обладают бериллий и литий и их соединения. Соединения тяжелых металлов (ртуть, свинец) токсичны — и тем более, чем лучше их растворимость.

Ядовитое действие ионов тяжелых металлов в значительной мере связано с их способностью прочно соединяться с белками и нарушать нормальную работу ферментов и других биологически активных белковых веществ.

Ниже мы рассмотрим токсические свойства некоторых металлов и их соединений. Когда речь идет о ядовитости самого металла, то, как правило, он проявляет токсический эффект в тонкоизмельченном состоянии (в виде пылевых частиц). Попадая в легкие и бронхи, частицы металла вызывают раздражение и, медленно реагируя с клеточным содержимым, превращаются в соединения, которые переходят в кровь.

Аналогичное действие оказывает и вдыхание пылевых частиц оксидов металлов (оксид цинка, оксиды марганца и др.) или солей. Соли некоторых металлов сильно раздражают кожу (соли магния и отчасти натрия) и способны всасываться даже через кожные покровы. Поэтому при любой работе с металлами и их солями, особенно если работа ведется в условиях высокой температуры, необходимо обратить серьезное внимание на соблюдение соответствующих правил техники безопасности.

Опасными, т. е. действующими даже в малых концентрациях, следует считать ртуть, свинец, кадмий, таллий, бериллий, хром, барий, стронций. Конечно, опасен радий — и как источник излучения, и как химически активный металл — аналог бария. Несколько менее опасны марганец, литий, никель, цинк (см. ниже табл. 6).

Ртуть

В условия производства могут встретиться как металлическая ртуть, так и ее соли (хлориды Hg2Cl2 и HgCl2, сульфиды HgS), на основе которых готовят краску киноварь и др. Крайне опасны органические соединения ртути, например этилмеркурхлорид С2Н5-Hg-О. В медицине соединения ртути применяются в строгой дозировке (салициловортутные мази, цианид ртути).

Пары ртути задерживаются в легких и могут всасываться в кишечнике, что, по-видимому, связано с относительно хорошей растворимостью металлической ртути в воде.

Как и другие тяжелые металлы (свинец), ионы ртути энергично соединяются с группами SH белков и прочно удерживаются в получившихся комплексах; частично ртуть в тканях организма переходит и в сульфид. Белки, богатые этими группами, содержатся в почках, поэтому ртуть, попадая в организм, сосредоточивается преимущественно в почках и нарушает их нормальную деятельность.

Ртуть задерживается также и в клетках мозга и слизистой оболочки рта. При ртутных отравлениях поражаются почки, при хронических отравлениях серьезно страдает нервная система.

Следует избегать контактов с металлической ртутью. Даже если, например, в комнате разбился медицинский термометр, следует учитывать опасность отравления парами ртути, потому что ее предельно допустимая доза очень мала — 0,00001 мг/л. Раскатившиеся шарики ртути трудно бывает собрать, и лучше засыпать место, где могут оказаться мелкие частицы, порошком серы или залить раствором хлорида железа (III). Поверхность ртути при этом будет окислена и испарение резко уменьшится.

Кадмий

В промышленности и технике применяется как металлический кадмий, так и его соли — сульфат, сульфид и др. Соединения кадмия ядовиты. При переработке кадмия часто образуется оксид кадмия, относительно летучее вещество, которое может попасть в дыхательные пути. Ионы этого металла вступают в соединение с карбоксильными, аминными и сульфгидрильными (-СООН, -NH2, -SH) группами, имеющимися в молекулах белков, и таким путем задерживаются в организме. Почки, печень, поджелудочная и щитовидная железы служат местами, в которых кадмий может оставаться годами. Известны случаи тяжелых отравлений кадмием, когда человек погибает спустя 9 лет после того, как была прекращена работа с кадмием. Действуя на кожу, кадмий вызывает дерматиты и экземы.

Бериллий

Этот легкий металл применяется в промышленности в виде сплавов (бериллиевые бронзы), используются также оксид и различные соли: фторид, карбонат, хлорид и др.

Пыль, содержащая металлический бериллий, и особенно его растворимые соединения исключительно ядовиты!

Чаще всего отравления происходят в результате вдыхания пыли или дыма бериллия. Бериллий накапливается в тканях легких, вызывая тяжелый бронхит, и может прочно удерживаться и костной тканью.

Животные, пасущиеся на почвах, богатых бериллием, страдают от так называемого "бериллиевого рахита".

Биологическая роль бериллия неясна.

Свинец

Соединения свинца и металлический свинец широко применяются в технике. Из числа соединений большое практическое значение имеют карбонаты и хроматы, используемые как неорганические пигменты (краски), а также различные оксиды и сульфат, с которыми работают в аккумуляторном производстве.

Все соединения свинца и сам металл ядовиты.

Отравление чаще всего носит хронический характер. Обычно оно развивается, при вдыхании пыли, содержащей свинец или его соединения, в условиях недостаточного соблюдения правил техники безопасности. Предельно допустимая концентрация — 0,00001 мг/л. Свинец удерживается белками эритроцитов, затем поступает в плазму крови (в виде комплексов с гамма-глобулином) и наконец достигает почек, печени и других органов.

В костях свинец накапливается постепенно и долго остается там. Время от времени происходит выделение свинца из костей, что может стать причиной неожиданного развития симптомов острого отравления. Долгое время свинец остается и в головном мозге.

Поражения десен, расстройство кишечника, заболевания почек и нервной системы — результаты отравления свинцом.

Таллий

В технике применяют металлический таллий, его оксиды и соли. Этот металл и его соединения также токсичны и в этом отношении несколько напоминают свойства свинца. Особенно токсичны соединения одновалентного таллия.

Таллий, попав в организм, накапливается в волосах, костях, почках, мышцах. Одним из симптомов отравления таллием является выпадение волос. Поражаются желудочно-кишечная система, нервная система и почки.

Хром

Хром, важный для металлургии элемент, применяется как в виде металла, так и в форме соединений со степенями окисления +3 и +6. Степень окисления +2 встречается практически редко. Соединения со степенью окисления +3 и +6 ядовиты, особенно это относится к степени окисления +6 (хроматы и бихроматы). Отравления могут происходить при вдыхании пыли, содержащей соединения хрома; эти соединения всасываются и кожей!

Ион хрома (III) соединяется с белками, содержащими железо, белками печени, костного мозга, нуклеиновыми кислотами и накапливается в легких. Доказано, что соединения хрома вызывают рак легких и различные аллергии.

Предельно допустимая концентрация — всего 0,0001 мг/л.

Магний

Этот металл не является токсичным в том смысле, в каком мы говорили об опасных металлах. Наоборот, присутствие магния необходимо для организма — ионы этого металла выполняют важную работу по регулированию активности многих ферментов.

Но все в меру! Избыточное количество соединений магния может оказать и вредное действие. В легких оксид магния, который легко летуч, вызывает болезненные явления ("литейная лихорадка"); на коже при частых контактах с соединениями магния могут возникнуть раздражения — дерматиты; введение ионов магния под кожу может вызвать паралич мышц.

Цинк

Соединения цинка, так же как и соединения магния играющие важную роль в метаболизме, более опасны, чем соединения магния.

Оксид цинка и пыль металлического цинка в легких вызывают патологические изменения (воспаления); при попадании на кожу соединения этого металла могут стать причиной развития экзем и дерматитов.

Нельзя пить воду, сохранявшуюся в оцинкованных баках: растворимые соединения цинка окажут вредное Действие на желудочно-кишечный тракт. Предельно допустимая концентрация оксида в воздухе — 0,005 мг/л.

Добавим к этому, что все другие металлы второй группы периодической системы, биологическая роль которых нам пока неизвестна, — именно стронций, барий[10], радий[11] — являются сильно токсичными.

Серебро и платина

Соли серебра безусловно ядовиты. На кожные покровы соли серебра оказывают прижигающее действие, и вместе с тем в руках врачей серебро — один из самых полезных металлов. Хорошо известно, что вода, профильтрованная через слой песка, в котором осаждено металлическое серебро ("серебряный песок"), практически стерильна — большинство микроорганизмов в ней убито. По тем же причинам вода, сохраняющаяся в серебряных сосудах, не портится годами. Ничтожного количества ионов серебра, попадающего в воду, достаточно, чтобы обезвредить опасные бактерии. Ионы серебра обладают высокой бактерицидностью.

Проф. П. Е. Ермолаев предложил пользоваться для лечения заболеваний, вызванных стрептококками и стафилококками (воспаления кожных покровов, ангины, гнойные раны и т. п.), очень слабым раствором аммиаката серебра (примерно 1-2 капли двухпроцентного раствора на 100 мл воды); этот раствор под названием "аммарген" оказался весьма полезным. В настоящее время он, к сожалению, почти полностью вытеснен сульфамидами и антибиотиками, хотя имеет по сравнению с ними то преимущество, что бактерии к нему не привыкают.

Назовем еще один металл, соединения которого, может быть, войдут в арсенал средств борьбы с раком. Это платина (отчасти также палладий). Комплексные соединения ионов платины с аммиаком, как доказано недавно тормозят развитие злокачественных опухолей. Несомненно, что медицина будущего сможет широко использовать ценные биологические свойства ионов различных металлов.

Предельно допустимые концентрации соединений металлов в питьевой воде

Таблица 6. Предельно допустимые концентрации соединений металлов в питьевой воде

Металлы, ионы | Предельно допустимая концентрация (в мг/л)
Бериллий(II) | 0,0002

Висмут (III) | 0,5

Висмут (V) | 0,1

Кадмий | 0,01

Ртуть(II) | 0,005

Диэтилртуть | 0,0001

Никель | 0,1

Свинец | 0,1

Титан | 0,1

Цинк | 0,3

Медь | 1,0

Хром (VI) | 0,1

Железо (III) | 0,5

Полезно обратить внимание на то, что, казалось бы, безвредные металлы в действительности требуют осторожного отношения к тем концентрациям, в которых они могут оказаться в питьевой воде. Соли железа в избытке не только портят вкус воды, но и проявляют вредное действие, и притом более значительное, чем медь. Токсичность никеля практически равна таковой свинца; примеси бериллия или ртути исключительно опасны.

Санитарный надзор должен следить за чистотой воды как с бактериологической, так и с химической точки зрения.

Глава 13. Как определяют содержание металлов в биологических материалах

Исследование функций ионов металлов в организмах требует в первую очередь разработки точных методов качественного и количественного анализа, позволяющих обнаружить тот или иной металл и измерить его концентрацию в биологических материалах (в крови, мышечной ткани и др.). Для решения всех этих задач современная наукарасполагает мощным арсеналом химических и физико-химических средств исследования. За последние годы громоздкие и трудоемкие химические методы все чаще уступают место физико-химическим, основанным на явлениях поглощения, испускания, рассеяния и отражения света, избирательной адсорбции и радиоактивности. Аналитическая химия биологических материалов ныне представляет собой огромную, хорошо разработанную область науки. В рамках этой книги мы ограничимся описанием некоторых физико-химических методов, в которых важную роль играют оптические свойства исследуемых соединений.

Как правило, применению этих методов предшествуют химические процедуры, носящие подготовительный характер. Химик старается удалить из раствора все те примеси, которые мешают открытию интересующего его катиона, а когда эта работа завершена, то применяет реактив, дающий специфическое окрашивание или осадок с искомым катионом. Осадок, конечно, можно отделить, высушить и взвесить — это будет чисто химический прием. Но окрашенный раствор и даже муть в растворе с осадком можно исследовать оптическими приборами. Результат будет получен гораздо быстрее и часто с большей степенью точности.

С биологическими материалами работать трудно. Биологические объекты содержат белки, жиры, углеводы в сложных сочетаниях, и среди них в относительно малых количествах скрыты искомые ионы. Очевидно, надо избавиться от мешающих веществ. Проще всего это достигается прокаливанием органического материала, в процессе которого обугливаются белки, жиры и углеводы, а в конечном счете выгорает и уголь. Остаток можно растворить например в азотной кислоте и получить кислый раствор солей металлов (избыток кислоты легко нейтрализовать раствором аммиака). Теперь перед нами менее сложная задача — надо проанализировать неорганические вещества — соли. Качественные испытания, как правило, предшествуют количественным измерениям! Существует множество реакций, с помощью которых можно обнаружить присутствие в растворе того или иного катиона. Чаще всего пользуются реакциями образования окрашенных соединений, специфических для данного металла. Так ионы железа (III) с роданидом аммония (или калия) образуют роданид железа кроваво-красного цвета, с гексацианоферратом (II) калия-берлинскую лазурь.

Современная аналитическая химия широко использует комплексные соединения ионов металлов с различными органическими веществами. Подбирая подходящие лиганды и условия реакции, можно быстро обнаружить искомый ион даже в присутствии других ионов металлов. В таблице 7 приведены данные о характерных реакциях некоторых катионов, образующих окрашенные комплексы.

Таблица 7. Образование окрашенных комплексов, применяемых при аналитических определениях металлов

Количественные определения; следующие за качественными, часто основываются на использовании свойств указанных комплексных соединений. Дело в том" что яркая окраска комплексов, способность их интенсивно поглощать свет определенных длин волн открывает возможность измерения количества комплексного соединения фотометрическими методами.

Принцип, лежащий в основе фотометрирования, очень прост. Допустим, что ион металла переведен в комплексное соединение с какими-либо лигандами и полученное соединение ярко окрашено. Нам известно, из какого количества биологического материала получен данный объем раствора (обычно расчет ведут на 100 г материала, например на 100 г мышечной ткани), но неизвестна концентрация комплекса во всем объеме раствора.

Приготовим отдельно в чистом виде точно такой же комплекс и растворим отмеренное (известное) его количество в определенном (известном) объеме воды. Сравним окраски полученного раствора (стандарта) и исследуемого раствора. Если они одинаковы, значит и концентрации окрашенного комплекса в растворах одинаковы. А если разные, то можно приготовить такой стандартный раствор, у которого окраска будет совпадать по интенсивности с окраской исследуемого. Допустим, что исходный стандарт пришлось разбавить вдвое. Значит ли это, что исследуемый раствор имеет концентрацию вдвое меньшую, чем исходный стандарт? Да, безусловно! Но ведь можно и еще проще поступить — сравнить поглощение света в тонких слоях стандарта и данного раствора. Предположим, что стандарт поглощает больше светового излучения, чем данный раствор. Это значит, что концентрация вещества в стандарте больше. В результате тщательных исследований было доказано (закон Бугера-Ламберта-Бера), что между интенсивностью потока света Iо, падающего перпендикулярно слою раствора толщиной I, интенсивностью потока света l, прошедшего через слой раствора, и концентрацией раствора с существует математическая зависимость:

Между интенсивностью потока света Iо, падающего перпендикулярно слою раствора толщиной I, интенсивностью потока света l, прошедшего через слой раствора, и концентрацией раствора с существует математическая зависимость

где: k — коэффициент пропорциональности, характерный для данного вещества (коэффициент поглощения).

Очевидно, зная отношение I/Iо и величину k, можно вычислить и концентрацию вещества с. Длину слоя обычно берут равной единице (например 1 см). В точных приборах — спектрофотометрах — интенсивность потока света определяют по величине тока, возбуждаемого светом в фотоэлементе, поставленном за кюветой с раствором.

Целесообразно сначала измерить отношение I/Iо для ряда растворов с известным содержанием окрашенного вещества и построить график зависимости lg I/Iо от концентрации; он будет иметь вид прямой, по наклону которой к оси концентраций можно определить коэффициент поглощения. Имея такой график и зная отношение I/Iо для исследуемого раствора, легко найти и значение концентрации с.

Наша промышленность выпускает спектрофотометры с автоматической записью, в которых перо самописца вычерчивает на бумаге кривую зависимости величин логарифма отношения I/Iо от длины волны поглощаемого света. Пользуясь таким прибором, можно быстро построить калибровочный график. Для менее точных оценок применяют приборы без автоматической записи, в которых поглощение относится не к узкой области длин волн, а к широкому интервалу, выделяемому светофильтрами. Описанные устройства предназначены для исследования поглощения электромагнитных волн определенной длины, характеризующих соединения данного элемента.

Другой путь определения содержания металлов в биологических материалах заключается в изучении спектров испускания, т. е. в использовании методов спектрального анализа. Для того чтобы получить спектр испускания вещества, необходимо подвести к нему энергию — возбудить атомы. Известны различные приемы возбуждения: можно ввести вещество в вольтову дугу, в зону искрового разряда или в пламя, имеющее высокую температуру (например в ацетиленово-кислородное пламя). Полученное таким путем излучение направляют на призму спектрографа, в которой оно разлагается на узкие пучки волн различной длины; электромагнитные волны оставляют отпечаток на фотопластинке в виде ряда линий различной интенсивности. Последняя зависит от количества излучающего вещества. Сравнивая эту спектрограмму со спектрограммой, отвечающей известному количеству вещества, можно судить о концентрации изучаемого элемента в образце.

Существуют и иные методы анализа биологических материалов — все они требуют большого и кропотливого труда по подготовке образцов, но зато обеспечивают высокую точность анализов. Гораздо труднее задача — определить виды связей данного металла в биологически активных молекулах. Она отчасти также решается оптическими методами, в частности изучением инфракрасных спектров поглощения.

Исследование свойств комплексных ионов металлов ведет к раскрытию широких перспектив в биологии, практической медицине, сельском хозяйстве и позволяет разработать методы сознательного управления тонкими процессами жизнедеятельности.

Закончим на этом наш краткий обзор аналитических определений и вместе с тем закончим и книгу о металлах в организме в надежде, что читатель оценит исключительную роль металлов в поддержании жизни на Земле.

Примечания

1

В современной научной литературе комплексные соединения часто называют координационными; оба термина равнозначны.

(обратно)

2

Снижение содержания каталазы в эритроцитах ведет к тяжелым болезненным явлениям, например, у человека — к гангрене полости рта (Б. К. Саундерс).

(обратно)

3

В формулах АТФ и креатинфосфата (см. ниже) волнистая линия обозначает химическую связь, богатую энергией, так называемую макроэргическую связь. Открытые концы вертикальных линий (связей) указывают положения атомов водорода.

(обратно)

4

Ацетил действует не в свободном состоянии, а в виде ацетил-кофермента А (АцКоА) — соединения его с коферментом А (КоА). Сам кофермент А состоит из аденин-нуклеотида, двух остатков фосфорной кислоты, пантотеновой кислоты (пант. к.) и аминоэтантиола:

(обратно)

5

Электроны, полученные при окислении пирувата до ацетила и углекислого газа, тоже попадают к НАД, но через переносчик ФАД.

(обратно)

6

Эти вещества были открыты С. Мак-Мунном еще в 1866 г., но лишь к 1925 г., после работ Д. Кейлина, стало ясно, что частицы цитохромов участвуют в дыхании, обратимо окисляясь и восстанавливаясь.

(обратно)

7

Природа связи магния с лигандами в хлорофилле остается дискуссионной; по данным спектроскопических исследований, все четыре связи магния с азотом одинаковы и не имеют ионного характера.

(обратно)

8

Некоторые ученые (Гранин) считают, что сходство гема и хлорофилла обусловлено тем, что оба вещества при биосинтезе сначала образуются одинаковым путем, и лишь на более поздних стадиях их синтез идет по-разному; различают "железную" и "магниевую" ветви: образование с одной стороны гема, с другой — хлорофилла.

(обратно)

9

Способные жить за счет питания готовыми органическими соединениями; отличаются от автотрофов — способных первично синтезировать необходимые им вещества.

(обратно)

10

Сульфат бария почти нерастворим в воде и поэтому безвреден; эта соль применяется в медицине при рентгенографии кишечника и желудка. Как все ионы тяжелых металлов, ион бария хорошо поглощает рентгеновы лучи и дает возможность получить четкое, контрастное изображение. Обычно больному дают взвесь BaSO4 в воде (бариевая каша).

(обратно)

11

Радий применяется в лучевой терапии.

(обратно)

Оглавление

  • Введение
  • Глава 1. Почему организмы иногда называют биологическими машинами?
  • Глава 2. Микроэлементы
  • Глава 3. Комплексные соединения
  • Глава 4. Ферменты и металлы
  • Глава 5. Активаторы и киназы
  • Глава 6. Основные стадии обмена веществ — метаболизма
  • Глава 7. Железо и медь в организмах; их роль в энергетике клетки
  •   Железо
  •     Резервы железа
  •   Медь. Медьсодержащие оксидазы
  • Глава 8. Структурная организация мембран клетки. Окислительное фосфорилирование
  • Глава 9. Многофункциональные ионы
  •   Кобальт
  •   Кальций и магний
  •   Натрий и калий
  • Глава 10. Магний и фотосинтез
  • Глава 11. Фиксация атмосферного азота и ионы металлов
  • Глава 12. Металлы полезные и опасные
  •   Ртуть
  •   Кадмий
  •   Бериллий
  •   Свинец
  •   Таллий
  •   Хром
  •   Магний
  •   Цинк
  •   Серебро и платина
  •   Предельно допустимые концентрации соединений металлов в питьевой воде
  • Глава 13. Как определяют содержание металлов в биологических материалах
  • *** Примечания ***