Рентгеновы лучи [Герман Степанович Жданов] (fb2) читать постранично, страница - 5


 [Настройки текста]  [Cбросить фильтры]

испускающая электроны. Но в отличие от обыкновенной лампы вольфрамовая нить подсоединена к отрицательному проводу источника напряжения. В то же время положительный провод введён внутрь лампы в виде особого электрода, который называется анодом.

Положительно заряженный анод притягивает электроны, испущенные накалённой нитью (катодом). Поэтому вылетевшие из катода электроны уже не образуют электронного облачка около его поверхности, а устремляются к аноду. Им на смену раскалённая нить испускает новые. В такой лампе пойдёт электрический ток — поток электронов, с большой скоростью летящих от катода к аноду.

Для того чтобы нить всё время оставалась нагретой, используется специальный источник электрического тока, изображённый на рисунке 5.

Так устроены рентгеновские трубки. Источником рентгеновых лучей является анод, бомбардируемый потоком быстрых электронов. В рентгеновских трубках электроны двигаются с большой скоростью, вс много раз превышающей скорость пушечного снаряда. Если бы электрон с такой скоростью пустить двигаться вокруг Земли, он совершил бы кругосветное путешествие меньше, чем за секунду.

Поверхность анода рентгеновской трубки во время её работы подвергается непрерывному обстрелу электронами, текущими с катода. Подобно тому как при ударах молота о металл металл разогревается, разогревается и поверхность анода рентгеновской трубки, особенно тот участок, который обстреливается электронами. В этом месте, называемом фокусным пятном, металл может даже частично проплавиться. Тут-то, как обнаружил Рентген, и зарождаются помимо выделяющегося тепла рентгеновы лучи. Они распространяются от фокусного пятна во все стороны.

Мы знаем теперь, что рентгеновы лучи возникают, когда быстро летящие электроны, сталкиваясь с атомами вещества, теряют при этих столкновениях свою энергию. Часть энергии электрона идёт при этом на раскачку атомов вещества, то-есть на повышение его температуры, а часть энергии испускается в виде рентгеновых лучей, в виде лучистой энергии.

Всякий раз, когда электрон движется с ускорением или замедлением, он испускает электромагнитные волны. Чем больше ускорение или замедление электрона, тем короче длина испускаемых электромагнитных волн.

Как теперь установлено, видимый свет также испускается электронами, колеблющимися внутри атомов.

Быстрый электрон, ударяясь о поверхность анода, почти сразу останавливается. В этом случае очень велико торможение электрона, а потому испускаемые при этом электромагнитные волны — рентгеновы лучи — обладают длиной волны примерно в 1 000 раз меньшей, чем длина волны видимого света.

Чем быстрее двигался электрон перед ударом, тем большая потеря скорости произойдёт, тем короче длина волны рентгеновых лучей.

Но скорость электрона зависит от того электрического напряжения, которое приложено между катодом и анодом, именно это напряжение и ускоряет электрон [3]).

Поэтому в зависимости от того, какое напряжение приложим мы к рентгеновской трубке, мы будем получать различные лучи. Меньшее напряжение даёт нам мягкие лучи (более длинные волны), а большее — жёсткие лучи (волны более короткие).


Рис. 6. Внешний вид рентгеновской трубки.


На рисунке 6 показана рентгеновская трубка, применяемая в медицинских рентгеновских кабинетах. Она состоит из стеклянной трубки, длиною около 70 сантиметров. Средняя часть трубки раздута в виде шара. Внутрь её впаяны с одной стороны — катод (обозначен буквой К) (вольфрамовая проволока), с другой стороны — анод — (А). Катод, обычно оканчивающийся цоколем, как у электрической лампочки, имеет подводящий ток проволоки и вольфрамовую спираль, более толстую, чем в обычной лампочке. Анод и катод рентгеновской трубки соединены с источником электрического напряжения. Спираль катода нагревается с помощью отдельного вспомогательного источника тока.

Для работы рентгеновской трубки не годится широко используемый в быту и на производстве ток низкого напряжения. Его напряжение 120 или 220 вольт (вольт — единица измерения напряжения).

Чтобы привести в действие рентгеновскую трубку, нужен ток с напряжением в 50 000–200 000 и более вольт, то-есть ток очень высокого напряжения. Для преобразования тока низкого напряжения в высоковольтный ток применяются специальные приборы, называемые электрическими трансформаторами [4]).


Рис. 7. Общий вид рентгеновской установки.


От трансформатора высокое напряжение подаётся к рентгеновской трубке или с помощью металлических проводов — шин, укреплённых на достаточное расстоянии от потолка с помощью специальных изоляторов, или по специальному высоковольтному кабелю.

Общий вид современной рентгеновской установки с рентгеновской трубкой в защитном чехле — кожухе показан на рисунке 7.

Открытые в конце