Цифровой журнал «Компьютерра» № 92 [Журнал «Компьютерра»] (fb2) читать постранично, страница - 2


 [Настройки текста]  [Cбросить фильтры]

что языки программирования высокого уровня, подобные С (ассемблеры, вплотную приближенные к архитектуре процессора, не в счёт), создавая программу, используют совершенно другую методологию. Они размещают необходимые программе локальные переменные и иные структуры, необходимые для выполнения основной ветви программы и вызываемых из неё процедур, в области памяти, называемой «стек». Стек устроен по принципу оружейного магазина и на своей вершине содержит наиболее актуальные в данный момент данные.


Одним словом, стековая идиллия программ, которую создаёт компилятор, сталкивается с суровыми регистровыми буднями реальных процессорных архитектур. В этом не было бы ничего страшного, если бы не вызовы процедур.

В больших программных проектах достаточной редкостью является наличие одной линейно развивающейся ветви выполнения программы. То и дело её течение приостанавливается, чтобы вызвать какую-либо подпрограмму. А это значит, что информация о последней инструкции и данных основной ветви, хранящаяся в регистрах процессора, должна быть заменена на инструкции и данные вызываемой процедуры.

А если процедур много и вызываются они довольно часто? Нетрудно догадаться, кто в этом случае работает больше, модуль вызова команды или исполнительное устройство процессора. Вот и выходит, что в реальности архитектура процессора, основанная на регистрах, буксует при выполнении сложных программ с кучей процедур.

Именно об этой нестыковке и задумался коллектив исследователей (в его состав входил и Деннис Ритчи, и другие сотрудники Bell Labs), разрабатывая С-машину – гипотетическую безрегистровую процессорную архитектуру, оптимизированную для выполнения С-программ со множеством процедур и стековой организацией хранения данных.

К разработке С-машины учёные подошли основательно. Предварительно была выполнена трассировка исполнения разных типов С-программ, позволившая собрать уникальную статистику, связанную с обращением к памяти и вызовом процедур. Кстати, позже эта статистика «стрельнула» в проекте виртуальной памяти, без которой немыслимо нынешнее поколение операционных систем.


Приступая к разработке С-машины, исследователи провели трассировку десятков С-программ
Согласно идеологии С-машины, инструкции программы получали доступ к необходимым им данным так, как это задумывалось компилятором языка С, то есть непосредственно обращаясь к находящимся в памяти стекам программы и её процедур и, например, таким элементам, как массивы. Такое неэффективное с точки зрения скорости доступа решение на практике оказывалось более продуктивным, чем постоянное перезаписывание более шустрых регистров.


В основе архитектуры С-машины лежит использование специальной кэш-памяти для отображения в ней стека программы
Кроме улучшения производительности, С-машина позволяла получать более компактный код, поскольку в ней не было потребности определять расположение данных необходимых текущей инструкции. По умолчанию они находились в вершине стека. Повышенная плотность кода означала ещё и сокращение трафика в шине данных, что опять же положительно сказывалось на производительности исполнения программы.

Проект С-машины стал активно развиваться в начале восьмидесятых годов прошлого столетия. Возможно, он так и остался бы эдакой игрой разума, если бы не «железные» амбиции компании AT&T, в недрах которой появился язык С и операционная система Unix.

Архитектура CRISP. С-машина в «железном» исполнении
Восьмидесятые годы прошлого столетия были настоящим Клондайком для разработчиков микропроцессоров. Твори, выдумывай, пробуй! Трудись в поте лица и не забывай скрестить пальцы «на удачу». Глядишь, баловница Судьба и подбросит тебе самородок в виде признания рынком именно твоей процессорной архитектуры.

Именно поэтому в процессорной гонке принимала участие и до мозга костей коммуникационная компания AT&T. Её исследовательский центр Bell Labs заслуженно считался кузницей гениальных идей и решений. Именно там получили путёвку в жизнь забытые ныне AT&T-процессоры.

Как и большинство компаний, AT&T начинала с четырёх и восьмиразрядных CISC-процессоров. Первым процессором, разработанным Bell Labs, был Mac-8 – восьмиразрядный процессор общего назначения, представленный 17 февраля 1977 года. В отличие от большинства конкурентов (например, Intel), использовавших для производства технологию NMOS, AT&T в содержащем всего 7500 транзисторов процессоре, MAC-8 применила более сложную для того времени, но эффективную технологию CMOS.

Процессор Mac-8 не нашёл признания на массовом рынке, но широко использовался в коммуникационном оборудовании, выпускаемом